
Mathematical Modelling and Analysis Publisher: Taylor&Francis andVGTU

Volume 22 Number 6, November 2017, 763–784 http://www.tandfonline.com/TMMA

https://doi.org/10.3846/13926292.2017.1376295 ISSN: 1392-6292

c©Vilnius Gediminas Technical University, 2017 eISSN: 1648-3510

Boundary Control and Stabilization of an
Axially Moving Viscoelastic String under a
Boundary Disturbance

Abdelkarim Kelleche
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Abstract. In this paper, we consider a system modelling an axially moving vis-
coelastic string subject to an unknown boundary disturbance. It is controlled by a
hydraulic touch-roll actuator at the right boundary which is capable of suppressing
the transverse vibrations that occur during the movement of the string. The mul-
tiplier method is employed to design a robust boundary control law to ensure the
reduction of the transvesre vibrations of the string.
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1 Introduction

We consider an axially moving viscoelastic string subject to vibrations and
an unknown boundary disturbance. The string is moving in the direction of
its axis with a constant speed c. The left boundary is assumed fixed in the
sense that there is no vertical movement but it allows the string to move in the
horizontal direction. A controller mechanism (dynamic actuator) is attached
at the right boundary. The problem is modeled as a system composed of a
partial integro-differential equation describing the movement of the string and
an integro-ordinary differential equation describing the actuator dynamics. The
system may be written as

ρytt + 2ρcyxt +
(
ρc2 − Ts

)
yxx +

∫ t

0

h(t− s)
(
a(x)yx(s)

)
x
ds = 0,

x ∈ (0, l), t > 0, y(0, t) = 0, t ≥ 0,
Fc(t) = mytt(l, t) + (ηm − ρc) yt(l, t) + (Ts − ρc2)yx(l, t)

−a(l)

∫ t

0

h(t− s)yx(l, s)ds+ d(t), t ≥ 0,

(1.1)
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where y(x, t) is the transversal displacement of the string at the position x and
at time t; y(l, t) indicates the position actuator, where l is the length of the
controlled part of the string; ρ > 0 denotes the mass per unit length; m and ηm
denote the mass and the damping coefficient of the actuator, respectively; Fc(t)
is a control force applied by the dynamic actuator to suppress the transverse
vibrations; d(t) denotes the unknown disturbance force exerted on the actuator
due to the transverse vibration of the string; Ts is a constant axial tension of
the string.

The convolution term, also called viscoelastic damping term, in the equation
(1.1), describes the relationship between the stress and the history of the strain
in the string, according to Boltzmann theory. The function h represents the
kernel of the memory term or the relaxation function. For more details about
the physical meaning, see [6,7,10]. Because the string travels at constant speed
c, the total derivative operator with respect to time is defined by

d

dt
=

∂

∂t
+ c

∂

∂x
. (1.2)

The system (1.1), without viscoelastic term, can be derived using the general-
ized Hamilton’s principle (see [33]). In case the string is made of a viscoelastic
material, we recall the equation of linear viscoelasticity in one dimensional
space (see [8, 9])

d

dt

[
ρ(x)

d

dt
y(x, t)

]
=

[
C(x, t)yx(x, t)−

∫ t

0

H(x, t− s)yx(x, s)ds

]
x

, (1.3)

which is derived from the constitutive relationship between the stress and the
strain

σ(t) = Eε(t)− E
∫ t

0

h(t− s)ε(s)ds

withε(x, t) = y(x, t), where σ and ε are respectively, the stress and the strain
and E is Young’s modulus (see [26] for more details). Note, we consider here
the case where ρ, C are constants and H(x, t) = a(x)h(t), x ∈ [0, l], t ≥ 0. The
first term in (1.3) is evaluated using (1.2) as follows

ρ
d2

dt
y(x, t) = ρ

(
ytt(x, t) + 2cyxt(x, t) + c2yxx(x, t)

)
. (1.4)

Considering (1.4) in (1.3) and taking into account the previous considerations,
the Equation (1.3) takes the form of the main equation in (1.1). Note that the
right boundary condition in (1.1) is an ODE that describes the motion of the
hydraulic actuator in compliance with the transversal force at x = l .

During the last decades, the interest for axially moving systems has in-
creased considerably. In fact many problems in engineering consist of axially
moving structures such as magnetic tapes, steel strips, band saws, chains, power
transmission chains and belts (see [1], [25]). An axially moving system may be
a string, a beam or a belt equation. An important issue in industry is how
to control the unwanted vibrations. These vibrations are the result of several
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factors, most notably: material non-uniformity, environmental disturbances,
high speed and the manufacturing process.

Several means have been discussed in order to reduce or to put an end to
these vibrations. Boundary control is one of the efficient ways adopted so far.
Many papers have been published in this regard. We cite here only few of
them. In the case of moving strings: one may consult [5,11,21,29]). In the case
of moving beams we refer the reader to [17, 18, 33] and in the case of moving
belts, we mention the work in [23]. The stabilization using boundary control
of viscoelastic type was also investigated in [15, 16, 19]. The authors obtained
an uniform decay result under some conditions on the relaxation function.

In particular, the authors in [12] considered a system describing an axi-
ally moving string and a mass-damper-spring (MDS) controller applied at the
right hand side boundary of the string. The governing equation and boundary
conditions are obtained by using Hamilton’s principle

ρytt + 2ρcyxt + (ρc2 − Ts)yxx + cv (yt + cyx) = 0, x ∈ (0, l), t > 0,

y(0, t) = 0, t ≥ 0,

Fc = mytt(l, t) + (dm − ρc) yt(l, t) + kmy(l, t) + (Ts − ρc2)yx(l, t),

(1.5)

where m, dm and km denote the lump mass, the viscous damper coefficient and
the stiffness coefficient of the spring, respectively. The authors proved that
the system is exponentially stable by using the C0 semigroup theory under the
following feedback control law

fc(t) = −αyt(l, t), α > 0, t > 0.

The authors in [33], considered a system describing an axially moving string
under a spatiotemporally varying tension. The system is divided into two parts:
a controlled span and an uncontrolled span. A hydraulic touch roll actuator is
placed in the middle of the string. The governing equation and the boundary
conditions are obtained by using Hamilton’s principle

ρytt + 2ρcyxt + ρc2yxx −
(
Ts(x, t)yx

)
x

+ cv (yt + cyx) = 0,

x ∈ (0, l), t > 0, y(0, t) = 0, t ≥ 0,

Fc(t) = mytt(l, t) +
(
ηm − ρc

)
yt(l, t) + (Ts(l, t)− ρc2)yx(l, t),

(1.6)

where cv denotes the damping coefficient in the string. The authors proved the
asymptotic stability of the closed loop system under the robust boundary con-
trol scheme by using the semigroup theory provided that the lower bound of the

tension Ts(x, t) is sufficiently bigger than the derivatives of tension
(
Ts(x, t)

)
t

and (Ts(x, t))x.
Our goal throughout this work is to achieve the stability of the problem

(1.1) under an appropriate boundary controller. We shall rely on the damping
property enjoyed by viscoelastic materials rather than the frictional damping
used in (1.5) and (1.6). Viscoelastic materials are present in many fields of
engineering. They provide an efficient mechanism of dissipation of mechanical
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vibrations into heat. Consequently, they are capable of reducing vibrations and
hence improving the lifespan of the structures.

In this work, unlike most of the published articles in viscoelasticity where
the relaxation functions were assumed to be strictly decreasing and with a cer-
tain rate, see for example [2,27], we consider relaxation functions that may have
null derivatives on some subsets of (0,∞) , this kind of kernels was investigated
in ( [30]– [32]) and [27].

The situation here is different from the ones in these papers and many
others where the structures were not moving. Indeed, the new feature here is
the treatment of a string which is moving (in addition to vibrating). Unlike
the situations where the strings are motionless, in our case here, the spatial
variable x varies with time. This will affect the derivative of the energy and
gives rise to new boundary terms whose handling is often challenging.

The rest of this paper is organized as follows: in the next section, we prepare
some material needed in the proof of our result, like some lemmas (Poincaré’s
inequality, Young’s inequality) and some useful notation. We introduce the
different functionals by which we modify the classical energy to get an equiv-
alent useful one. We also determine the control force Fc(t) that will act on
the right endpoint of the string. In section 3, we start by introducing some
further notation which will be used repeatedly in the proof and formulating
the assumptions on the relaxation function, then we provide the proof of our
result which relies on the multiplier method.

2 Preliminaries

In this section, we introduce the following mathematical preliminaries: some
definitions and notation, useful technical lemmas which will be widely used
throughout this paper. For every measurable set A ⊂ R+, we define for all
t ≥ 0

ĥ(A) =
1

k

∫
A
h(s)ds,

where k =
∫∞
0
h(s)ds and At = A∩ [0, t]. The flatness set and the the flatness

rate of h are defined by

Fh = {s ∈ R+ : h(s) > 0 and h′(s) = 0}, Rh = ĥ(Fh), (2.1)

respectively. We also define

F̃ht = {s ∈ R+ : 0 ≤ s ≤ t, h(t− s) > 0 and h′(t− s) = 0}.

For the function a(x) and for the relaxation function h(t), we formulate the
following assumptions

(A1) h(t) ≥ 0 for all t ≥ 0 and h′(t) ≤ 0 for almost all t > 0.

(A2) a : [0, l] −→ R+ is a nonnegative bounded function and a(x) ≥ a0 > 0
on [0, l] with

Ts − ρc2 − ‖a‖∞
∫ ∞
0

h(s)ds =: Ts − ρc2 − ‖a‖∞ k > 0.
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(A3) There exists λ > 0 such that

∫ ∞
0

h(s)eλsds <∞.

(A4) The disturbance function d(t) is uniformly bounded, i.e., |d(t)| ≤ µd,
where µd is an unknown positive constant.

Let t∗ > 0 be a number such that

∫ t∗

0

h(s)ds = h∗ > 0. For simplicity,

we consider kernels continuous everywhere and continuously differentiable a.e.
Throughout this paper, we denote by ◦ the operator, defined by

(h ◦ v) (x, t) =

∫ t

0

h(t− s)a(x)
∣∣v(x, t)− v(x, s)

∣∣2ds, v(x, .) ∈ L∞(0,∞), t ≥ 0

and by ‖.‖ the L2-norm.

Example 1. Let h(t) a non-increasing kernel defined by

h(t) =


e−δt, 0 ≤ t ≤ a1,
C = e−δa1 , a1 ≤ t ≤ a2,
e−δa1t/a2 , t ≥ a2,

with

0 < a1 < 1, δ > 1/(1− a1), 0 < a1 < a2 ≤ δa1/(1 + δa1), Fh = [a1, a2].

A simple computation shows that h(t) satisfies the hypotheses (A1)–(A2)
and satisfy the hypothesis (A3) for λ < δa1/a2.

In the sequel, we give some lemmas which will be useful in the proof of our
result.

Lemma 1. (See [13]) Let Φ(x, t) ∈ C
(
R+;H1(0, l)

)
satisfying the boundary

condition
Φ(0, t) = 0,∀t ∈ [0,∞),

then the following inequalities hold

Φ2(x, t) ≤ l ‖Φx‖2 , ∀t ∈ [0,∞), ∀x ∈ [0, l],

‖Φ‖2 ≤ l2 ‖Φx‖2 , ∀t ∈ [0,∞).

Lemma 2. (Young’s inequality) Let f ∈ Lp(R) and g ∈ Lq(R) with 1 ≤ p, q ≤
∞ and 1

r = 1
p + 1

q . Then f ∗ g ∈ Lr(R) and

‖f ∗ g‖Lr≤ ‖f‖Lp‖g‖Lq .

Lemma 3. (See [32]) We have for g ∈ C(0,∞) and v ∈ C
(
(0,∞) ;L2 (0, l)

)
∫ l

0

a(x)v(t)

∫ t

0

g(t− s)v(s)dsdx =
1

2

(∫ t

0

g(s)ds

)∥∥∥√a(x)v
∥∥∥2

+
1

2

∫ t

0

g(t− s)
∥∥∥√a(x)v(s)

∥∥∥2 ds− 1

2

∫ l

0

(g ◦ v) dx, t ≥ 0.

Math. Model. Anal., 22(6):763–784, 2017.
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Lemma 4. ( [31]) Suppose that g is a nonnegative function such that eλtg(t) ∈
L1(0,∞) for some λ > 0. Then, for any ε > 0, there exists 0 < σ < λ such that∫ t

0

g(s)e2σsds ≤ (1 + ε)

∫ ∞
0

g(s)ds, t ≥ 0.

The following inequality will be used repeatedly throughout this paper.

Lemma 5. (Cauchy inequality, see [13]) For a, b ∈ R, the following inequality
holds

ab ≤ δa2 +
b2

4δ
, δ > 0.

In order to state the existence result of the system (1.1). Let we consider the
usual Hilbert space L2(0, l) with the inner product (., .) and the inner product
induced norm ‖.‖. We also define

V =
{
v ∈ H1(0, l), v(0) = 0

}
,

equipped with norm of H1(0, l).

Theorem 1. Let (y0, y1) ∈
(
V ∩H2(0, l)

)
×V and let T > 0, then there exists

a unique global solution to problem (1.1) such that

y ∈ L∞
(

[0, T ), V ∩H2(0, l)
)
, yt ∈ L∞

(
[0, T ), V

)
, ytt ∈ L2

(
[0, T ), L2(0, l)

)
.

Moreover, we havey ∈ C
(
[0, T ), V

)
, yt ∈ C

(
[0, T ), L2(0, l)

)
.

Proof. The proof is based on the Galerkin approximation method. For this,
we refer the reader to [3, 4, 14]. ut

3 Control design and asymptotic behavior

In this section, we state and prove our main result. We first modify the classical
energy of the system (1.1) as follows

E(t) =
ρ

2
‖yt‖2 +

1

2

(
Ts − ρc2

)
‖yx‖2 −

1

2

(∫ t

0

h(s)ds

)∥∥∥√a(x)yx

∥∥∥2
+

1

2

∫ l

0

(h ◦ yx) dx+
m

2

(
yt(l) + cyx(l)

)2
+

1

2γd
µ̃2
d, t ≥ 0,

where γd > 0, µ̃d = µ̂d − µd and µ̂d is the adaptive estimate of µd which will
be specified in the sequel. Therefore,

d

dt
E(t) =

∫ l

0

d

dt
Ẽ(x, t)dx+

1

2

d

dt

[
m
(
yt(l) + cyx(l)

)2
+

1

γd
µ̃2
d

]
(3.1)

=

∫ l

0

(
∂

∂t
Ẽ(x, t) + c

∂

∂x
Ẽ(x, t)

)
dx+

1

2

d

dt

[
m
(
yt(l) + cyx(l)

)2
+

1

γd
µ̃2
d

]
=

∫ l

0

∂

∂t
Ẽ(x, t)dx+ cẼ(x, t)

∣∣∣l
0

+
1

2

d

dt

[
m
(
yt(l) + cyx(l)

)2
+

1

γd
µ̃2
d

]
, t ≥ 0,
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where

Ẽ(x, t) =
ρ

2
y2t (x, t) +

1

2

(
Ts − ρc2 − a(x)

∫ t

0

h(s)ds

)
y2x(x, t) +

1

2
(h ◦ yx) (x, t)

for x ∈ [0, l] and t ≥ 0. That is, the rate of change (of mass) is equal to the
sum of the rate of the accumulation of mass and the net rate of flow across
the surface (here boundary) (see [20,28]). Back to (3.1), the total derivative of
E(t) is equal to

d

dt
E(t) = ρ

∫ l

0

ytyttdx+
(
Ts − ρc2

) ∫ l

0

yxyxtdx

−
(∫ t

0

h(s)ds

)∫ l

0

a(x)yxyxtdx−
1

2
h(t)

∥∥∥√a(x)yx

∥∥∥2 (3.2)

+
1

2

∫ l

0

(h′ ◦ yx) dx+

∫ l

0

yxt

∫ t

0

h(t− s)
(
yx(t)− yx(s)

)
dsdx

+ cẼ(x, t)
∣∣∣l
0

+m (yt + cyx) (l) (ytt + cyxt) (l) +
1

γd
µ̃d

d

dt
µ̂d, t ≥ 0.

In view of the definition of Ẽ(x, t) and taking into account the boundary con-
ditions in (1.1), we see that for t ≥ 0

Ẽ(x, t)
∣∣∣l
0
≤ ρ

2
y2t (l) +

1

2

(
Ts − ρc2 − a(l)

∫ t

0

h(s)ds

)
y2x(l) +

1

2
(h ◦ yx) (l)

≤ ρ

2
y2t (l) +

1

2

(
Ts − ρc2

)
y2x(l)− a(l)yx(l)

∫ t

0

h(t− s)yx(l, s)ds

+
a(l)

2

∫ t

0

h(t− s)y2x(l, s)ds. (3.3)

Substituting ytt and ytt(l) from Equation(1.1) into Equation(3.2), taking into
account the relation (3.3) and integrating by parts we find

d

dt
E(t) ≤ −ρc

2
y2t (l)− 1

2
h(t)

∥∥∥√a(x)yx

∥∥∥2 +
1

2

∫ l

0

(h′ ◦ yx) dx

− c

2

(
Ts − ρc2

)
y2x(l) +

ca(l)

2

∫ t

0

h(t− s)y2x(l, s)ds+ (yt + cyx) (l)
[
Fc(t)

− (ηm − ρc) yt(l) +mcyxt(l)− d(t)
]

+
1

γd
µ̃d

d

dt
µ̂d, t ≥ 0. (3.4)

Now, the robust control law for the right boundary control force Fc(t) is then
proposed as follows

Fc(t) = (ηm − ρc) yt(l)−mcyxt(l) + Fd(t), t ≥ 0. (3.5)

The extra term Fd(t) is considered as a new input signal determined as based
on robust control strategy (see [34]) and is given by

Fd(t) = − µ̂2
d(t)

µ̂d(t) |ȳ(l)|+ εd
ȳ(l), (3.6)

Math. Model. Anal., 22(6):763–784, 2017.
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where εd > 0 and ȳ is a function that will be determined later. The adaptation
law µ̂d is proposed as

d

dt
µ̂d(t) = −δdµ̂d(t) + γd |ȳ(l)| , δd > 0. (3.7)

Remark 1. The measurement of the velocity yt, slope yx and slope rate yxt
at the endpoint x = l are required to implement the boundary force control
law (3.5). By using an encoder (or photodiode) on the actuator and two laser
sensors, the actuator displacement y(l) and the slope yx(l) can be measured,
respectively (see [22]). Then, the velocity yt(l) and the slope rate yxt(l) can
be implemented by backward differentiation of signals that measures y(l) and
yx(l), respectively.

Considering the expression (3.5), (3.4) turns into

d

dt
E(t) ≤ −ρc

2
y2t (l)− 1

2
h(t)

∥∥∥√a(x)yx

∥∥∥2 +
1

2

∫ l

0

(h′ ◦ yx) dx

− c
2

(
Ts − ρc2

)
y2x(l) +

ca(l)

2

∫ t

0

h(t− s)y2x(l, s)ds (3.8)

+ (yt + cyx) (l) (Fd(t)− d(t)) +
1

γd
µ̃d

d

dt
µ̂d.

Next, we define the functionals

Φ1(t) = ρ

∫ l

0

yytdx+my(l)(yt + cyx)(l), t ≥ 0,

Φ2(t) = −ρ
∫ l

0

yt

∫ t

0

h(t− s)
(
y(t)− y(s)

)
dsdx

−m(yt + cyx)(l)

∫ t

0

h(t− s)
(
y(l, t)− y(l, s)

)
ds, t ≥ 0.

The modified functional we will utilize is

L(t) = E(t) +

2∑
i=1

λiΦi(t), t ≥ 0,

for some λi > 0, i = 1, 2 to be determined. The first result shows that L(t)
and E(t) are equivalent.

Proposition 1. We have for each t > 0 and small λi > 0, i = 1, 2

1

2
E(t) ≤ L(t) ≤ 2E(t).

Proof. Using Lemma 5 and Lemma 1, we have

Φ1(t) ≤ ρ

2

(
‖yt‖2 + ‖y‖2

)
+
m

2

[
y2 (l) +

(
yt + cyx

)2
(l)

]
≤ ρ

2
‖yt‖2 +

l

2
(ρl +m) ‖yx‖2 +

m

2

(
yt + cyx

)2
(l) , t ≥ 0.
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Similarly, we get

Φ2(t) ≤ ρ

2
‖yt‖2 +

kl

2a0
(ρl +m)

∫ l

0

(h ◦ yx) dx+
m

2

(
yt (l) + cyx (l)

)2
, t ≥ 0.

Therefore

L(t) ≤ ρ

2
(1 + λ1 + λ2) ‖yt‖2 +

1

2

[(
Ts − ρc2

)
+ λ1l(ρl +m)

]
‖yx‖2

− 1

2

(∫ t

0

h(s)ds

)∥∥∥√a(x)yx

∥∥∥2 +
1

2

[
1 +

λ2kl

a0
(ρl +m)

] ∫ l

0

(h ◦ yx) dx

+
m

2
(1 + λ1 + λ2)

(
yt + cyx

)2
(l) , t ≥ 0.

On the other hand for t ≥ 0

2E(t)− L(t) ≥ ρ

2
(1− λ1 − λ2) ‖yt‖2

+
1

2

[(
Ts − ρc2

)
− ‖a‖∞ k − λ1l(ρl +m)

]
‖yx‖2

+
1

2

[
1− λ2kl

a0
(ρl +m)

] ∫ l

0

(h ◦ yx) dx+
m

2
(1− λ1 − λ2)

(
yt + cyx

)2
(l) .

If we choose λ1 < min
{

1,
[(
Ts − ρc2

)
− ‖a‖∞ k

]
/
[
l(ρl + m)

]}
and λ2 <

min
{

1
[
kl
a0

(ρl +m)
]
, 1 − λ1

}
, then 2E(t) − L(t) ≥ 0, t ≥ 0. Similar compu-

tations and same arguments yield L(t)− 1
2E(t) ≥ 0, t ≥ 0. ut

Theorem 2. Assume that the hypotheses (A1)–(A4) hold. If Rh is small
enough, then there exist positive constants C, γ and sufficiently small ε such
that

E(t) ≤ Ce−γt + ε, t ≥ 0.

In case where the disturbance function d(t) = 0, then there exist positive con-
stants K and τ such that

E(t) ≤ Ke−τt, t ≥ 0.

Proof. The total derivative of Φ1(t) is given by (note here again that we are
taking into account the axial motion of the string)

d

dt
Φ1(t) =

∫ l

0

d

dt
Φ̃1(x, t)dx+m

d

dt

[
y(l)(yt + cyx)(l)

]
(3.9)

=

∫ l

0

(
∂

∂t
Φ̃1(x, t)

)
dx+ cΦ̃1(x, t)

∣∣∣l
0

+m
d

dt

[
y(yt + cyx)

]
(l), t ≥ 0,

where

Φ̃1(x, t) = ρy(x, t)yt(x, t), x ∈ [0, l], t ≥ 0.

Math. Model. Anal., 22(6):763–784, 2017.
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This definition together with the boundary condition in (1.1) gives

Φ̃1(x, t)
∣∣∣l
0

= ρy(l)yt(l), t ≥ 0. (3.10)

Using (1.1) together with (3.9) and (3.10), we entail

d

dt
Φ1(t) = ρ ‖yt‖2 −

∫ l

0

y
[
2ρcyxt +

(
ρc2 − Ts

)
yxx
]
dx

−
∫ l

0

y

∫ t

0

h(t− s)
(
a(x)yx(s)

)
x
dsdx+ y(l)

[
Fc(t)− (ηm − ρc) yt(l)

− (Ts − ρc2)yx(l)
]

+ y(l)
[
a(1)

∫ t

0

h(t− s)yx(l, s)ds+mcyxt(l)− d(t)
]

+myt(l)(yt + cyx)(l) + ρcy(l)yt(l), t ≥ 0. (3.11)

Next, taking into account the boundary conditions in (1.1) and the expression
(3.5), the identity (3.11) becomes

d

dt
Φ1(t) = ρ ‖yt‖2 −

(
Ts − ρc2

)
‖yx‖2 + 2ρc

∫ l

0

ytyxdx

+

∫ l

0

yx

∫ t

0

h(t− s)a(x)yx(s)dsdx (3.12)

+y(l) (Fd(t)− d(t))− ρcy(l)yt(l) +myt(yt + cyx)(l), t ≥ 0.

The third term in the right hand side of (3.12) is estimated as follows

2ρc

∫ l

0

ytyxdx ≤
ρc

β
‖yt‖2 + βρc ‖yx‖2 , β > 0, t ≥ 0. (3.13)

The application of Lemma 5 and Lemma 1 to the last two terms in (3.12), leads
to

− ρcy(l)yt(l) ≤ δ1ρcl ‖yx‖2 +
ρc

4δ1
y2t (l), δ1 > 0, t ≥ 0, (3.14)

myt(l)(yt + cyx)(l) ≤ m (1 + c) y2t (l) +
mc

4
y2x(l), t ≥ 0. (3.15)

Making use of the estimates (3.13)–(3.15) in (3.12) and applying Lemma 3, we
obtain

d

dt
Φ1(t) ≤ ρ

(
1 +

c

β

)
‖yt‖2 −

[
Ts − ρc2 −

k

2
‖a‖∞ − βρc− δ1ρcl

]
‖yx‖2

+
1

2

∫ t

0

h(t− s)
∥∥∥√a(x)yx(s)

∥∥∥2 ds− 1

2

∫ l

0

(h ◦ yx) dx+
mc

4
y2x(l)

+
[
m (1 + c) +

ρc

4δ1

]
y2t (l) + y(l) (Fd(t)− d(t)) , t ≥ 0. (3.16)

For Φ2(t), we have

d

dt
Φ2(t)=

∫ l

0

d

dt
Φ̃2(x, t)dx− d

dt

[
m(yt+cyx)(l)

∫ t

0

h(t−s)
(
y(l, t)− y(l, s)

)
ds
]
,
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or

d

dt
Φ2(t) =

∫ l

0

(
∂

∂t
Φ̃2(x, t)

)
dx+ cΦ̃2(x, t)

∣∣∣l
0

− d

dt

[
m(yt + cyx)(l)

∫ t

0

h(t− s)
(
y(l, t)− y(l, s)

)
ds
]
, (3.17)

where

Φ̃2(x, t) = −ρyt(x, t)
∫ t

0

h(t− s)
(
y(x, t)− y(x, s)

)
ds, t ≥ 0.

In view of the boundary conditions in (1.1), we see that

Φ̃2(x, t)
∣∣∣l
0

= −ρyt(l)
∫ t

0

h(t− s)
(
y(l, t)− y(l, s)

)
ds, t ≥ 0. (3.18)

The relation (3.17), together with (3.18), implies

d

dt
Φ2(t) = −ρ

∫ l

0

ytt

∫ t

0

h(t− s)
(
y(t)− y(s)

)
dsdx

− ρ
∫ l

0

yt

[∫ t

0

h′(t− s)
(
y(t)− y(s)

)
ds+

(∫ t

0

h(s)ds

)
yt

]
dx

−m
(
ytt + cyxt

)
(l)

∫ t

0

h(t− s)
(
y(l, t)− y(l, s)

)
ds

−m
(
yt+cyx

)
(l)
[∫ t

0

h′(t−s)
(
y(l, t)− y(l, s)

)
ds+

(∫ t

0

h(s)ds
)
yt(l)

]
− ρcyt(l)

∫ t

0

h(t− s)
(
y(l, t)− y(l, s)

)
ds, t ≥ 0. (3.19)

Substituting ytt and ytt(l) from Equation(1.1) into Equation (3.19), integrating
by parts and taking into account the boundary conditions and the expression
(3.5), it results that

d

dt
Φ2(t) =

∫ l

0

(
Ts − ρc2 − a(x)

∫ t

0

h(s)ds
)
yx

∫ t

0

h(t−s)
(
yx(t)−yx(s)

)
ds

+

∫ l

0

a(x)

∣∣∣∣∫ t

0

h(t− s)
(
yx(t)− yx(s)

)
ds

∣∣∣∣2 dx
−
(
ρ

∫ t

0

h(s)ds
)
‖yt‖2 − 2ρc

∫ l

0

yt

∫ t

0

h(t− s)
(
yx(t)− yx(s)

)
dsdx

− ρ
∫ l

0

yt

∫ t

0

h′(t− s)
(
y(t)− y(s)

)
dsdx−m

(
yt + cyx

)
(l)

×
[∫ t

0

h′(t− s)
(
y(l, t)− y(l, s)

)
ds+

(∫ t

0

h(s)ds

)
yt(l)

]
+ (ρcyt(l)− Fd(t) + d(t))

∫ t

0

h(t−s)
(
y(l, t)−y(l, s)

)
ds, t ≥ 0. (3.20)
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For all measurable sets A and F such that A = R+\F , we have∫ l

0

yx

∫ t

0

h(t− s)
(
yx(t)− yx(s)

)
dsdx

=

∫ l

0

yx

[ ∫
At

h(t−s)
(
yx(t)−yx(s)

)
ds+

∫
Ft

h(t−s)
(
yx(t)−yx(s)

)
ds
]
dx

≤
∫ l

0

yx

∫
At

h(t−s)
(
yx(t)− yx(s)

)
dsdx+

(∫
Ft

h(t− s)ds
)
‖yx‖2

−
∫ l

0

yx

∫
Ft

h(t− s)yx(s)dsdx. (3.21)

The first and the last term in the right hand side of (3.21) may be evaluated
as follows∫ l

0

yx

∫
At

h(t− s)
(
yx(s)− yx(t)

)
dsdx

≤ δ2 ‖yx‖2 +
k

4δ2a0

∫
At

h(t−s)
∫ l

0

a(x)
(
yx(t)− yx(s)

)2
dxds, δ2 > 0

and for t ≥ 0∫ l

0

yx

∫
Ft

h(t− s)yx(s)dsdx ≤ 1

2

(∫
Ft

h(t−s)ds
)
‖yx‖2 +

1

2

∫
Ft

h(t−s) ‖yx(s)‖2 ds.

Therefore, (3.21) becomes for t ≥ 0∫ l

0

yx

∫ t

0

h(t− s)
(
yx(s)− yx(t)

)
dsdx

≤ δ2 ‖yx‖2 +
k

4δ2a0

∫
At

h(t− s)
∫ l

0

a(x)
(
yx(t)− yx(s)

)2
dxds

+
3

2

(∫
Ft

h(t− s)ds
)
‖yx‖2 +

1

2

∫
Ft

h(t− s) ‖yx(s)‖2 ds. (3.22)

The second term in the right hand side of (3.20) can be handled similarly.
Indeed for δ3 > 0, we see that for t ≥ 0

∫ l

0

a(x)

∣∣∣∣∫ t

0

h(t− s)
(
yx(t)− yx(s)

)
ds

∣∣∣∣2 dx
≤
(

1 +
1

δ3

)
k

∫ l

0

∫
At

h(t− s)a(x)
(
yx(t)− yx(s)

)2
dsdx (3.23)

+ (1 + δ3) k

(∫
Ft

h(t− s)ds
)∫ l

0

∫
Ft

h(t− s)a(x)
(
yx(t)− yx(s)

)2
dsdx.
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For the fourth term, we can write for δ4 > 0 and for t ≥ 0

− 2ρc

∫ l

0

yt

∫ t

0

h(t− s)
(
yx(t)− yx(s)

)
dsdx

≤ δ4ρc ‖yt‖2 +
ρc

δ4

∫ l

0

∣∣∣∣∫ t

0

h(t− s)
(
yx(t)− yx(s)

)
ds

∣∣∣∣2 dx,
or

− 2ρc

∫ l

0

yt

∫ t

0

h(t− s)
(
yx(t)− yx(s)

)
dsdx

≤ δ4ρc ‖yt‖2 +
2ρc

δ4a0
k

∫ l

0

∫
At

h(t− s)a(x)
(
yx(t)− yx(s)

)2
dsdx (3.24)

+
2ρc

δ4a0

(∫
Ft

h(t− s)ds
)∫ l

0

∫
Ft

h(t− s)a(x)
(
yx(t)− yx(s)

)2
dsdx.

In the same manner, we have

−
∫ l

0

yt

∫ t

0

h′(t− s)
(
y(t)− y(s)

)
dsdx

≤ δ5 ‖yt‖2 +
l2

4δ5a0

(∫ t

0

|h′(s)| ds
)∫ l

0

(|h′| ◦ yx)dx

≤ δ5 ‖yt‖2 −
h(0)l2

4δ5a0

∫ l

0

(h′ ◦ yx)dx, δ5 > 0, t ≥ 0. (3.25)

The remaining terms may be treated for t ≥ 0, with the help of Lemma 5 and
Lemma 1, as follows

−m
(
yt + cyx

)
(l)

[∫ t

0

h′(t− s)
(
y(l, t)− y(l, s)

)
ds

]
≤ m

2

(
y2t + c2y2x

)
(l)− m

a0

(∫ t

0

|h′(s)| ds
)

(h′ ◦ y)(l)

≤ m

2
(y2t + c2y2x)(l)− δ6mh(0)l

a0

∫ l

0

(h′ ◦ yx)dx, (3.26)

−m
(∫ t

0

h(s)ds

)
(yt + cyx)(l)yt(l)

≤ −m
(∫ t

0

h(s)ds

)
y2t (l) +

m

2

(∫ t

0

h(s)ds

)(
y2t + c2y2x

)
(l)

≤ −m
2
h∗y

2
t (l) +

mc2

2
ky2x(l), t ≥ t∗ (3.27)

and

ρcyt(l)

∫ t

0

h(t−s)
(
y(l, t)−y(l, s)

)
ds ≤ ρc

4δ7
y2t (l) +

δ7ρclk

a0

∫ l

0

(h ◦ yx)dx (3.28)
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for all t ≥ 0. Collecting the previous estimates (3.22)–(3.28) and inserting them
in (3.20), we obtain for t ≥ t∗

d

dt
Φ2(t) ≤ ρ (δ5 + δ4c− h∗) ‖yt‖2 −

h(0)l

a0

(
ρl

4δ5
+m

)∫ l

0

(h′ ◦ yx)dx

+
(
Ts − ρc2 − a0h∗

) [
δ2 +

3

2

(∫
Ft

h(t− s)ds
)]
‖yx‖2

+ k

[
1 +

1

δ3
+

1

4δ2a0

(
Ts − ρc2 − a0h∗

)
+

2ρc

δ4a0

]
×
∫ l

0

∫
At

h(t− s)a(x)(yx(t)− yx(s))2dsdx+
1

2

(
Ts − ρc2 − a0h∗

)
×
∫
Ft

h(t− s) ‖yx(s)‖2 ds+
δ7ρclk

a0

∫ l

0

(h ◦ yx)dx+

(
1 + δ3 +

2ρc

δ4a0

)
×
(∫
Ft

h(t− s)ds
)∫ l

0

∫
Ft

h(t− s)a(x)(yx(t)− yx(s))2dsdx

+
mc2

2

(
k +

1

δ6

)
y2x(l) +

m

2

(
−h∗ + 1 +

ρc

2δ7m

)
y2t (l)

− (Fd(t)− d(t))

∫ t

0

h(t− s)
(
y(l, t)− y(l, s)

)
ds. (3.29)

In view of the estimates (3.8), (3.16) and (3.29), we infer that for t ≥ t∗

d

dt
L(t) ≤

{
1

2
− λ2h(0)l

a0

(
ρl

4δ5
+m

)}∫ l

0

(h′ ◦ yx)dx

+
{
λ2
(
Ts − ρc2 − a0h∗

) (
δ2 + 2kĥ(F)

)
−λ1

[
Ts − ρc2 −

k

2
‖a‖∞ − βρc− δ1ρcl

]}
‖yx‖2

+ ρ {λ1 (1 + c/β) + λ2 (δ5 + δ4c− h∗)} ‖yt‖2

+

{
λ2

(
1 + δ3 +

2ρc

δ4a0

)
kĥ(F) +

λ2
a0
δ7ρclk −

λ1
2

}∫ l

0

(h ◦ yx)dx

+
λ1
2

∫ t

0

h(t− s)
∥∥∥√a(x)yx(s)

∥∥∥2 ds
+

λ2
2a0

(
Ts − ρc2 − a0h∗

) ∫
Ft

h(t− s)
∥∥∥√a(x)yx(s)

∥∥∥2 ds
+ λ2k

(
1 +

1

δ3
+

1

4δ2a0

(
Ts − ρc2 − a0h∗

)
+

2ρc

δ4a0

)
×
∫ l

0

∫
At

h(t−s)a(x)(yx(t)− yx(s))2dsdx+
c

2

∫ t

0

h(t− s)y2x(l, s)ds

+

{
λ2
mc2

2

(
k +

1

δ6

)
+ λ1

mc

4
− c

2

(
Ts(l)− ρc2

)}
y2x(l)
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+

{
λ2
m

2

(
−h∗ + 1 +

ρc

2δ7m

)
+ λ1

[
m (1 + c) +

ρc

4δ1

]
− ρc

2

}
y2t (l)

+
[

(yt + cyx) (l) + λ1y(l)− λ2
∫ t

0

h(t− s)
(
y(l, t)− y(l, s)

)
ds
]

(Fd(t)− d(t))

+
1

γd
µ̃d

d

dt
µ̂d. (3.30)

Now, we estimate the last two terms in (3.30). For this, we set

ȳ(l) = (yt + cyx) (l) + λ1y(l)− λ2
∫ t

0

h(t− s)
(
y(l, t)− y(l, s)

)
ds

and consider the expressions (3.6) and (3.7), we get

ȳ(l) (Fd(t)− d(t)) +
1

γd
µ̃d

d

dt
µ̂d

≤ − µ̂2
d(t)

µ̂d(t) |ȳ(l)|+ εd
|ȳ(l)|2 + µd |ȳ(l)| − δd

γd
µ̃dµ̂d(t) + µ̃d |ȳ(l)|

≤ −µ̂
2
d(t) |ȳ(l)|2 + µ̂2

d(t) |ȳ(l)|2 + εdµ̂d(t) |ȳ(l)|
µ̂d(t) |ȳ(l)|+ εd

− δd
2γd

µ̃2
d

−

(√
δd

2γd
µ̃d +

√
δd

2γd
µd

)2

+
δd

2γd
µd

≤ εd −
δd
γd
µ̃2
d +

δd
2γd

µd = ϑ(t), t ≥ 0. (3.31)

Next, we multiply both sides (3.30) by e2σs, 0 < σ < λ/2, take into account
(3.31) and integrate from t∗ to t to get

e2σtL(t)− L(t∗)− 2σ

∫ t

t∗

e2σsL(s)ds ≤
{

1

2
− λ2h(0)l

a0

(
ρl

4δ5
+ δ6m

)}
×
∫ t

t∗

e2σs
∫ l

0

(h′ ◦ yx)(s)dxds+
{
λ2
(
Ts−ρc2−a0h∗

) (
δ2 + 2kĥ(F)

)
− λ1

[
Ts − ρc2 −

k

2
‖a‖∞ − βρc− δ1ρcl

]}∫ t

t∗

e2σs ‖yx‖2 ds+ ρ
{
λ1

(
1 +

c

β

)
+ λ2 (δ5 + δ4c− h∗)

}∫ t

t∗

e2σs ‖yt‖2 ds

+

{
λ2

(
1+δ3+

2ρc

δ4a0

)
kĥ(F) +

λ2
a0
δ7ρclk −

λ1
2

}∫ t

t∗

e2σs
∫ l

0

(h ◦ yx)(s)dxds

+
λ1
2

∫ t

t∗

e2σs
∫ s

0

h(s− z)
∥∥∥√a(x)yx(z)

∥∥∥2 dzds
+

λ2
2a0

(
Ts − ρc2 − a0h∗

) ∫ t

t∗

e2σs
∫
Fs

h(s− z)
∥∥∥√a(x)yx(z)

∥∥∥2 dzds
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+ λ2k

(
1 +

1

δ3
+

1

4δ2a0

(
Ts − ρc2 − a0h∗

)
+

2ρc

δ4a0

)
×
∫ t

t∗

e2σs
∫ l

0

∫
As

h(t− s)(yx(s)− yx(z))2dzdxds

+

{
λ2
2
mc2

(
k +

1

δ6

)
+ λ1

mc

4
− c

2

(
Ts(l)− ρc2

)}∫ t

t∗

e2σsy2x(l, s)ds

+

{
λ2m

[
−h∗

2
+

1

2δ6
+

ρc

4δ7m

]
+λ1

[
m (1+c) +

ρc

4δ1

]
−ρc

2

}∫ t

t∗

e2σsy2t (l, s)ds

+
c

2

∫ t

t∗

e2σs
∫ s

0

h(s− z)y2x(l, z)dzds+

∫ t

t∗

e2σsϑ(s)ds, t ≥ t∗. (3.32)

For β < 1
ρc

(
Ts − ρc2 − k

2 ‖a‖∞
)
, we choose δ4 = h∗

4c , δ5 = h∗
4 and λ1 =

βh∗
4(β+c)λ2. We need

1

2
− λ2h(0)l

a0

(
ρl

4δ5
+m

)
≥ 1

4
.

This is possible if we select

λ2 < a0h∗/ [4h(0)l (ρl + h∗m)] .

We use Lemma 2 and Lemma 4 to get∫ t

t∗

e2σs
∫ s

0

h(s− z)
∥∥∥√a(x)yx(z)

∥∥∥2 dzds
=

∫ t

t∗

∫ s

0

h(s− z)e2σ(s−z)e2σz
∥∥∥√a(x)yx(z)

∥∥∥2 dzds
≤
∫ t

t∗

h(s)e2σsds

∫ t

t∗

e2σs
∥∥∥√a(x)yx(z)

∥∥∥2 ds
≤ (1 + ε) k

∫ t

t∗

e2σs
∥∥∥√a(x)yx(z)

∥∥∥2 ds
≤ (1 + ε) k ‖a‖∞

∫ t

t∗

e2σs ‖yx(z)‖2 ds, t ≥ t∗ (3.33)

and∫ t

t∗

e2σs
∫ s

0

h(s−z)y2x(l, z)dzds =

∫ t

t∗

∫ s

0

h(s−z)e2σ(s−z)e2σzy2x(l, z)dzds

≤
∫ t

t∗

h(s)e2σsds

∫ t

t∗

e2σsy2x(l, s)ds ≤ (1+ε) k

∫ t

t∗

e2σsy2x(l, s)ds, t ≥ t∗. (3.34)

Next, in view of Proposition 1, we find

2σ

∫ t

t∗

e2σsL(s)ds ≤ 4σ

∫ t

t∗

e2σsE(s)ds

≤ 2σ

∫ t

t∗

e2σs
{
ρ ‖yt‖2 +

[
Ts − ρc2 − a0h∗ + 2k(2 + ε)

]
‖yx‖2

}
ds
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+ 4σm

∫ t

t∗

e2σs
(
y2t (l) + c2y2x(l)

)
ds, t ≥ t∗. (3.35)

From (3.32) and with the help of the relations (3.33), (3.34) and (3.35), we
infer that

e2σtL(t)− L(t∗) ≤
1

4

∫ t

0

e2σs
∫ l

0

(h′ ◦ yx)(s)dxds

+ {λ2
(
Ts − ρc2 − a0h∗

) (
δ2 + 2kĥ(F)

)
− λ1

[
Ts − ρc2 −

(
1 +

ε

2

)
k ‖a‖∞ − βρc− δ1ρcl

]
+ 2σ

[
Ts − ρc2 − a0h∗ + 2k(2 + ε)

]} ∫ t

t∗

e2σs ‖yx‖2 ds

+

(
2σ − λ2

ρh∗
4

)∫ t

t∗

e2σs ‖yt‖2 ds

+

{
λ2

(
1+δ3+

2ρc

δ4a0

)
kĥ(F)+

λ2
a0
δ7ρclk −

λ1
2

}∫ t

t∗

e2σs
∫ l

0

(h◦yx)(s)dxds

+ λ2k

[
1 +

1

δ3
+

1

4δ2

(
Ts,max − ρc2 − h∗

)
+

2ρc

δ4

]
×
∫ t

t∗

e2σs
∫ l

0

∫
As

h(t− s)(yx(s)− yx(z))2dzdxds

+

{
λ2
mc2

2

(
k +

1

δ6

)
+ λ1

mc

4
− c

2

[
Ts(l)− ρc2 − (1 + ε) k

]
+ 4σmc2

}
×
∫ t

t∗

e2σsy2x(l, s)ds+

{
λ2m

[
−h∗

2
+

1

2
+

ρc

4δ7m

]
(3.36)

+λ1

[
m (1 + c) +

ρc

4δ1

]
− ρc

2

}
×
∫ t

t∗

e2σsy2t (l, s)ds+

∫ t

t∗

e2σsϑ(s)ds, t ≥ t∗.

As in [31], we introduce

An = {s ∈ R+ : nh′(s) + h(s) ≤ 0}, n ∈ N,

Ãnt = {s ∈ R+ : 0 ≤ s ≤ t, nh′(t− s) + h(t− s) ≤ 0}, n ∈ N.

Observe that
⋃
nAn = R+\{Fh ∪ Nh}, where Nh is the set where h′ is not

defined and Fh is defined in (2.1), if we denote Fn = R+\An, then

lim
n→∞

ĥ(Fn) = ĥ(Fh)

because Fn+1 ⊂ Fn for all n and
⋂
n
Fn = Fh ∪ Nh. We take At := Ãnt ,

Ft := F̃nt in (3.36) . We get

e2σtL(t)− L(t∗) ≤
{
λ2
(
Ts − ρc2 − a0h∗

) (
δ2 + 2kĥ(Fn)

)
− λ1

[
Ts − ρc2 −

(
1 +

ε

2

)
k ‖a‖∞ − βρc− δ1ρcl

]
Math. Model. Anal., 22(6):763–784, 2017.
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+2σ
[
Ts − ρc2 − a0h∗ + 2k(2 + ε)

]}
×
∫ t

t∗

e2σs ‖yx‖2 ds

+

(
2σ − λ2

ρh∗
4

)∫ t

t∗

e2σs ‖yt‖2 ds

+

{
λ2

(
1 + δ3 +

2ρc

δ4a0

)
kĥ(Fn) +

λ2
a0
δ7ρclk −

λ1
2

}
×
∫ t

t∗

e2σs
∫ l

0

(h ◦ yx)(s)dxds

+

{
λ2k

[
1 +

1

δ3
+

1

4δ2

(
Ts − ρc2 − h∗

)
+

2ρc

δ4

]
− 1

4n

}
×
∫ t

t∗

e2σs
∫ l

0

∫
Ans

h(t− s)(yx(s)− yx(z))2dzdxds

+

{
λ2
mc2

2
(k + 1) + λ1

mc

4
− c

2

[
Ts(l)− ρc2 − (1 + ε) k

]
+ 4σmc2

}
×
∫ t

t∗

e2σsy2x(l, s)ds+

{
λ2m

[
−h∗

2
+

1

2δ6
+

ρc

4δ7m

]
+ λ1

[
m (1 + c) +

ρc

4δ1

]
−ρc

2
+ 4σm

}∫ t

t∗

e2σsy2t (l, s)ds+

∫ t

t∗

e2σsϑ(s)ds, t ≥ t∗. (3.37)

For simplicity, we take δ2 = δ3 and δ7 = a0β
16(β+c)ρclkh∗.

For β < 1
ρc

(
Ts − ρc2 − k ‖a‖∞

)
, we choose

δ1 =
1

2ρcl

[
Ts − ρc2 −

(
1 +

ε

2

)
k ‖a‖∞ − βρc

]
.

Now, we start selecting the different parameters in such a way that all the
coefficients in the right-hand side of (3.37) are negative. For this, we set

k1 =
(
Ts − ρc2 − a0h∗

) (
δ2 + 2kĥ(Fn)

)
− βh∗

8(β+c)

[
Ts − ρc2 −

(
1 + ε

2

)
k ‖a‖∞ − βρc

]
,

k2 = −λ2 ρh∗
4 < 0,

k3 =
(

1 + δ2 + 2ρc
δ4a0

)
kĥ(Fn)− βh∗

16(β+c) ,

k4 = λ2k
[
1 + 1

δ3
+ 1

4δ2

(
Ts − ρc2 − h∗

)
+ 2ρc

δ4

]
− 1

4n ,

k5 = λ2
mc2

2 (k + 1) + λ1
mc
4 −

c
2

[
Ts(l)− ρc2 − (1 + ε) k

]
,

k6 = λ2m
[
−h∗

2 + 1
2δ6

+ ρc
4δ7m

]
+ λ1

[
m (1 + c) + ρc

4δ1

]
− ρc

2 .

For k1 and k3, we select ĥ(Fn) small in such that{
2
(
Ts − ρc2 − a0h∗

)
kĥ(Fn) < βh∗

8(β+c)

(
Ts − ρc2 − k ‖a‖∞ − βρc

)
,(

1 + 2ρc
δ4a0

)
kĥ(Fn) < β

16(β+c)h∗.

Once this is fixed, and in order to make k1 and k3 negative, we can choose δ2
and ε small enough. For ki, i = 4, ..., 6, it suffices to take λ2 small enough such
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that the relation in Proposition 1 remains valid and
λ2k

[
1 + 1

δ3
+ 1

4δ2

(
Ts − ρc2 − h∗

)
+ 2ρc

δ4

]
< 1

4n ,

λ2
mc2

2 (k + 1) + λ2
βh∗

4(β+c)
mc
4 < c

2

[
Ts(l)− ρc2 − (1 + ε) k

]
,

λ2m
[
−h∗

2 + 1
2δ6

+ ρc
4δ7m

]
+ λ2

βh∗
4(β+c)

[
m (1 + c) + ρc

4δ1

]
< ρc

2 .

To conclude, we choose

σ<min{−λ2k1/
{

2σ
[
Ts−ρc2−a0h∗+2k(2 + ε)

]}
,−k2,−k5/4mc2,−k6/4m},

which makes negative all the coefficients in (3.37). This leads to

L(t) ≤ e−2σt
(
L(t∗) +

∫ t

t∗

e2σsϑ(s)ds

)
.

Note that ϑ is bounded (|ϑ(t)| ≤ ϑd, t ≥ t∗) because of the assumption that
µd is bounded (see [34]). This allows us to get

L(t) ≤ L(t∗)e
−2σt +

ϑd
2σ
, t ≥ t∗.

Proposition 1 permits to get

E(t) ≤ 2L(t∗)e
−2σt +

ϑd
σ
, t ≥ t∗. (3.38)

The result holds trivially between 0 and t∗. ϑ(t) can be pushed in an arbitrarily
small boundedness region by making sufficiently small εd, δd and sufficiently
large γd.(see [33] and [34]). Thus, (3.38) becomes

E(t) ≤ C1e
−γt + ε1, t ≥ 0

with small ε1 and positive constants C1 and γ, which implies by applying the
Cauchy-Schwarz inequality

|y(x, t)| ≤
√
l ‖yx‖ ≤

(
2lE(t)

(Ts − ρc2 − ‖a‖∞ k)

) 1
2

≤
√
Ce−γt + ε, t ≥ 0

with small ε and positive constant C. In the case where there is no disturbance,
that is d(t) = 0, t ≥ 0, we get the following exponential decay result. Indeed,
there exist positive constants K and τ such that

E(t) ≤ Ke−τt, t ≥ 0.

ut

Remark 2. Some recent literatures have investigated the boundary control of
axially moving systems with axial variable speed c(t) > 0, (see [24]). Under
this assumption, the main equation becomes

ρ
(
ytt + 2c(t)yxt + c2(t)yxx + av(t)yx

)
−Tsyxx+

∫ t

0

h(t−s)
(
a(x)yx(s)

)
x
ds = 0,

Math. Model. Anal., 22(6):763–784, 2017.
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where av(t) > 0 is the acceleration. The constant speed is a special case
of variable speed (av(t) = 0) and its derivation will be zero. In order to
accommodate the terms resulted from the effect of a variable speed, the authors
in ( [24]) considered a frictional damping term (K(yt + vyx), K > 0 ). This is
not the case in our work as the dissipation produced by the viscoelastic term
is weaker than the one produced by the frictional damping and the new terms
could not be easily controlled. In other hand, the aim in this work is to study
the effect of viscoelastic materials on the theory of moving structures and its
role in the reducing of the undesirable vibrations.

Remark 3. Note that if the inequality in (A2) is strict (which is the case in
many existing papers in viscoelasticity), then there will be no restriction on
the size of Rh . In case of power-type decay of the kernel h we can obtain
power-type decay of the solution (see [30]). In most of the existing works a
rate of decay is imposed to the kernel through the condition h′(t) ≤ −Ch(t)
for some positive constant C. This constant can be replaced by a function
ψ(t) and the function h(t) can be replaced by a function of h(t) (that is h′(t) ≤
−ψ(t)φ(h(t))). It is clear that this condition in its simplest form h′(t) ≤ −Ch(t)
imply the assumption in (A3). But, the assumption (A3) does not imply this
condition.
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