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Abstract. In this work we derive a third order correction to the classical Helmholtz equation.
Starting from non–linear Euler equations and using asymptotical analysis we get a decoupled
system of linear, Helmholtz type equations, which are written in terms of the acoustical pres-
sure functions. We present also a rather simple concept of the boundary conditions. Also
numerical results and accompanying difficulties are discussed and presented.
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1. Introduction

If a bass loudspeaker is run at high power, owing to the low frequency, the displace-
ments of the membrane and of the air in the reflex tube may exceed a centimeter.
Hence, linear acoustic approximation is no longer applicable. Solving the complete
Euler equations, however, requires an unreasonably high effort. Applying asympto-
tical analysis and assuming irrotational airflow one was able to derive a second order
correction to the classical Helmholtz equation from the full Euler equations. This
correction is again of Helmholtz type with non–homogeneousright hand side, which
depends only on the first order solution and its derivatives,cf. [3]. To estimate the
significance of higher order corrections at least the third order correction is needed.
The model in [3] was based on Lagrangian coordinates, hence,the natural unknown
function was the displacement functionh(t, x), however, we are interested in the
behaviour of the acoustical pressure functionp(t, x).

2. Isentropic Euler Equations

We start from the isentropic Euler equations written in Eulerian coordinate system:
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∂ρ

∂t̃
+ div

x̃
(ρu) = 0 (conservation of mass), (2.1)

ρ

[

∂u

∂t̃
+ 〈u,∇

x̃
〉u

]

+ ∇
x̃
p = 0 (conservation of momentum), (2.2)

p

p0

−

(

ρ

ρ0

)γ

= 0 (isentropic). (2.3)

Densityρ, pressurep and velocityu are functions of the timẽt > 0 and the position
x̃ ∈ Ω ⊂ R

3, where "∼" denotes Eulerian coordinates.γ is the gas specific heat
ratio.ρ0 andp0 are the values of density and pressure at rest, respectively. Boundary
conditions will be discussed later.

In our case we consider a domain, which is changing in time. Ithappens due to
oscillations of the membrane. Because of this we transform the equations (2.1)-(2.3)
into Lagrangian coordinate system(t, x). Such transformation allows us to intro-
duce new unknown functionh(t, x), which is called the displacement (see [3]). In
Lagrangian coordinate system the equations (2.1)–(2.3) are transformed into the fol-
lowing equation:

F t ∂
2
h

∂t2
=

c2

0

1 − γ
∇x [(detF )]1−γ , (2.4)

whereF =

(

δij +
∂hi

∂xj

)3

i,j=1

andc0 is the speed of the sound at rest.

2.1. Asymptotic Analysis and Expansions

In order to do linearization we apply the asymptotic analysis. To do so, we have
to scale the equation (2.4). We introduce new dimensionlessvariablesξ := κx,
τ := ωt and the scaled displacementη := h/l, whereκ is so–called wave number,
l is a characteristic amplitude of the membrane oscillationsand ω is the angular
frequency. We define some quantityε := κl. This quantity for lowω frequencies has
to be small compared to1. Using these new variables we scale the equation (2.4):

εF t ∂
2η

∂τ2
=

1

1 − γ
∇ξ [(detF )]

1−γ
, (2.5)

whereF =

(

δij + ε
∂ηi

∂ξj

)3

i,j=1

.

Assume, without any proof of the convergence, that the displacement function
η (τ, ξ) has an expansion of the form (perfect harmonic excitation ofthe membrane
is assumed):

η (τ, ξ) = ℜ
(

η1 (ξ) eiτ
)

+ εℜ
(

η2 (ξ) e2iτ + θ2 (ξ)
)

+ ε2ℜ
(

η3 (ξ) e3iτ + θ3 (ξ) eiτ
)

+ O
(

ε3
)

. (2.6)

At the same time we also assume existence of the expansion forthe pressure function
p (τ, ξ), which will be frequently used in the following analysis:
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p (τ, ξ) = ρ0c
2

0
ℜ

[

1

γ
+ εp1 (ξ) eiτ + ε2

(

p2 (ξ) e2iτ + q2 (ξ)
)

+ ε3
(

p3 (ξ) e3iτ + q3 (ξ) eiτ
)]

+ O
(

ε4
)

. (2.7)

Substituting the expression (2.6) into the equation (2.5),collecting terms for equal
powers ofε and for equal time factorseiτ , e2iτ ande3iτ we end up with the following
equations for the functionsη1, η2 andη3:

∇ξ 〈∇ξ, η1
〉 + η

1
= 0, (2.8)

∇ξ 〈∇ξ, η2〉 + 4η2 =
∇ξ

4

[

(γ − 1) 〈∇ξ, η1〉
2
− 〈η1, η1〉 +

∂η1j

∂ξk

∂η1k

∂ξj

]

, (2.9)

∇ξ 〈∇ξ, η3〉 + 9η3 =
∇ξ

2

[

−
(γ − 1)2

12
〈∇ξ, η1〉

3
− 〈η1, η2〉 (2.10)

−
γ − 1

4
〈∇ξ, η1〉

∂η1j

∂ξk

∂η1k

∂ξj

−
1

6

∂η1j

∂ξk

∂η1k

∂ξm

∂η1m

∂ξj

+
∂η1j

∂ξk

∂η2k

∂ξj

+ (γ − 1) 〈∇ξ, η1
〉 〈∇ξ, η2

〉
]

−
3

2

(

∂η1j

∂ξ1

η2j ,
∂η1j

∂ξ2

η2j ,
∂η1j

∂ξ3

η2j

)T

.

Here the Einstein’s summation convention is assumed.

2.2. Non–existence of the potential ofη
3

Assume for the moment, that the functionsη1, η2 have potentials, i.e.∃ φ1 and
φ2 such thatη1 = ∇ξφ1 andη2 = ∇ξφ2. Inserting these expressions into the
equations (2.8) and (2.9) and integrating both left and right hand sides of the resulting
expressions with respect toξi, i = 1, 2, 3 (assume the integration constants equal to
zero) we end up with the equations for the functionsφ1 andφ2:

∆ξφ1 + φ1 = 0, (2.11)

∆ξφ2 + 4φ2 =
1

4

[

(γ − 1)φ2

1
− (∇ξφ1)

2 +

(

∂2φ1

∂ξj∂ξk

)2
]

. (2.12)

These are exactly the equations described in [3], which are the basis for the equations
written in terms of the functionsp1 andp2 what we are interested in.

Assume the existence of a potential of the functionη3, i.e.η3 = ∇ξφ3, and try
to integrate the right hand side of the equation (2.10) with respect toξi, i = 1, 2, 3.
The last term of the right hand side of the equation (2.10) after the integration, in
general, gives three different results depending on the direction of the integration:

∫

∂2φ1

∂ξ1∂ξj

∂φ2

∂ξj

dξ1 6=

∫

∂2φ1

∂ξ2∂ξj

∂φ2

∂ξj

dξ2 6=

∫

∂2φ1

∂ξ3∂ξj

∂φ2

∂ξj

dξ3.
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This means that we have got a contradiction (according to Poincaré’s lemma, cf.
[1]) andη3 could not have a potential. Hence, we cannot derive the equation for the
functionφ3 and, hence, we cannot derive the equation for the functionp3 using the
same technique as in [3].

Remark 1.Another proof of non–existence of the potential of the function η3 could
be done if we apply the rot operator to the equation (2.10) andinvestigate the prop-
erties of this new equality.

2.3. Third order correction

In order to derive the equation for the functionp3 avoiding the difficulties discussed
above, we consider isentropic state equation written in Lagrangian coordinates, cf.
[3]:

p =
ρ0c

2
0

γ
(detF )

−γ
. (2.13)

Rewriting the right hand side of the equation (2.13) in termsof η1, η2 andη3, col-
lecting the terms of equal powers ofε and time factors, and comparing with the
relation (2.7), we end up with the relations for the functionsp1, p2 andp3:

p1 = −〈∇ξ, η1
〉 , (2.14)

p2 = −〈∇ξ, η2〉 +
γ

4
〈∇ξ, η1〉

2
+

1

4

∂η1j

∂ξk

∂η1k

∂ξj

, (2.15)

p3 = −〈∇ξ, η3〉 +
γ

2
〈∇ξ, η1〉 〈∇ξ, η2〉 +

1

2

∂η1j

∂ξk

∂η2k

∂ξj

−
γ2

24
〈∇ξ, η1〉

3

−
γ

8

∂η1j

∂ξk

∂η1k

∂ξj

〈∇ξ, η1
〉 −

1

12

∂η1j

∂ξk

∂η1k

∂ξm

∂η1m

∂ξj

. (2.16)

Applying the gradient operator to the relations (2.14), (2.15) and (2.16), taking into
account the equations (2.8), (2.9) and (2.10), we get the expressions for the functions
η1, η2 andη3 written in terms ofp1, p2 andp3. Inserting these relations into the
equations (2.8), (2.9) and (2.10) and integrating the results with respect toξi, i =
1, 2, 3 (again, we assume that the integration constants are zeros)we end up with the
equations for the functionsp1, p2 andp3:

∆ξp1 + p1 = 0, (2.17)

∆ξp2 + 4p2 =

(

γ −
1

2

)

p2

1
+

3

2

(

∂2p1

∂ξj∂ξk

)2

, (2.18)

∆ξp3 + 9p3 = −
3

(

γ − 1

2

) (

γ − 1

3

)

4
p3

1 +
9γ − 5

2
p1p2 −

1

8
p1

(

∂2p1

∂ξj∂ξk

)2

+
7

4

∂2p1

∂ξj∂ξk

∂2p2

∂ξj∂ξk

−
5

8

∂p1

∂ξj

∂2p1

∂ξk∂ξm

∂3p1

∂ξj∂ξk∂ξm

−
13

8

∂2p1

∂ξj∂ξk

∂2p1

∂ξk∂ξm

∂2p1

∂ξm∂ξj

−
5

8

∂p1

∂ξj

∂p1

∂ξk

∂2p1

∂ξj∂ξk

. (2.19)
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In dimensional form these equations look like:

∆xp1 + κ2p1 = 0, (2.20)

∆xp2 + 4κ2p2 =

(

γ −
1

2

)

κ2p2

1 +
3

2κ2

(

∂2p1

∂xj∂xk

)2

, (2.21)

∆xp3 + 9κ2p3 = κ2p1

[

−
3

(

γ − 1

2

) (

γ − 1

3

)

4
p2

1 +
9γ − 5

2
p2 −

1

8κ4

(

∂2p1

∂xj∂xk

)2
]

+
7

4κ2

∂2p1

∂xj∂xk

∂2p2

∂xj∂xk

−
13

8κ4

∂2p1

∂xj∂xk

∂2p1

∂xk∂xm

∂2p1

∂xm∂xj

−
5

8κ2

∂p1

∂xj

∂p1

∂xk

∂2p1

∂xj∂xk

−
5

8κ4

∂p1

∂xj

∂2p1

∂xk∂xm

∂3p1

∂xj∂xk∂xm

. (2.22)

We have to note that equations (2.20) and (2.21) were derivedin [3] using the
assumption thatη

1
andη

2
have potentials. In the present derivation this assumption

is relaxed and, as consequence, we were able to derive the third order correction to
the homogeneous Helmholtz equation in terms of the pressure. The equation (2.22)
is of Helmholtz type with non–homogeneous free term, which depends on the first
and second order solutions.

Completely in the same manner we can derive the equations forthe functionsq2

andq3 (non–dimensional form):

q2 =
1

4
|p1|

2
+

1

4

∣

∣

∣

∣

∂p1

∂ξj

∣

∣

∣

∣

2

, (2.23)

∆ξq3 + q3 =
−2γ2 + 9γ − 5

8
p1|p1|

2 +
γ − 5

2
p2p1

+
3

4
p
1

(

∂2p1

∂ξj∂ξk

)2

+
γ − 1

4
p1

∣

∣

∣

∣

∂p1

∂ξj

∣

∣

∣

∣

2

+
3

4

∂2p2

∂ξj∂ξk

∂2p
1

∂ξj∂ξk

+
1

2

∂p1

∂ξj

∂p
1

∂ξk

∂2p1

∂ξj∂ξk

−
1

8

∂p1

∂ξj

∂p1

∂ξk

∂2p1

∂ξj∂ξk

+
1

8
p1

∣

∣

∣

∣

∂2p1

∂ξj∂ξk

∣

∣

∣

∣

2

+ 2
∂2p1

∂ξj∂ξk

∂2s2

∂ξj∂ξk

−
5

8

∂2p1

∂ξj∂ξk

∂2p1

∂ξk∂ξm

∂2p
1

∂ξm∂ξj

+
1

4

∂p
1

∂ξj

∂2p1

∂ξk∂ξm

∂3p1

∂ξj∂ξk∂ξm

−
1

8

∂p1

∂ξj

∂2p1

∂ξk∂ξm

∂3p1

∂ξj∂ξk∂ξm

+
1

4

∂p1

∂ξj

∂2p1

∂ξk∂ξm

∂3p1

∂ξj∂ξk∂ξm

. (2.24)

Heres2 function is a potential of the functionθ2. We made this assumption in order
to simplify our derivation, and it has to be proved yet.s2 is an auxiliary quantity and
it is the solution of the Poisson equation, where the right hand side depends on the
functionp1 and its derivatives:

∆ξs2 =
γ − 1

4
|p1|

2 −
1

4

∣

∣

∣

∣

∂p1

∂ξj

∣

∣

∣

∣

2

+
1

4

∣

∣

∣

∣

∂2p1

∂ξjξk

∣

∣

∣

∣

2

. (2.25)
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3. Boundary Conditions

In the previous section we derived the equations for unknownfunctionsp1, p2 and
p3. In order to complete the model we have to prescribe boundaryconditions, which
are completely consistent up to the orders of our approximation and the geometry.
So far we mentioned, that the domainΩ ⊂ R

3 in Eulerian description changes its
shape. To keepΩ fixed we introduced Lagrangian coordinates. The computational
domain consists of two main parts: the first part is a bass loudspeaker with cylindrical
symmetry itself (Ωl) and the second part is an artificial region (Ωa), cf. Fig. 1.

Γ
0
 

Γ
1
 

Γ
2
 

Ω
a
 

Ω
l
 

reflex tube 

loudspeaker 

Figure 1. Computational domain.

Also, we distinguish three kinds of boundaries of the domainΩ: boundaries
which are fixed (Γ0), harmonically oscillating boundaries with amplitudeη at angu-
lar frequency1 (respectivelylη andω in dimensional variables) (Γ1) and segments
of spheres of radius̺s where sound is radiated through (Γ2). Because our bass loud-
speaker has axial symmetry it is enough to consider2D boundaries. Also we restrict
ourselves to special case: circular boundaries.

3.1. Circular boundaries

In this subsection we consider the case of the circular boundaries. The reason is
simple: almost all parts of the boundaries ofΩ have circular shape, i.e. they can
be represented as parts of a circle. A straight line could be represented as a part of
the circle with infinite radius. From now on we will not make a difference between
circles and straight lines.

Let us consider some part of the circle of some fixed radius̺ and denote this
part byΓ , cf. Fig. 2a. Let us denote the position of the center of this circle byξ0.
Consider at some point onΓ a small control volumeΩ0. Now, we assume thatΓ
is periodically oscillating with frequency1 along vectorν, cf. Fig. 2b. During the
oscillations the center of the circle is also oscillating (̺ is fixed). So, we may express
the position of the center byξ

0
+ η

0
(τ), whereη

0
(τ) is given and assumed to be

νℜ
(

eiτ
)

. The control volumeΩ0, due to oscillations ofΓ and due to very small
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Ω0

ξ0

Γ

̺

ξ

a)

Ω0

ξ
0 ξ

0
+ η

0
(τ )

Γ

̺

̺

ν

ξ

b)

Figure 2. The behaviour of the circular boundary.

viscosity of the air, is moving alongΓ (control volume onΓ sticks to it). This is
an assumption. So, we do not know, the position of this control volume, but we
know, that the distance between the center of the circle and the control volume is
always constant, see Fig. 2b. Assume, that the control volume moves from pointξ to
the pointξ + η(τ, ξ). In that case the distance between the control volume and the
center of the circle is constant, i.e.:

|ξ + εη(τ, ξ) − ξ0 − εη0(τ)|2 = ̺2. (3.1)

Simplifying this relation we get:

〈n, η (τ, ξ) − η
0
(τ)〉 =

ε |η (τ, ξ) − η0 (τ)|
2

2̺
. (3.2)

Inserting the expansion (2.6) into relation (3.2), collecting corresponding terms we
end up with the boundary conditions for the functionsη1, η2 andη3 :

〈n, η1〉 = 〈n, ν〉 , (3.3)

〈n, η2〉 =
1

4̺
(η1 − ν)

2
, (3.4)

〈n, η3〉 =
1

2̺
〈η1 − ν, η2〉 . (3.5)

Remembering the expressions ofη1, η2 andη3 written in terms ofp1, p2 andp3 we
end up with the boundary conditions for functionsp1, p2 andp3 listed in Tab. 1. The
radiation condition means that the sound waves behave as if there were point sources
in the aperture of frequency 1 forp1, frequency 2 forp2 and frequency 3 forp3. It
is commonly used in linear acoustics, but has to be justified more thoroughly forp2

andp3 yet.
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Table 1.Boundary conditions.

Γ0 Γ1 Γ2

p1

∂p1

∂n
= 0

∂p1

∂n
= 〈n, ν〉

∂p1

∂n
+

`

i + ̺−1

s

´

p1 = 0

p2

∂p2

∂n
= A(0)

∂p2

∂n
= A(ν)

∂p2

∂n
+

`

2i + ̺−1

s

´

p2 = 0

p3

∂p3

∂n
= B(0)

∂p3

∂n
= B(ν)

∂p3

∂n
+

`

3i + ̺−1

s

´

p3 = 0

In Tab. 1 we use notation:

A(ν) :=
1

̺
(∇ξp1 − ν)2 +

1

4

〈

n,∇ξ

(

p2

1

)

+ ∇ξ

(

(∇ξp1)
2

)〉

,

B(ν) :=

〈

n,
1

2
∇ξ (p1p2) −

γ + 1

24
∇ξ

(

p3

1

)

+
1

16

[

8
∂2p1

∂ξi∂ξj

∂p2

∂ξj

+ 2
∂2p2

∂ξi∂ξj

∂p1

∂ξj

−
∂p1

∂ξi

(

∂p1

∂ξj

)2

− 5
∂p1

∂ξj

∂2p1

∂ξj∂ξi

p1

− 5
∂2p1

∂ξj∂ξi

∂p1

∂ξk

∂2p1

∂ξj∂ξk

−
∂p1

∂ξj

∂p1

∂ξk

∂3p1

∂ξj∂ξk∂ξi

]〉

+
9

8̺

〈

∇ξp1 − ν,∇ξp2 −
1

4
∇ξ

(

p2

1

)

−
1

4
∇ξ

(

(∇ξp1)
2
)

〉

,

in non–dimensional form, and

A(ν) :=
1

κ3r
(∇xp1 − κν)

2
+

1

4κ

〈

n,∇x

(

p2

1

)

+
1

κ2
∇x

(

(∇xp1)
2
)

〉

,

B(ν) :=

〈

n,
1

2κ
∇x (p1p2) −

γ + 1

24κ
∇x

(

p3

1

)

+
1

16κ3

[

8
∂2p1

∂xi∂xj

∂p2

∂xj

+ 2
∂2p2

∂xi∂xj

∂p1

∂xj

−
∂p1

∂xi

(

∂p1

∂xj

)2

− 5
∂p1

∂xj

∂2p1

∂xj∂xi

p1

−
5

κ2

∂2p1

∂xj∂xi

∂p1

∂xk

∂2p1

∂xj∂xk

−
1

κ2

∂p1

∂xj

∂p1

∂xk

∂3p1

∂xj∂xk∂xi

]〉

+
9

8κ3r

〈

∇xp1 − κν,∇xp2 −
1

4
∇x

(

p2

1

)

−
1

4κ2
∇x

(

(∇xp1)
2

)

〉

in dimensional variables, wherer is non–scaled radius.

We have specified the Neumann boundary conditions for functionsp1, p2 and
p3 on the moving and non–moving boundaries. Not always these conditions are ho-
mogeneous. Especially, let us note, that the conditions on the curved non–moving
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boundaries are non–homogeneous in general. In next sectionwe will show numeri-
cally that naive guess, that on the non–moving boundaries homogeneous Neumann
boundary conditions (isolation conditions) are right choice, is wrong.

To complete this section we also present boundary conditions for the functions
s2 andq3 written in non–dimensional form, cf. Tab. 2.

Table 2.Boundary conditions.

Γ0 Γ1 Γ2

s2

∂s2

∂n
= C(0)

∂s2

∂n
= C(ν)

∂s2

∂n
+ ̺−1

s
s2 = 0

q3

∂q3

∂n
= D(0)

∂q3

∂n
= D(ν)

∂q3

∂n
+

`

i + ̺−1

s

´

q3 = 0

Here we use notation

C(ν) :=
1

4̺
|∇ξp1 − ν|2 ,

D(ν) :=

〈

n,
1 − γ

8
∇ξ

(

p1 |p1|
2

)

+
1

2

∂2p1

∂ξi∂ξj

∂p2

∂ξj

+
1

8

∂p1

∂ξj

∂2p2
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.

4. Numerical Results

For the simulation we used FEMLAB package, which uses the standard numerical
methods based on the finite elements. In order to make our results comparable with
physical experiments, we simulate the behaviour of the so–called Sound Pressure
Level (SPL, [dB]). The formula is the following, cf. [5]:

SPL = 10 log10











1

T

T
∫

0

p2

tot
(t, x) dt

p2

0











, (4.1)



60 J. Jegorovs, J. Mohring

whereT is certain time period,p0 the pressure field at rest andptot is given by

ptot(t, x) = ρ0c
2

0
ℜ

(

µp1(x)eiωt + µ2p2(x)e2iωt + µ3
(

p3(x)e3iωt + q3(x)eiωt
))

,

whereµ is undetermined quantity. Let us findp2
tot and insert the resulting expression

into (4.1):

SPL = 10 log10

(

ρ2
0c

4
0

2p2

0

(

µ2|p1 + µ2q3|
2 + µ4|p2|

2 + µ6|p3|
2
)

)

. (4.2)

In the last expression the only unknown quantity isµ (SPL is some prescribed value).
In order to findµ we consider the behaviour of the pressure componentsp1, p2, p3

andq3 on the boundaryΓ3, cf. Fig. 1. Actually, we find the average values ofp1, p2,
p3 andq3 onΓ3, i.e.:

p2

i =

1

|Γ3|

∫

|Γ3|

r|pi|
2 dr

∫

|Γ3|

r dr
, q2

3
=

1

|Γ3|

∫

|Γ3|

r|q3|
2 dr

∫

|Γ3|

r dr
, i = 1, 2, 3, (4.3)

and insert them into (4.2). Hence,µ can be determined. The results of the simulation
for SPL = 100 [dB] on theΓ3 andω = 65 [Hz] are depicted in Fig. 3.

a) b)

Figure 3. a) The behaviour of10 log
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function (upper part) and the sum of third order derivativesof p1

(lower part).

As we mentioned above we were using FEMLAB package for our simulation.
The boundaries of the computational domainΩ were constructed using standard tools
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of FEMLAB such like rectangles and arcs of circles. Hence, itis obvious that the cur-
vature of the boundary∂Ω is not continuous. Analyzing the results of the simulation
we see that the third order derivatives of the functionp1 is not bounded near to the
discontinuities of the curvature, cf. Fig. 3b (lower part). This affects the behaviour

of the functions10 log
10

(

ρ2

0
c4

0

2p2
0

µ6|p3|
2

)

and10 log
10

(

ρ2

0
c4

0

2p2
0

µ6|q3|
2

)

. It might be,

that in order to get smooth third order derivatives ofp1 we need continuous curvature
of ∂Ω.

As we promised in the previous section we show, that the wrongboundary con-

ditions, namely homogeneous
∂pi

∂n

∣

∣

∣

∣

Γ0

= 0, i = 1, 2, 3, on the rigid walls bring

completely different results. The results of simulations are presented in Fig. 4. That
means, that we always have to do proper analysis in order to determine the right
boundary conditions. These conditions do not always vanishonΓ0.
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5. Conclusions

In our work we started to consider classical Euler equations. In order to do lin-
earization of non–linear Euler equations asymptotical analysis was applied. If a bass
loudspeaker is run at high amplitudes we have to take into account not only linear
part, but also second and even third order corrections. We derived, in addition to
the results in [3], where the derivation of the second order correction to the classi-
cal Helmholtz equation was considered, the third order correction for the acoustical
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pressure function. This third order correction, as well as the second order correction,
is of Helmholtz type with non–homogeneous free term. The technique, which is used
in [3], was not applicable to get third order correction ((2.19) or (2.22)) because of
the non–existence of the potential ofη3 function. We applied another method to de-
rive the appropriate equations, cf. subsection 2.3. At the same time we showed, that
the assumption of an existence of the potentials of the functionsη

1
andη

2
might be

completely relaxed.
In order to complete the model rather simple concept of the boundary condi-

tions was applied, cf. [2], [4]. Because the computational domain is axisymmetric
we reduced our problem to the 2D case, cf. Fig. 1. The boundaryin 2D consists
of the straight lines and arcs of the circles. Because of thiswe paid our attention
to the circle–shaped boundaries. However, similar conceptof the boundary condi-
tions could be applied for general boundaries, cf. [2]. These boundary conditions are
of Neumann type and, in general, non–homogeneous on the rigid walls. The naive
assumption of the homogeneous boundary conditions might lead completely to the
different solution, cf. Fig. 3 – Fig. 4 and compare the results.

To get the numerical solution we used the FEMLAB package. We approximated
the boundaries of our computational domain using straight lines and arcs. This leads
to the discontinuous curvature what affect the results of the third order correction
functionsp3 andq3 because of the non–boundedness of third order derivatives of
p1 function. This is only a hypothesis. In our future work we will try to prove our
apprehensions.
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Helmholco lygties trěciosios eil̇es patikslinimas

J. Jegorovs, J. Mohring

Remiantis Oilerio lygtimis ir asimptotine analize gautas Helmholco lygties trěciosios eil̇es
patikslinimas. Akustiniam slėgiui gauta Helmholco tipo lygtis bei jai išvestos sąlygos. Pateikti
skaitinio modeliavimo rezultatai.


