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Abstract. In our work we consider the step-by-step and nonlocal subdomain methods with
quadratic splines. We prove that the first method is unstable. In the case of nonlocal method
we replaced the first derivative condition by a not-a-knot boundary condition at the other
end of the interval of integration. As a result, we get stability of this method. Main results
about stability and convergence are based on the uniform boundedness of quadratic spline
histopolation projections. The numerical tests given at the end support the theoretical results.

Key words: quadratic spline histopolation, spline projections, Volterra integral equations,
stability and convergence of spline subdomain methods

1. Introduction

One of the most practical methods for solving Volterra integral equations of the
second kind is the polynomial spline collocation with step-by-step implementation.
This method is known to be unstable for cubic and higher order smooth splines (see
[4, 6, 10, 11]). In the case of quadratic splines of class C1 the stability region consists
only of one point [11]. In [12, 13] one of the initial conditions, which are required
by the standard quadratic and cubic spline collocation, is replaced by a not-a-knot
boundary condition at the other end of the interval. These methods cannot be any
more implemented step-by-step and, in the case of linear integral equation, need the
solution of a linear system which can be successfully done by the Gaussian elimina-
tion. On the other hand, the nonlocal method with quadratic splines gives the stability
in the whole interval of collocation parameter and in the case of cubic splines this
method gives stability in the same interval of collocation parameter as in the case of
the traditional collocation with linear splines [11].

It is natural to use a subdomain method when equation’s free term is given by
average values in subintervals. In addition, the collocation method can be considered
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as a subdomain method’s approximation. Thus, the subdomain method is a basic
method in collocation methods theory.

In this paper we study the use of quadratic splines in two particular cases of
subdomain methods. First we show that the traditional step-by-step implementation
gives an unstable method. The replacement of one of initial conditions by the not-
a-knot condition at the other end of the interval of integration results in converging
method for quite wide class of integral equations, including, for example, those with
weakly singular kernel. We consider both cases as projection methods and use a
general convergence theorem for operator equations to establish the convergence of
nonlocal method with two-sided estimates.

2. Step-by-Step Method

Consider the Volterra integral equation

y(t) =

∫ t

0

K(t, s, y(s))ds + f(t), t ∈ [0, T ], (2.1)

with given functions f : [0, T ] → IR, K : S × IR → IR and the set S = {(t, s) :
0 ≤ s ≤ t ≤ T}.

There will be used a mesh ∆N : 0 = t0 < t1 < . . . < tN = T which represents
spline knots. As we consider the process N → ∞, the knots ti depend on N . In order
to determine the approximate solution u of the equation (2.1) as quadratic spline
of class C1 (denote this space by S2(∆N )), we impose the following subdomain
conditions

∫ ti

ti−1

u(t)dt =

∫ ti

ti−1

∫ t

0

K(t, s, u(s))ds dt +

∫ ti

ti−1

f(t)dt, i = 1, . . . , N. (2.2)

To be able to start the calculations of this method, assume that we can use the initial
values

u(0) = y(0), u′(0) = y′(0), (2.3)

which are justified by the requirement u ∈ C1[0, T ]. Thus, on every interval [ti−1, ti]
we have two conditions of smoothness and one subdomain condition to determine
three parameters of u as a polynomial of degree two on [ti−1, ti]. This allows us
to implement the method step-by-step, progressing from the interval [ti−1, ti] to the
next one.

Let us introduce the vector subspace of C[0, T ]:

C0[0, T ] =
{

f ∈ C[0, T ] : ∃ f ′(0) = lim
h→0+

f(h) − f(0)

h

}

.

For any f ∈ C0[0, T ], let PNf ∈ S2(∆N ) be such that











(PNf)(0) = f(0), (PNf)′(0) = f ′(0),
∫ ti

ti−1

(PNf)(t)dt =

∫ ti

ti−1

f(t)dt, i = 1, . . . , N.
(2.4)
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Let the mesh ∆N be complemented with knots t−2 < t−1 < t0 and
tN+2 > tN+1 > tN . Denote hi = ti − ti−1, i = −1, . . . , N + 2. This enables
us to introduce the normalized B-splines, for i = −1, . . . , N ,

Bi(t) =







































(t − ti−1)
2

hi(hi + hi+1)
, t ∈ [ti−1, ti),

(ti+1 − t)(t − ti−1)

hi+1(hi + hi+1)
+

(ti+2 − t)(t − ti)

hi+1(hi+1 + hi+2)
, t ∈ [ti, ti+1),

(ti+2 − t)2

hi+2(hi+1 + hi+2)
, t ∈ [ti+1, ti+2).

If we use the representation (PNf)(t) =
∑

−1≤i≤N+1 ciBi(t), t ∈ [0, T ], the con-
ditions (2.4) could be written equivalently as






































c−1 = f(0) − h0

2
f ′(0),

h1c−1 + h0c0 = (h0 + h1)f(0),

ci−2

∫ ti

ti−1

Bi−2(t)dt + ci−1

∫ ti

ti−1

Bi−1(t)dt + ci

∫ ti

ti−1

Bi(t)dt =

∫ ti

ti−1

f(t)dt,

i = 1, . . . , N.

This linear system to determine the coefficients cj has a lower tridiagonal matrix
with nonzero entries on main diagonal. Thus, the projector PN is correctly defined.

Consider the integral operator defined by

(Ku)(t) =

∫ t

0

K(t, s, u(s))ds, t ∈ [0, T ]. (2.5)

Lemma 1. The spline subdomain problem (2.2), (2.3) is equivalent to the equation

u = PNKu + PNf, u ∈ S2(∆N ), (2.6)

provided the kernel K in (2.5) is continuous and differentiable with respect to t in
some neighbourhood of zero.

Proof. Note that in the assumptions about K it holds K : C[0, T ] → C0[0, T ].
The proof of Lemma 1 is a standard calculation based on the property of PN that
PNf = 0 if and only if

f(0) = 0, f ′(0) = 0,

∫ ti

ti−1

f(t)dt = 0, i = 1, . . . , N.

Indeed, then (2.6) is equivalent to the equalities

(u − Ku− f)(0) = 0, (u − Ku− f)′(0) = 0,
∫ ti

ti−1

(u − Ku− f)(t)dt = 0, i = 1, . . . , N.
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The first one of them is equivalent to u(0) = f(0) or u(0) = y(0) because y(0) =
f(0). The integral equalities are just (2.2). Taking into account (2.1), we get that
(u − Ku − f)′(0) = 0 is equivalent to u′(0) − (Ku)′(0) = y′(0) − (Ky)′(0) or
u′(0)−K(0, 0, u(0)) = y′(0)−K(0, 0, y(0)) (in fact, we use the differentiability of
K with respect to t in some neighbourhood of 0 to ensure the existence of (Ku)′(0)
and (Ky)′(0)). But the last equality, as u(0) = y(0), is equivalent to u′(0) = y′(0)
which completes the proof. �

Suppose in the sequel throughout this section that the mesh is uniform, i.e.

ti − ti−1 = h =
T

N
, i = 1, . . . , N.

���������	��
���������
We say that the spline subdomain method with quadratic splines is

stable if for any λ ∈ C and any f ∈ C1[0, T ], the approximate solution u ∈ S2(∆N )
of the test equation

y(t) = λ

∫ t

0

y(s)ds + f(t), t ∈ [0, T ],

remains bounded in L∞(0, T ) as h → 0.

Proposition 1. The quadratic spline subdomain method is not stable.

Proof. Suppose that the method is stable. For λ = 0, the approximate solution u of
the test equation is just PNf . Then the principle of uniform boundedness yields that
the sequence ‖PN‖C1→L∞

is bounded, i.e., for all f ∈ C1[0, T ],

‖u‖∞ = ‖PNf‖∞ ≤ const‖f‖C1[0,T ], (2.7)

where the constant may depend on T and λ, but not on N .
Assume that the mesh ∆N is complemented with knots ti = ih, i = −2,−1, and

i = N + 1, N + 2. Then the B-splines considered above are

Bi(t) =
1

2h2











(t − ti−1)
2, t ∈ [ti−1, ti),

2h2 − (ti+1 − t)2 − (t − ti)
2, t ∈ [ti, ti+1),

(ti+2 − t)2, t ∈ [ti+1, ti+2).

Given any function f ∈ C0[0, T ], the coefficients cj of u = PNf =
∑

−1≤j≤N cjBj

via (2.4) are determined by the system


















1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 4 1 0 · · · 0

. . .
. . .

. . .

0 · · · 0 1 4 1





































c−1

c0

c1

...

cN



















=



















g−1

g0

g1

...

gN



















, (2.8)

where
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g−1 = f(0) − h

2
f ′(0), g0 = 2f(0), gi =

6

h

∫ ti

ti−1

f(t)dt, i = 1, . . . , N.

Consider the equations of (2.8) (except first two of them) as the difference equation

ci−2 + 4ci−1 + ci = gi, i = 1, . . . , N.

Its characteristic equation λ2 + 4λ + 1 = 0 has the roots λ = −2 −
√

3 and µ =
−2 +

√
3.

Take the vector g = (ε/2, ε, 0, . . . , 0)T and look for

ci = K1λ
i+1 + K2µ

i+1, i = −1, . . . , N,

as the corresponding solution of the system (2.8). First two equations of (2.8) allow to
determine the coefficients K1 =ε(2−µ)/(2(λ−µ)) and K2 =ε(2 − λ)/(2(µ − λ)).
Also, for i ≥ 1, we have

|ci| =
∣

∣

∣λi
(

K1λ + K2µ
(µ

λ

)i)∣

∣

∣ ≥ const ε|λ|i. (2.9)

Consider the function f(t) = h cos(πt/h), t ∈ [0, T ]. Then

f(0) = h, f ′(0) = 0,

∫ ti

ti−1

f(t)dt = 0, i = 1, . . . , N.

It is also easy to verify that ‖f‖C1 ≤ const. Letting ε = h, the use of (2.9) and the
stability of B-splines (see [14]) gives

‖u‖∞ ≥ const|cN | ≥ const ε|λ|N = const
|λ|N
N

→ ∞,

as N → ∞, which contradicts (2.7). Proposition is proved. �

Remark. The proof of Proposition 1 shows that the influence of round-off errors
(whose role may be played, e.g., by ε) increases unboundedly when N goes to infin-
ity.

3. Nonlocal Method

As we have seen in the previous section, the subdomain method with step-by-step
implementation is unstable. A hopeful reparation which works in collocation could
be the replacement of the first derivative condition by a not-a-knot boundary condi-
tion at the other end of the interval of integration, so in this case additional conditions
are

u(0) = y(0),

u′′(tN−1 − 0) = u′′(tN−1 + 0).
(3.1)

Let note that we are considering arbitrary mesh ∆N with hi = ti − ti−1. Let
the operator PN : C[0, T ] → C[0, T ] be such that, for any f ∈ C[0, T ], we have
PNf ∈ S2(∆N ) and
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(PNf)(0) = f(0),
∫ ti

ti−1

(PNf)(t)dt =

∫ ti

ti−1

f(t)dt, i = 1, . . . , N,

(PNf)′′(tN−1 − 0) = (PNf)′′(tN−1 + 0).

(3.2)

Firstly we have to verify that such a spline PNf exists and is uniquely determined.
Denote zi = h−1

i

∫ ti

ti−1

f(t)dt, i = 1, . . . , N . Look for a cubic (interpolating)
spline S ∈ S3(∆N ) satisfying

S(0) = 0, S′(0) = f(0),

S(ti) =
i

∑

j=1

hjzj , i = 1, . . . , N,

S′′′(tN−1 − 0) = S′′′(tN−1 + 0).

(3.3)

It is straightforward to check that here the Schoenberg-Whitney conditions [14,
p.171] are satisfied, thus, this problem has the unique solution. Now, S ∈ S3(∆N )
being the solution of (3.3), we get PNf = S′ as a solution of (3.2) and, vice versa,
for u = PNf ∈ S2(∆N ) being a solution of (3.2), we have S(t) =

∫ t

0
u(s)ds as a

solution of (3.3). This means that projections PN are correctly defined by (3.2).

Lemma 2. Suppose the kernel K in (2.5) is such that the operator K maps the space
C[0, T ] into itself. Then the subdomain problem (2.2), (3.1) is equivalent to the equa-
tion

u = PNKu + PNf, u ∈ S2(∆N ).

The proof is analogous to that of Lemma 1.
We would like to apply general convergence theorem for operator equations. One

of the assumptions in this theorem is the convergence of the sequence of approxi-
mating operators PN to the identity or injection operator. This means that the uni-
form boundedness of the sequence PN is the key problem in the study of collocation
method (2.2), (3.1).

For given any function f ∈ C[0, T ], let us consider u = PNf determined by the
conditions

u(0) = f(0),
∫ ti

ti−1

u(t)dt =

∫ ti

ti−1

f(t)dt, i = 1, . . . , N,

u′′(tN−1 − 0) = u′′(tN−1 + 0).

Using the notation ui = u(ti) and t = ti−1 + τhi, τ ∈ [0, 1], we have the represen-
tation of u for t ∈ [ti−1, ti]

u(t) = 6ziτ(1 − τ) + ui−1(1 − 4τ + 3τ2) + uiτ(3τ − 2). (3.4)

The continuity of the derivative u′ in the knots, i.e. u′(ti − 0) = u′(ti + 0), gives

µiui−1 + 2ui + λiui+1 = wi, i = 1, . . . , N − 1, (3.5)
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where

µi = 1 − λi =
hi+1

hi + hi+1
, wi = 3(µizi + λizi+1).

The initial condition u(0) = f(0) adds the equation u0 = f(0), and the not-a-knot
requirement at tN−1 could be written in the form

h2
NuN−2 + (h2

N − h2
N−1)uN−1 − h2

N−1uN = 2(h2
NzN−1 − h2

N−1zN ). (3.6)

Then, eliminating uN in (3.5) with the help of (3.6), we write the equalities to deter-
mine ui, i = 0, . . . , N − 1, as follows:






















u0 = f(0),

µiui−1 + 2ui + λiui+1 = wi, i = 1, . . . , N − 2,

hN

hN−1
uN−2 + (1+

hN

hN−1
)uN−1 =(3+

2hN

hN−1
)µN−1zN−1+λN−1zN .

(3.7)

It is clear now that, in the system (3.7), the difference of domination in rows is 1.
Hence, if hN/hN−1 ≤ const,

max
0≤i≤N−1

|ui| ≤ const max
0≤i≤N

|zi| ≤ const‖f‖C

and, in addition,
|uN | ≤ const max

0≤i≤N
|zi| ≤ const‖f‖C.

The representation (3.4), assumption hN/hN−1 ≤ const and obtained estimates al-
low to get

‖PNf‖C[0,T ] = max
1≤i≤N

max
t∈[ti−1,ti]

|u(t)| ≤ const‖f‖C[0,T ],

for any f ∈ C[0, T ] with a constant independent of N . We have proved the following

Proposition 2. Assuming that hN/hN−1 ≤ const, the projections PN determined by
(3.2) are uniformly bounded in the space C[0, T ].

4. Convergence Theorem

In this section we present a general convergence theorem for operator equations
which will be applied to the equation (2.1) mainly in linear case and analyse what
this theorem gives for the nonlocal method.

Let E be Banach space, L(E, E) and K(E, E) spaces of linear continuous and
compact operators. Suppose we have an equation

u = Ku + f, (4.1)

where K ∈ K(E, E) and f ∈ E. Let it be given a sequence of approximating
operators PN ∈ L(E, E), N = 1, 2, . . . . Consider also equations
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uN = PNKuN + PNf. (4.2)

The following theorem for second kind equations may be called classical because it
is one of the most important tools in the theory of approximate methods for integral
equations (see [1, 2, 5]).

Theorem 1. Suppose u = Ku only if u = 0 and PNu → u for all u ∈ E as
N → ∞. Then

1) (4.1) has the unique solution u∗;
2) there is N0 such that, for N ≥ N0, (4.2) has the unique solution u∗

N ;
3) u∗

N → u∗ as N → ∞;
4) there are positive constants C1 and C2 such that

C1‖PNu∗ − u∗‖ ≤ ‖u∗
N − u∗‖ ≤ C2‖PNu∗ − u∗‖. (4.3)

Note that this theorem can be deduced from more general ones [8, 15].

Remark. Without presenting the details let us mention that, for the general equation
(4.1) with a nonlinear operator K, it holds a counterpart of Theorem 1 ensuring the
two-sided error estimate (4.3) provided the projections PN converge pointwise to the
identity operator (see [9], Section 50.2). This theorem needs the complete continuity,
i.e. continuity and compactness, of the nonlinear operator K which is guaranteed for
the operator (2.5) in the space C[0, T ] by the continuity of the kernel K(t, s, u) (see
[16, Chapter 10, Section 1]).

Throughout this section, consider the general (not necessarily uniform) mesh ∆N

with h = max1≤i≤N hi → 0 and hN/hN−1 ≤ const as N → ∞. We will apply
Theorem 1 to the equation (2.1) which is possible due to the following lemma.

Lemma 3. The projections PN defined by (3.2) converge pointwise to the identity,
i.e. PNf → f in C[0, T ] for all f ∈ C[0, T ] as N → ∞.

Proof. For given f ∈ C1[0, T ], let v be the quadratic spline satisfying















v(0) = f(0),

v(ti−1 +
hi

2
) = f(ti−1 +

hi

2
), i = 1, . . . , N,

v′′(tN−1 − 0) = v′′(tN−1 + 0).

Taking into account ‖PN‖ ≤ const and ‖v − f‖C → 0 (see [7]), we get

‖PNf − f‖C ≤ ‖PNf − v‖C + ‖v − f‖C

= ‖PN(f − v)‖C + ‖v − f‖C

≤ const‖f − v‖C + ‖v − f‖C → 0.

This means that ‖PNf − f‖ → 0 for all f ∈ C1[0, T ]. Basing on Banach-Steinhaus
theorem, we get the convergence of the sequence PN to the identity operator every-
where in the space C[0, T ], since C1[0, T ] is dense in C[0, T ]. The proof is com-
pleted. �
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Taking E = C[0, T ],

(Ku)(t) =

∫ t

0

K(t, s)u(s)ds, u ∈ C[0, T ],

and using Lemma 3, Theorem 1 directly yields

Theorem 2. Suppose the kernel K is such that K is compact. Then the method (2.2),
(3.1) is convergent in C[0, T ] and the estimate (4.3) holds.

Remark. The rate of convergence of the method (2.2), (3.1) for linear equations, as
stated in Theorem 2, is determined by the two-sided estimate (4.3). It is known that
quadratic spline histopolation projections PN have the property ‖PNu−u‖ = O(h3)
for smooth functions u (actually, it suffices u′′ ∈ Lip 1). The rate O(h3) is confirmed
by the numerical tests presented in the next section.

5. Numerical Tests

In numerical tests we chose the test equation

y(t) = λ

∫ t

0

y(s)ds + f(t), t ∈ [0, 1] ,

with the exact solution y(t) = (sin t + cos t + et)/2. We implemented also the
nonlocal method for the equation (2.1) in linear case with

K(t, s) = t − s, f(t) = sin t

and the exact solution y(t) = (2 sin t + et − e−t)/4 on the interval [0, 1]. These
equations are used, e.g., in [3, 12, 13]. Actually, we calculated the error of the method
as

‖u− y‖∞ = max
1≤n≤N

max
0≤k≤10

|(u − y)(tn−1 + kh/10)|.

Results of numerical experiments are presented in Tables 1-3.

Table 1. Numerical results for y(t) = λ
R

t

0
y(s)ds + f(t), step-by-step method.

N 4 16 64 256

λ = −2 3.28 · 10−3 98.02 1.10 · 1027 2.79 · 10134

λ = −1 2.59 · 10−3 76.56 8.54 · 1026 2.18 · 10134

λ = 1 1.46 · 10−3 45.99 5.17 · 1026 1.32 · 10134

λ = 2 1.02 · 10−3 35.36 4.01 · 1026 1.03 · 10134
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Table 2. Numerical results for y(t) = λ
R

t

0
y(s)ds + f(t), nonlocal method.

N 4 16 64 256

λ = −2 3.27 · 10−3 6.27 · 10−5 1.02 · 10−6 1.61 · 10−8

λ = −1 3.11 · 10−3 6.18 · 10−5 1.02 · 10−6 1.61 · 10−8

λ = 1 2.77 · 10−3 5.99 · 10−5 1.01 · 10−6 1.61 · 10−8

λ = 2 2.60 · 10−3 5.91 · 10−5 1.01 · 10−6 1.60 · 10−8

Table 3. Numerical results for y(t) =
R

t

0
(t − s)y(s)ds + f(t), nonlocal method.

N 4 16 64 256

5.70 · 10−3 9.02 · 10−5 1.41 · 10−6 2.20 · 10−8
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