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Abstract. The present paper deals with a theoretical investigation of blood flow in an arterial 
segment in the presence of stenosis. The streaming blood is treated to be composed of two dif-
ferent layers - the central core and the plasma. The former is considered to be non-Newtonian 
liquid characterised by the Power law model, while the latter is chosen to be Newtonian. The 
artery is simulated as an elastic (moving wall) cylindrical tube. The unsteady flow mecha-
nism of the present study is subjected to a pulsatile pressure gradient arising from the normal 
functioning of the heart. The time-variant geometry of the stenosis has been accounted for in 
order to improve resemblance to the real situation. The unsteady flow mechanism, subjected 
to pulsatile pressure gradient, has been solved using finite difference scheme by exploiting 
the physically realistic prescribed conditions. An extensive quantitative analysis has been per-
formed through numerical computations of the flow velocity, the flux, the resistive impedances 
and the wall shear stresses, together with their dependence with the time, the input pressure 
gradient and the severity of the stenosis, presented graphically at the end of the paper in or-
der to illustrate the applicability of the model under consideration. Special emphasis has been 
made to compare the existing results with the present ones and found to have a good agree-
ment. Key words: Moving wall, non-Newtonian liquids, stenosis, power-law 

1 The authors would like to thank the referees for careful reading for the manuscript and for 
helpful suggestions 
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1. Introduction 

The studies related to blood flow through stenosed arteries have wide implications as 
the most serious physiological problems causing circulatory diseases associated with 
disturbed flow conditions in the arterial system. Partial occlusion of a blood vessel 
due to abnormal and unnatural growth of tissue, usually referred to as a stenosis, is 
one of the most frequently occurring abnormalities in the cardiovascular system. It 
results from flow disorder with a considerable reduction of the transportation of 
blood to the region beyond the arterial constriction. Although the root cause of the 
formation of arterial constriction is not completely understood by the theoretical 
modelers, but its effect on the flow phenomena does have serious consequences. The 
normal circulation gets disrupted to the extent depending upon the severity of the 
stenosis. Under normal physiological condition, the transport of blood in the human 
circulatory system depends entirely on the pumping action of the heart producing a 
pressure gradient throughout the arterial system. 

For the purpose of a clear understanding of the development of stenosis from the 
physical point of view one needs to be fully conversant with the haemodynamic char-
acteristics of the flowing blood together with the mechanical properties of the vascu-
lar wall material under physiological conditions. Several analytical studies dealing 
with blood flow through stenosed arteries have been carried out in the recent past 
[10, 13, 23, 24] with the assumption that the flow of blood to be Newtonian and the 
stenosis be represented by a mathematical function viz. the cosine function. How-
ever, experimental investigations reveal that blood, being a suspension of cells, be-
haves like a non-Newtonian fluid at a low shear rates in smaller arteries [4, 5, 17]. 
All these studies recorded the flowing blood to be a homogeneous fluid although 
blood is composed of a complex acquous continuous phase with numerous cells or 
corpuscles of different kinds suspended in it. The consideration of a homogeneous 
fluid as a representative of the flowing blood thus simplifies the relevant problem to 
a great extent. 

Some researchers [1, 7, 21] have shown that for blood flowing through small 
vessels there is an erythrocyte-free plasma (Newtonian) layer adjacent to the vessel 
wall and a core layer of suspension of all the erythrocytes (non-Newtonian). Accept-
ing this idea, several studies [6, 8, 14, 15, 16, 18, 19] revealed that the existence of 
the peripheral layer would be of some significance in functioning of the diseased 
arterial system. In most of the recent literatures relevant to stenotic flow cither in a 
rigid tube or in a flexible artery, the stenotic geometry has been regarded largely as 
time-independent. Such assumption may suit well for a rigid vessel but for a flexible 
one, the stenosis cannot remain static. Very recently, a study on two-layered model 
of pulsatile blood flow through stenotic blood vessels where the streaming blood in 
the core region was considered as a inhomogeneous Newtonian fluid, has been suc-
cessfully carried out by Mandal [11] using finite difference technique. Therefore, for 
a realistic description of blood flow in a stenosed artery, perhaps it would be most 
appropriate to treat blood as a two-fluid model consisting of a central core region 
containing all the erythrocytes assumed to be a non-Newtonian fluid and a peripheral 
layer of plasma as a Newtonian fluid while the vessel is treated as a deformable one. 
An improved problem such as this should include the two-dimensional flow charac- 



Numerical Simulation of Unsteady Two-Layered Pulsatile Blood Flo w     101 

teristics of blood in order to have a complete understanding of the flow disorder in 
the presence of stenosis. 

With the above discussion in mind, an attempt is made in the present theoretical 
study to examine some of the important characteristics of the blood flow through a 
stenosed flexible artery under a pulsatile pressure gradient. This study considers the 
arterial segment to be an elastic cylindrical tube containing a nonhomogeneous fluid 
representing blood. Blood is assumed to be composed of two different layers viz. the 
central core and the plasma. The former is considered to be non-Newtonian (where 
the blood cells are aggregated most) characterised by the Power law model while 
the latter (free from cells of any kind) is treated to be Newtonian. Special emphasis 
has been put on the effect of a suitable time-variant geometry of the stenosis in 
order to have the dynamic response of the stenosed arterial system under consider-
ation. Although the general problem such as this is of great concern, due attention 
is also paid to the effect of the vascular wall motion on local fluid mechanics but 
not on the stresses and strains in the arterial wall. The cylindrical coordinate system 
has been taken for the analytical formulation. The governing equations of motion for 
the system supplemented by the appropriate boundary conditions are solved numer-
ically, following a radial coordinate transformation, using a suitable finite difference 
scheme. This scheme bears the potential to perform a thorough quantitative analysis 
for the desired quantities through the exhibition of their results graphically followed 
by an exhaustive discussion so as to justify the applicability of the present study. 

2. Formulation of the Problem 

The stenosed arterial segment under consideration is simulated as a thin elastic cylin-
drical tube containing a nonhomogeneous fluid consisting of Newtonian and a non-
Newtonian fluids representing the plasma and the central core of the blood respec-
tively. The non-Newtonian core fluid is characterised by the Power law fluid with a 
viscosity as a function of shear rate. Let ( � , 0, z) be the coordinates of a material 
point in the cylindrical polar coordinate system where the z-axis is taken along the 
axis of the artery while r, 0 are taken along the radial and the circumferential di-
rections respectively. The geometry of the time-dependent stenosis (cf. Figure 1) is 
described mathematically as 
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in which w represents the angular frequency and b is a constant. The arterial segment 
under consideration is chosen to be of finite length L. 

 

Figure 1. Geometry of the arterial stenosis with peripheral layer 

Since the elastic arteries have high wave velocity (typically 5000-10000 m/sec.) 
due to the pulsatile nature of the streaming blood as evident from [3], this results in 
long wave lengths (about 10 times the length of the aorta at the fundamental cardiac 
frequency), small axial and radial convective acceleration and very small axial 
diffusion of momentum at axial distances far from the entrance of the arterial tube 
[22]. Keeping in view of these simplifying assumptions and considering the stenotic 
blood flow to be axisymmetric, laminar, one-dimensional and fully developed, the 
basic equation of motion governing the unsteady flow in the absence of any radial 
and rotational flow may be written as 

 
where wi =wi ( � , z, t) is the axial flow velocity for the central ( �  = 1) and for the 
plasma ( �  = 2), p the pressure, p the density. The shear stress ( � rz )i (i = 1,2) for the 
central core and the plasma are described by 

 
with � 1 representing the viscosity of the core fluid consisting of most of the blood 
cells, n the non-Newtonian parameter of the Power law model, � 2 the viscosity of 
the plasma adjacent to the vessel wall and � 1 , � 2  being the respective strain rates. 
Since the flow is considered only in the axial direction, we further have 

 
The above equations (2.1) and (2.4) governing blood flow have been derived with the 
introduction of the equation of continuity for the axial flow only. These relations 
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yield p = p(z, t). Further we represent the pumping action of the heart by the pres-

sure gradient present in (2.1) produced by it, the form of which has been taken 

from [2] for human being as 

 
where A0 is the constant amplitude of the pressure gradient, A1 is the amplitude of 
the pulsatile component giving rise to systolic and diastolic pressure; �  = 2� fp, f�  is 
the pulse frequency. 

3. Boundary and Initial Conditions 

The velocity gradient of the core flow along the axis of the artery may be assumed 
to be equal to zero; that means, there is no shear rate of the core fluid along the axis 
which may be written as 

 
Also, at the interface of the plasma and the central core of blood media, the velocities 
and the stresses are assumed to be continuous which may be expressed mathemati-
cally as 

 
Further considering that the plasma particles adhere to the arterial wall surface, the 
axial velocity of the plasma particles on the wall surface may be taken to be the usual 
no-slip condition, given by 

 
Here � 1 , � 2  are the respective velocities of the central core and the plasma fluid of 
the non-Newtonian flowing blood and R1(z,t),R(z,t) represent the respective 
boundaries for the central core and the plasma adhere to the arterial wall. 

Rather than starting the calculation from a zero flow field, an initial condition 
consistent with the above boundary and interface conditions has to be chosen. To 
develop the initial velocities, we have made use of the basic principle of steady flow 
together with the relation for a constant pressure gradient p. By exploiting 
appropriate boundary and interface conditions an integration gives the equation (3.5) 
and thus the starting flow velocities of the core and plasma fluids at t = 0 can be 
written as 
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4. Method of Solution 

Introducing the constitutive relations (2.2) and (2.3) into (2.1), the equations governing 
blood flow in the central core and the plasma may be written as 

 

Usually in a problem involving coupling of the fluid mechanics with the arterial wall 
mechanics, R(z,t) would not be given but instead, could be computed as a part of 
the solution of the coupled problem. The nresent analysis provides R(z, t) with its 
explicit form and hence the entire attention has been focused on the haemodynamic 
factors only. 

which 
has the effect of immobilizing the arterial wall in the transformed coordinate 

�
. Using 

this transformation, the equations (4.1) take the following form 
 

with 

 
The boundary conditions (3.1)- (3.4) are transformed to 

 
while the initial conditions (3.5) to 

 

 

 
Let us introduce a radial coordinate transformation, given by 
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5. Finite Difference Approximations 

The finite difference scheme for solving the equations (4.2) is based on the central 
difference formula in order to transform all the spatial derivatives in the following 
manner: 

 

while the time 
derivatives are transformed by their forward difference approximations given by 

 

We replace the spatial and time derivatives in (4.2) by the finite difference repre-
sentations so that differential equations may be transformed to the following differ-
ence equations: 

 

where the notations ( ) , ( )  and ( )k indicate that in the expressions, 
�
, z, t are 

replaced by 
�

 i,  zj , tk  respectively, wherever they appear. 

Also the boundary conditions and the initial conditions have their finite difference 
representations, given by 

 

 with 

 

 



 
The difference equations (5.1) and (5.2) are solved for w1 and w2. by making use of 

the stated conditions (5.3) throughout the arterial segment under consideration. 
After having obtained the flow velocities for both the central core and the plasma, 
the volumetric flow rate (Q), the resistance to flow (rrz) and the wall shear stress (rrz) 
can be determined as 

Finally, the expressions for the dimensionless flux (Q'), resistance to flow (A') and 
wall shear stress (r') are given as 

6.  Numerical Results and Discussion 

We have undertaken a specific numerical illustration using the available experimental 
data for the various physical parameters involved in the present analysis in order to 
examine the validity of the mathematical model under consideration. For the purpose 
of numerical computation of the desired quantities.the following input data have been 
made use of [1,2, 12,20]: 

 
or more precisely 
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Figure 2a illustrates the results for the velocity profile of the core fluid at a spe-
cific locations for z — 15 mm for three different time periods. Two more curves 
corresponding to the same critical location are also plotted in the present figure at t 
= 0.5 s just by disregarding the presence of stenosis in one and by withdrawing 
wall motion in another. The number within the parenthesis appearing in the four top 
curves indicate that the respective results are obtained by dividing them with the 
specified numbers. The curves are all found to be diminishing from their maximum 
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at the axis as one moves away from it and finally they approach their minimum val-
ues at the interface between the central core and the plasma where the core velocity 
merges completely with the velocity of plasma. One notable feature is that the di-
minishing rate of the core velocity appears to be considerably higher in the case of 
a normal artery (rm = 0) than that for a constricted one corresponding to a critical 
location where the artery assumes its maximum constriction. The deviation of the 
results thus obtained clearly estimates the effect of arterial stenosis on the velocity 
profile of the core fluid. The core velocity is reduced considerably when the motion 
of the arterial wall is totally withdrawn from the present system as evident from the 
comparison of the second and third curves from the bottom plotted for £=0.5 s. Thus 
the distensibility of the arterial wall also possesses a significant effect on the velocity 
of the core fluid. Regarding their variations with time indicating unsteadiness, one 
may note that the core velocity gets enhanced its magnitude with increasing time 
without altering the nature of the profile. 

The velocity profile of the peripheral plasma layer corresponding to the same crit-
ical site as mentioned above has been shown in Figure 2b for different time periods. 
A sharp diminishing trend of the results unlike those of Figure 2a may be attributed 
to the close presence of the stenosis together with the viscosity of the fluid in this part 
under study. Here the curves do diminish at a relatively high rate as one proceeds to-
wards the arterial wall surface and eventually they approach a minimum value (zero) 
on the wall surface. Although the presence of arterial constriction causes a sizeable 
deviation of the onset velocity but this gradually diminishes and finally disappears 
on the arterial wall surface. The wall distensibility does not however influence the 
plasma velocity profile much unlike the velocity profile of the core fluid as evident 
from the pair of closed adjacent curves of the present figure. 
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Figure 3a records the distribution of the flow rate over the entire arterial segment 
at a particular instant of t = 0.5 5, where various cases depending on the viscosity of 
the fluid in different situations have been explored. All the curves follow the general 
feature that the flow rate diminishes at the onset of the stenosis until the maximum 
constriction and thereafter increases symmetrically along the diverging section of the 
stenosis, that is, the flow rate curves become perfectly symmetrical about the maxi-
mum constriction site of z = 15 mm only in the stenotic region. However, they keep 
relatively higher values in the non-constricted portions of the arterial segment under 
study. One may note that the flow rate is reduced significantly in the absence of any 
arterial wall motion and thus the effect of wall distensibility can be easily quanti-
fied through direct comparison of the relevant curves of the present figure. The flow 
rate is further reduced drastically when the streaming blood of the artery is treated 
as a single non-Newtonian fluid (Power law) with different viscosity (m = 0.1167). 
However, the consideration of a single homogeneous Newtonian fluid with viscosity 
fi = 0.035 yields considerable enhancement of the distribution of the flow rate and 
hence the viscosity of the fluid representing blood plays a key role in the flux distribu-
tion. The flow rate appears to be all time higher in the case of two-layered Newtonian 
fluid fluids with different viscosity, the present figure also includes the corresponding 
results for a two-layered fluid by reducing the peripheral plasma thickness showing 
a sizeable reduction of the flow rate over the entire arterial segment under considera-
tion. Perhaps it would be of some importance to note from the general characteristics 
of the curves that the flow rate enhances or reduces to some extent with the arterial 
length in the constricted region depending upon whether the arterial cross-section 
increases or decreases respectively. 

The results for the resistances to flow or the impedances experienced by the non-
homogeneous blood distributed over the entire arterial segment at t = 0.5 s are dis-
played in Figure 3b where all possible cases for homogeneous-nonhomogeneous-
Newtonian -non-Newtonian fluids with various viscosities are well explored. Unlike 
the behaviour of the flow rate, the resistive impedances get enhanced at the onset of 
the stenosis from relatively higher values in the non-stenotic portion until its max-
imum constriction and thereafter diminishes sharply as the constriction assumes a 
minimum followed by a linear path outside the stenotic region. It is evident from 
the results that the flowing blood experiences higher resistances to flow when the 
arterial wall is treated to be rigid and hence the effect of wall motion on the resistive 
impedances can be quantified. Studying all the results of Figure 3 one can conclude 
that since the resistive impedances are inversely proportional to the flow rate, the 
representative curves of the present figure appear to be almost reciprocal to those of 
the flow rates. It is important to note that the flow of a single homogeneous New-
tonian fluid experiences maximum impedances and the distribution is found to be 
more than that for a two-fluid flow in general and for a single non-Newtonian flow, 
in particular. Moreover, the effect of the peripheral plasma thickness on the resistive 
impedances appears to be significant and hence its contribution should be taken into 
account in the realm of the flow characteristics of blood. 

Figure 4a shows the distribution of the wall shear stress over the entire stenosed 
arterial segment at the same instant of time. The curves of the present figure repre-
sent the respective wall shear stress corresponding to a variety of cases mentioned 
earlier with distinguishable marks. All the curves barring the bottom most one at- 
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tain their peaks at the critical site of the maximum arterial constriction. The non-
stenotic portions are however being distributed with relatively lower stress values. 
The stress developed on the arterial wall surface is observed to enhance considerably 
if one completely disregards the wall motion. A further enhancement of the stress 
appears more in the stenotic region than in the nonstenotic region when the plasma-
viscosity of the two-layered fluid is slightly increased as indicated in the relevant 
curve of the present figure. If one treats the streaming blood to be a single plasma 
Newtonian fluid, then the wall shear stress is found to drop significantly more in the 
constricted zone than in the unconstricted region unlike other curves while a single 
non-Newtonian fluid model causes the stress to increase substantially lying below 
the range of stress values corresponding to the two-layered fluid. However, a reduc-
tion of the wall shear stress distribution is noted for a two-fluid Newtonian model 
with different viscosity. All these results mentioned here correspond to a specific 
plasma-thickness of 0.05 but the moment it is reduced slightly to 0.015, the wall 
shear stress gains all time higher values over the entire arterial segment. The present 
stress distribution plays a very important role in detecting the aggregation sites of 
platelets as mentioned in [9] that the growth and the deterioration of the endothelial 
cells of the arterial wall are closely related to the generation of shear stress on the 
arterial walls. 

The behaviour of the dimensionless flow rate with severity of the stenosis present 
in the arterial lumen at specific location where the stenosed artery assumes its con-
striction maximum is exhibited in Figure 4b. The present two-fluid 
model with a 

experiences a gradual decay of the flow 
rate with the increase in the severity of the stenosis, which gets slightly perturbed 
with considerable reduction in magnitudes when the viscosity ratio is raised to 0.5, 

 

 viscosity ratio of plasma to core 
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that is, when the plasma viscosity is increased. The rate of declination of the curve 
appears to be quite rapid if the viscosity of the core fluid is diminished considerably 
as observed from the topmost curve of the present figure. On the other hand, con-
sideration of a single fluid model yields a sharp decline of the flow rate with lower 
magnitudes when the viscosity of the streaming blood is reduced from 0.1167 to 
0.035 and the effect of viscosity together with severity of the stenosis on the flow 
rate can be estimated thereby. The reduced peripheral plasma thickness causes a re-
duction of the flow rate which is slightly perturbed with the change of severity of the 
stenosis. 

 

For the purpose of making a comparative study with the existing results rele-
vant to this domain in order to validate the model under consideration, the results of 
Figure 5a illustrate the behaviour of the resistive impedances with severity of the 
stenosis at its maximum constriction site. The severity of the constriction can be vi-
sualized by increasing the height of the stenosis. All the results of the present study 
show that the resistive impedances keep on increasing with the increasing height of 
the stenosis, that is, more the severity of the stenosis larger is the resistive impedance 
experienced by the flowing blood in all the cases indicated in the figure. The cor-
responding results of Young [23], Srivastava and Saxena [19] and Srivastava [18] 
are also reproduced in the present figure which do agree qualitatively and, to some 
extent, quantitatively with the present results. Any quantitative difference of results 
from the previous studies may be responsible owing to the difference in the present 
geometry of the constriction, the incorporation of the arterial wall motion and to the 
unsteadiness of the present flow considerations. The present results also include the 
significant effect of the peripheral plasma thickness on the resistive impedances vary-
ing directly with the stenosis-severity. Thus one may conclude that if constriction 
keeps on growing, then resistance grows up fast, with or without the arterial motion. 
It is, however, worth mentioning that the present theoretical model possesses a poten- 
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tial improvement over the analytical investigations carried out by them as mentioned 
above. 

Figure 5b exhibits the behaviour of the non-dimensional wall shear stress expe-
rienced by the flowing blood in various situations with different sizes of the stenosis 
at the same critical location of (z = 15 mm) maximum constriction site. The notable 
feature is that the shear stress gets enhanced appreciably with the severity of the 
stenosis following an exponential path unlike the nature of resistive impedances as 
shown in Figure 5a. One may observe that when the viscosity of the plasma fluid is 
increased, the wall shear stresses do increase significantly while they diminish ap-
preciably with the reduction of the core fluid viscosity for a two-layered fluid model 
representing blood. However, in the case of a single homogeneous fluid, the reduc-
tion of the fluid viscosity causes the shear stress to enhance considerably, which is 
in contrast to the findings of a two-layered model. The further enhancement of the 
wall shear stress for plasma thinning is also recorded in the present figure so as to 
validate the importance of the present two-layered model under consideration. 

 

The variation of the resistive impedances with time spanned over a few cardiac 
cycles at the critical location 2 = 15 mm of the stenosed artery is included in the 
concluding Figure 6 for two different severity of the stenosis having length equal to 
half the length of the arterial segment. The results of impedances are represented by 
four distinct curves of which the top two correspond to the present two-fluid model 
(consisting of a non-Newtonian core and a Newtonian plasma) with different 
severity of the stenosis while the bottom two represent a different two-layered model 
of Newtonian fluids with two specific stenosis-severity. The nature of the top two 
curves is analogous where the resistive impedance drops from its maximum value at 
the onset of the cardiac cycles till time t = 0.5 s followed by a slower rate of decrease 
for the rest of the cardiac cycles. The deviation of the results of these two curves 
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clearly indicate the effect of severity of the stenosis on the resistive impedances and 
that appears during the first cardiac cycle only. A little different feature is however 
observed from the bottom pair of curves. The peak impedance appears to be shifted 
a little to the right at the onset of the first cardiac cycle and then it drops down with 
undulating pattern for the rest of the cycles considered here. Once again, the severity 
of the stenosis caused an increase of the resistive impedance. Studying all the results 
of the present figure, one may note that even though the resistive impedances appear 
to have significant differences towards the first cardiac cycle but those gradually die 
out with advancement of time within a few cardiac cycles. 

The significance of the present analysis of the two-layered model of power law 
fluid can now be understood well from the discussion above. Through the numerical 
evaluations obtained in the analysis for various values of the parameters involved, it 
may be remarked that the effects of peripheral layer viscosity, the peripheral layer 
thickness, presence of peripheral layer and the non-Newtonian rheology of the flow-
ing blood on the flux, the resistance to flow and the wall shear stress are quite sig-
nificant. The results of the present study also agree qualitatively well with some 
existing ones. Therefore the present mathematical model bears the potential to pre-
dict the main characteristics of the physiological flows under in vivo situation and 
would certainly be of considerable interest in biomedical applications which in turn 
validates the applicability of this model. 
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Nestacionaraus dvisluoksnio pulsuojan�io kraujo srauto tek�jimas esant stenozei lanks-
�ioje arterijoje skaitinis modeliavimas: periferinio sluoksnio klampumo efektai 

S. Chakravarty, P.K. Mandal, A. Mandal 

Straipsnyje nagrin� jamas kraujo srauto tek� jimas esant stenozei. Nagrin� jamas dvisluoks-nis 
kraujo tek� jimas. Arterija modeliuojama kaip vamzdis su elastin� mis sienel � mis. Kraujo 
srauto nestacionarum�  sukelia širdies veikla. Skaitinis sprendinys randamas baigtini �  skirtum�  
metodu. Atlikta kokybin�  skaitini �  sprendini �  analiz�  iliustruojanti grei � i � , sraut� , sienel � s �
tamp�  priklausomyb�  laike. Skaitiniai rezultatai pakankamai gerai patvirtina eksperimen-

tinius duomenis. 


