
���������	�
������������������	���������������������������� �
!"�#��$��%�'&)(�$��+*��	,�-�./-	010	2�.435�����	�

137–148
c© 2004 Technika ISSN 1392-6292

ON AN EXACT DESCRIPTION OF THE
SCHOTTKY GROUPS OF SYMMETRIES1

M.V. DUBATOVSKAYA and S.V. ROGOSIN

Belarusian State University

4, Fr. Skaryna ave, Minsk

E-mail: 687�9�:8;�<8=�>@?�:1A	94>�7CBD9�E

Received October 9, 2003; revised April 12, 2004

Abstract. Exact description of the Schottky groups of symmetries is given for certain spe-
cial configurations of multiply connected circular domains. It is used in the representation of
the solution of the Schwarz problem which is applied at the study of effective properties of
composite materials.
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1. INTRODUCTION

Description of special subgroups of the group of conformal mappings on the com-
plex plane is a classical problem. The first essential results in this direction were
obtained at the end of XIX - beginning of XX centuries by F. Schottky, H. Schwarz,
H. Poincaré, L. Fuchs, E. Picard, A. Hurwitz, F. Klein and others. These results
formed the base of the theory of the groups of conformal mappings, the theory of
automorphic functions and Poincaré θ-series (see [3]). Further results and modern
view on this subject are presented in the monographs [4, 9].

The theory of conformal mapping constitutes a very suitable tool for the study of
two-dimensional problems of mathematical physics. Recently an interest has arised
to describe special groups of conformal mappings, which belong to so called class of
the Schottky groups. It should be noted, for instance, the application of such groups
to the constructive representation of conformal mappings of multiply connected do-
mains onto canonical domains (see, e.g. [1, 2, 8]), to the analytic solution of the
Schwarz boundary value problem

ReF (t) = f(t), t ∈ L, (1.1)

1 The work is partially supported by the Belarusian Fund for Fundamental Scientific Re-
search
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or more general Riemann-Hilbert boundary value problem

Reλ(t)F (t) = f(t), t ∈ L, (1.2)

for a multiply connected circular domain (see [7]). They are also used for the study
of certain special cases of R-linear boundary value problem

φ+(t) = a(t)φ−(t) + b(t)φ+(t) + c(t), t ∈ L, (1.3)

for multiply connected domains. Investigations of all these problems based on the
method of functional equations are described in the recent monograph [8]. These
results constitute the ground for a new constructive approach to the study of boundary
value problems of mathematical physics.

Therefore the study of general properties of Schottky groups generated by sym-
metries with respect to a number of circles becomes an actual problem. It is also
important to give an exact representation of elements of such groups for certain spe-
cial cases since these groups are used in formulas for the solutions of the problems
(1.1), (1.2), (1.3). They can be applied for solving problems of filtration, composite
materials, porous media (see the description of these applications, e.g., in [6, 8]).

2. Notation and general results

2.1. Groups of symmetries

We consider representation of elements of so called Schottky groups (or Schottky-
type groups). The formal definition of the Schottky group is as follows:
���������	��
���������

LetQ1, Q2, . . . , Qn andQ′
1, Q

′
2, . . . , Q

′
n be two families of circles.

Let the circles of each family be situated outside each other (i.e. the circles of each
family are nonoverlapping). Let Tj be a (fractional)-linear transform with respect to
z or z which map Qj onto Q′

j and interior of the circles of each Qj onto exterior
of Q′

j . This transform generates the group Kj . The composition of these groups
Kj , j = 1, 2, . . . , n, is called Schottky group generated by the mappings Tj , j =
1, 2, . . . , n.

Intensive study of such groups was done in twenties and thirties of the XX cen-
tury. It appeared that in most cases the Schottky group has quite complicated struc-
ture and not too many general properties can be formulated.

We consider here a special case of the Schottky groups when the generators Tj

are simply the symmetries with respect to the circles Qj (and thus Qj = Q′
j). We

obtain an exact description of the elements of the corresponding Schottky groups for
a number of particular cases. Let

Qj = Qj(aj , rj) := {z ∈ C : |z − aj | = rj} , j = 1, 2, . . . , n,

be a family of circles on the complex plane (with centers aj and with radii rj ). Let
us introduce the following mappings (see [8, p. 125]):
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z∗(jm,jm−1,...,j1) :=
(
z∗(jm−1,...,j1)

)∗
(jm)

, (2.1)

where z∗(j) =
r2

j

(z−aj)
+ aj is the symmetry with respect to the circle Qj . Hence,

z∗(jm,jm−1,...,j1)
is the composition of the successive symmetries with respect to the

circles Qj1 , . . .Qjm−1
, Qjm

. In the sequence jm, jm−1, . . . , j1 no two neighbouring
numbers are equal. The numberm is called the level of the mapping z∗(jm,jm−1,...,j1).
When m is even, these mappings are Möbius transformations. If m is odd then we
have anti-Möbius transformations, i.e. Möbius transformations with respect to z.
Thus these mappings can be written in the form

φk(z) = (αkz + βk) / (γkz + δk) , m is even,

φk(z) = (αkz + βk) / (γkz + δk) , m is odd,

where αkδk − βkγk = 1. Here

φ0(z) = z, φ1(z) = z∗(1), φ2(z) = z∗(2), . . . , φm(z) = z∗(m), (2.2)

φm+k(z) = z∗((k+1),1), k ≥ 1 .

The functions φk generate a Schottky group K (see [3]). In the following we denote
by G the subgroup of K consisting of the mappings φk of an even order, and by F the
subgroup of K consisting of the mappings φk of an odd order. The following general
properties of the successive symmetries are well-known (see [3]).

Properties of successive symmetries

1. Each (fractional)-linear transform w = αz+β
γz+δ of the complex plane C is equiva-

lent to an even number of symmetries with respect to certain circles.

2. (Fractional)-linear transforms of the complex plane C (which are not identity,
w ≡ z) have at most two fixed points. Thus it is true for the elements of the
subgroup G.

3. Any transform w = αz+β
γz+δ can be represented in one of the following forms

w − ζ1
w − ζ2

= K
z − ζ1
z − ζ2

, or w − ζ1 = K(z − ζ1),

where ζ1, ζ2 are the fixed points of the transform, and the coefficient K is a
complex number satisfying the relation

√
K +

1√
K

= α+ δ .

4. If K = Aeiθ (A > 0, θ ∈ [0, 2π)) then the transform w
a) is called hyperbolic, if K = A;
a) is called elliptic, if K = eiθ;
a) is called loxodromic, if K = Aeiθ, θ 6= 0.
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5. Let the transformw = αz+β
γz+δ has two fixed points ζ1, ζ2 and is represented in the

form
w − ζ1
w − ζ2

= K
z − ζ1
z − ζ2

.

Then the m-th iteration of this transform, i.e. the transform

w(m) := w ◦ w ◦ . . . ◦ w︸ ︷︷ ︸
m− times

has the same fixed points and is represented in the form

w(m) − ζ1
w(m) − ζ2

= Km z − ζ1
z − ζ2

. (2.3)

It should be mentioned that the above properties hold only for the symmetries of
even level. As for the symmetries of odd level the situation is more complicated.

6. The set of fixed points of the transform of an odd level

w =
αz + β

γz + δ

can be either the whole complex plane C, or a circle, or two points, or a point, or
even an empty set. Really, fixed points (z = x+ iy) have to satisfy the following
system of real equations




a(x2 + y2) + bx+ cy + d = 0,

b1x+ c1y + d1 = 0 .
(2.4)

Then the property 6 follows immediately. It is not difficult to see that all possi-
bilities for the fixed set are achieved by certain transformations of an odd level.

2.2. Schwarz operator and groups of symmetries

Our interest to obtain an exact description of elements of Schottky groups of sym-
metries is motivated by the application of such groups at the study of composite ma-
terials. Thus, the properties of two-dimensional composite materials with cylindric
inclusions are described in terms of the solutions of certain boundary value prob-
lems for harmonic functions in a multiply connected circular domain. Such models
are described in the monograph [8]. These solutions are represented in term of certain
Schottky groups of symmetries.

To clarify this situation let us give such a formula for one of the most simple
boundary value problems, which describes the composite materials, namely, for the
Schwarz boundary value problem (1.1). Let us consider mutually disjoint discs

Dj := D(aj , rj) = {z ∈ C : |z − aj | < rj}, j = 1, 2, . . . , n

on the complex plane C. LetD := Ĉ\
n⋃

j=1

Dj (see Fig. 1). We choose the orientation

of the boundary Q :=
n⋃

j=1

Qj = ∂Dj in such a way, that the domain containing
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Figure 1. A multiply connected domain.

∞ is on the left side. We give here the formulation of the Schwarz problem in this
specified type of domains in order to be precise at the representation of the solutions.
In fact, the Schwarz problem can be posed for any Jordan domain.

The Schwarz problem for the domainD is to find a function F , analytic inD and
continuous in cl D, such that its boundary values satisfy the relation





ReF (t) = f(t), t ∈ Q = ∂ D,

ImF (z0) = 0,
(2.5)

where f is a given function on Q, z0 is a given point in D. The operator T, which
assigns to each pair (f, z0) the solution of the Schwarz problem (2.5), is called the
Schwarz operator of the domain D.

In the case of the Hölder-continuous function f and the multiply connected do-
main D being of the above described type the Schwarz operator is delivered by the
formula [8, p. 135]

(Tf) (z) =
1

2πi

n∑

j=1

∫

Qj

f(ζ)





∑

φj∈G,j 6=0

[
1

ζ − φj(z0)
− 1

ζ − φj(z)

]
(2.6)

+

(
rj

ζ − aj

)2 ∑

φj∈F

[
1

(ζ − φj(z))
− 1

(ζ − φj(z0))

]
− 1

ζ − z



 dζ

+
n∑

j=1

∫

Qj

f(ζ)
∂A

∂ν
(ζ) dζ +

n∑

m=1

Am [log(z − am) + ψm(z)] + iς,

where

Am =

n∑

j=1

∫

Qj

f(ζ)
∂αj

∂ν
(ζ) dζ, j = 1, 2, . . . , n,

αj is a harmonic measure of the domain Dj , the functionsA(z), ψm(z) are uniquely
defined by certain additional relations (see [8]), ν is an external normal vector to
the corresponding circle, ς is an arbitrary real constant. This formula represents the
Schwarz operator in any compact subset of the domain D.
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3. Representation of elements of the Schottky groups of
symmetries

In this Section we give a number of results concerning the representation of elements
of some special Schottky groups of symmetries. We start with the most simple case
of symmetries with respect to two circles.

3.1. Symmetries with respect to two circles

Let
Dj := D(aj , rj) = {z ∈ C : |z − aj | < rj , j = 1, 2 }

be two nonoverlapping discs on the complex plane C (i.e. |a1 − a2| ≥ r1 + r2) (see
Fig. 2). Then the transform w = z∗(1,2) can be delivered by the formula

·

·
&%
'$

��
��

D1(a1, r1)

D2(a2, r2)

Figure 2. Symmetries with respect to two discs.

w =
Az +B

Cz +D
,

where

A = a2(a1 − a2) + r22 , B = a1a2(a1 − a2) + r21a2 − r22a1,

C = a1 − a2, D = a1(a2 − a1) + r21 .
(3.1)

This transform has two fixed points ζ1, ζ2 and satisfies the relation

w − ζ1
w − ζ2

= K
z − ζ1
z − ζ2

,

where

ζ1 =
M +N

r1r2
, ζ2 =

M −N

r1r2
, K =

L−N

L+N
, (3.2)

M = r22 − r21 +
(
a1 − a2

)
(a1 + a2) ,

N =
(
(r22 − r21)

2 + |a1 − a2|4 − 2|a1 − a2|2(r21 + r22)
)1/2

,

L = r21 + r22 − |a1 − a2|2 .
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In the same notation the transform consisting of 2m-symmetries

w(m) := z∗(1,2,1,2,...,1,2) =

((
. . .
(
z∗(1,2)

)∗
(1,2)

. . .

)∗

(1,2)

)∗

(1,2)︸ ︷︷ ︸
m − times

satisfies the relation
w(m) − ζ1
w(m) − ζ2

= Km z − ζ1
z − ζ2

.

3.2. Symmetries with respect to three circles

Let
Dj := D(aj , rj) = {z ∈ C : |z − aj | < r, j = 1, 2, 3 }

be three nonoverlapping discs of equal radii r on the complex plane C (i.e. |ak −
aj | ≥ 2r, k 6= j) (see Fig.3).

·

·

·

&%
'$

&%
'$

&%
'$

D2(a2, r)

D3(a3, r)

D1(a1, r)

Figure 3. Symmetries with respect to three discs.

Then the transform w = z∗(1,2,3) can be delivered by the formula

w =
Az +B

Cz +D
,

where

A = r2(a1 − a2 + a3) + a3(a2 − a3)(a1 − a2), (3.3)

B = r4 − r2 [a3a1 + a1(a1 − a2) − a3(a2 − a3)] − a1a3(a1 − a2)(a2 − a3),

C = r2 + (a1 − a2)(a2 − a3),

D = r2(a2 − a3 − a1) − a1(a1 − a2)(a2 − a3).

The formulae for the transforms w = z∗(1,3,2), z
∗
(2,1,3), . . . , z

∗
(3,2,1) can be obtained

from (3.3) by interchanging of indexes.

It follows from [5] that the effective characteristics of the composites possess
extreme values in the case of percolation, i.e. when the discs Dj touch each others
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Figure 4. Arrangement of discs: a) three discs in line, b) three discs in line along imaginary
axes.

and constitute a chain-type set. In the case of an external field in the direction of the
real axes the extreme configuration for three discs is the following: Dj are situated
in a line along the real or imaginary axes.

In order to present exact formulae for the corresponding transforms we consider
firstly the situation when the discs lay along certain line (see Fig.4a). Namely, let

D1 := {z ∈ C : |z+a| < r},D2 := {z ∈ C : |z| < r},D3 := {z ∈ C : |z−a| < r},

where a ∈ C, r > 0, |a| = 2r. In this case the composition of the successive
symmetries z∗(1,2,3) has the following representation:

z∗(1,2,3) =
a|a|2z + r4 − |a|2r2 + |a|4

(r2 + |a|2)z + a|a|2 . (3.4)

The formulae for the transforms w = z∗(1,3,2), z
∗
(2,1,3), . . . , z

∗
(3,2,1) can be obtained

from (3.3) by interchanging indexes.

Further we describe the transforms in the case of optimal effective characteristics
(for the external field oriented along the real axes). Let the discs Dj , j = 1, 2, 3, be
situated along the imaginary axes and touch each other (see Fig. 4b), i.e. a = 2ri.
Then

z∗(1,2,3) =
8irz + 13r2

5z − 8ir
, z∗(1,3,2) =

−4irz − 7r2

−7z + 12ir
, (3.5)

z∗(2,1,3) =
−12irz − 7r2

−7z + 4ir
, z∗(2,3,1) =

12irz − 7r2

−7z − 4ir
,

z∗(3,1,2) =
4irz − 7r2

−7z − 12ir
, z∗(3,2,1) =

−8irz + 13r2

5z + 8ir
.

Let the discs Dj , j = 1, 2, 3 be situated along the real axes and touch each other,
i.e. a = 2r (see Fig. 5). Then

z∗(1,2,3) =
8rz + 13r2

5z + 8r
, z∗(1,3,2) =

−4rz − 7r2

−7z − 12r
, (3.6)
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Figure 5. Three discs in line along real axes.

z∗(2,1,3) =
−12rz − 7r2

−7z − 4r
, z∗(2,3,1) =

12rz − 7r2

−7z + 4r
,

z∗(3,1,2) =
4rz − 7r2

−7z + 12r
, z∗(3,2,1) =

−8rz + 13r2

5z − 8r
.

From the point of view of applications dealing with composite materials (see,
e.g., [5, 8]) it is also interesting to consider the case of discs which constitute so
called "packages" of discs. Let us present two results for such configuration.
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Figure 6. Special packages: a) package of three discs I, b) package of three discs II.

Let Dj := D(aj , rj), j = 1, 2, 3, where

rj = r, a1 = 0, a2 = 2rei π
6 , a3 = 2re−i π

6 ,

i.e. the centers of the discs lay at the vertex of the right triangle (see Fig.6a). Then
the transform w = z∗(1,2,3) can be delivered by the formula

w =
2irz − (1 + 2

√
3i)r2

(−1 + 2
√

3i)z − 2ir
.
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Let Dj := D(aj , rj), j = 1, 2, 3, where (see Fig. 6b)

rj = r, a1 = 0, a2 = 2rei 5π
6 , a3 = 2re−i 5π

6 .

Then the transform w = z∗(1,2,3) can be delivered by the formula

w =
2irz + (−1 + 2

√
3i)r2

(−1 − 2
√

3i)z − 2ir
.

3.3. Symmetries with respect to four circles

In the case of four discs we consider the only situation with four discs of equal radii
symmetrically situated with respect to the origin:

D1 := { z ∈ C : |z − a| < r }, D2 := { z ∈ C : |z + a| < r },

D3 := { z ∈ C : |z + a| < r }, D4 := { z ∈ C : |z − a| < r } ,

where a ∈ C, r > 0, |Re a| ≥ r, |Ima| ≥ r (see Fig.7).
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Figure 7. Four symmetrically situated discs.

In this case the composition of the successive symmetries w = z∗(1,2,3,4) is deliv-
ered by the formula

w =
Az +B

Cz +D
,

with

A = r4 + r2a2 − r2a2 + aa3 − a3aa2a2 + a4, (3.7)

B = r2a3 + r2aa2 − r2a3 + a4a− a2a3,

C = −a3 − a2a+ aa2 + a3,

D = r4 + r2a2 − r2a2 + r2aa− a2a2 + a4 .
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The transform w = z∗(1,2,3,4) satisfies the following relation

w − ζ1
w − ζ2

= K
z − ζ1
z − ζ2

, (3.8)

where

ζ1 =
a4 − 2a2r2 + aar + 2a2r2 − aa3 − a4 +

√
F

2(a2 − a2)(a+ a)
, (3.9)

ζ2 =
a4 − 2a2r2 + aar + 2a2r2 − aa3 − a4 −

√
F

2(a2 − a2)(a+ a)
,

F = (a4 − 2a2r2 + a3a+ aar + 2a2r2 − aa3 − a4)2

− 4(a2 − a2)
(
a3r2 − a4a− aa2r2 + a2a3 − a3r2

)
,

K =
A− Cζ1
A− Cζ2

,

A, C are given in (3.7).

The most interesting case for applications is when four discs constitute the pack-
age, i.e. a = r + ir. Then the transform w = z∗(1,2,3,4) has the following form:

w =
zr(−4 + 7i) + 8r2

−8z + r(4 + 7i)
. (3.10)

The transform w = z∗(1,2,3,4) satisfies the relation (3.8), its fixed points ζ1, ζ2 are
given by

ζ1 =
−1 +

√
3i

2
r, ζ2 =

1 −
√

3i

2
r,

and the coefficient K in (3.8) is given by the formula

K = 97 + 8
√

3.
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Apie Schottky simetrijos grupių tikslų apibrėžimą

M.V. Dubatovskaya, S.V. Rogosin

Darbe pateiktas Schottky simetrijos grupių apibrėžimas tam tikros specialios konfiguracijos
daugiajungėms skritulinėms sritims. Jis yra panaudotas gaunant Švarco uždavinio, kuris pri-
taikomas nagrinėjant efektyvias kompozicijų savybes, sprendinio išraišką.


