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Abstract. We consider a mathematical model which describes the static frictional contact
between a piezoelectric body and an obstacle. The constitutive relation of the material is as-
sumed to be electroelastic and involves a nonlinear elasticity operator. The contact is modelled
with a version of Coulomb’s law of dry friction in which the coefficient of friction depends
on the slip. We derive a variational formulation for the model which is in form of a coupled
system involving as unknowns the displacement field and the electric potential. Then we pro-
vide the existence of a weak solution to the model and, under a smallness assumption, we
provide its uniqueness. The proof is based on a result obtained in [14] in the study of elliptic
quasi-variational inequalities.

Key words: piezoelectric material, electroelasticity, static frictional contact, Coulomb’s law,
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1. Introduction

The piezoelectric effect was discovered in 1880 by Jacques and Pierre Curie; it con-
sists on the apparition of electric charges on the surfaces of some crystals after their
deformation. The reverse effect was outlined in 1881; it consists on the generation
of stress and strain in crystals under the action of electric field on the boundary.
A deformable material which undergoes piezoelectric effects is called a piezoelec-
tric material. An elastic material with piezoelectric effect is called an electroelastic
material and the discipline dealing with the study of electroelastic materials is the
theory of electroelasticity. Their bases were underlined by Voigt [24] who provided
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the first mathematical model of a linear elastic material which takes into account the
interaction between mechanical and electrical properties.

General models for elastic materials with piezoelectric effects can be found in
[10, 11, 12, 22, 23] and, more recently, in [1, 21]. Currently, there is a consider-
able interest in frictional contact problems involving piezoelectric materials, see for
instance [2, 9] and the references therein. Indeed, situations which involve contact
phenomena abound in industry and everyday life. The contact of the braking pads
with the wheel, the tire with the road and the piston with skirt are just three simple
examples. Because of the importance of contact processes a considerable effort has
been made in their modelling and the engineering literature concerning this topic
is extensive. However, there are very few mathematical results concerning contact
problems involving piezoelectric materials and therefore there is a need to extend
the results on models for contact with deformable bodies to models for contact with
deformable bodies which include coupling between mechanical and electrical prop-
erties.

The aim of this paper is to provide such an extension. Indeed, we consider here
a model for the process of frictional contact between an electrolastic body, which is
acted upon by forces and electric charges, and a foundation. The process is static,
the contact is frictional and it is modeled with a version of Coulomb’s law of dry
friction in which the coefficient of friction depends on the slip. Such kind of depen-
dence was pointed out in [18] in the study of the stick-slip phenomenon and was
considered in various papers, see for instance [16, 19]. Frictional contact boundary
value problems with elastic materials and slip dependent friction were considered in
[3, 6] in the static case and in [4] in the quasistatic case. Here we extend the frictional
model in [3] to the case of nonlinear electroelastic materials. Taking into account the
piezoelectric behavior of the body consists the main trait of novelty of the model. We
derive a variational formulation of the model then we prove its weak solvability and,
under an additional assumption, its unique solvability. As in [3], the proof of these
results are based on an abstract theorem on quasivariational inequalities derived in
[14]; however, keeping in mind the coupling of the electrical and mechanical effects,
we apply this result in a different setting and with a different choice of operators
and functionals. An important continuation of this paper consists in the numerical
analysis of the model, including numerical simulations, and will be presented in a
forthcoming work.

The paper is structured as follows. In Section 2 we state the model of the equilib-
rium process of the elastic piezoelectric body in frictional contact with a foundation.
In Section 3 we introduce some preliminary material, list assumptions on the prob-
lem data and state our main existence and uniqueness result, Theorem 1. The proof
of the theorem is presented in Section 5; it is based on an abstract existence and
uniqueness result that we recall in Section 4.

2. Problem Statement

We consider the following physical setting. An elastic piezoelectric body occupies a
bounded domain Ω ⊂ IRd, d = 2, 3 with a smooth boundary ∂Ω = Γ . The body is
submitted to the action of body forces of density f 0 and volume electric charges of
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density q0. It is also submitted to mechanical and electric constraints on the boundary.
To describe them, we consider a partition of Γ into three measurable parts Γ1, Γ2,
Γ3, on one hand, and on two measurable parts Γa and Γb, on the other hand, such
that measΓ1 > 0 and measΓa > 0. We assume that the body is clamped on Γ1

and surfaces tractions of density f 2 act on Γ2. On Γ3 the body is in frictional contact
with an obstacle, the so-called foundation. We model the contact with a version of
Coulomb’s law of dry friction, already used in [3] and [6], in which the normal stress
is prescribed and the coefficient of friction depends on the slip. We also assume that
the electrical potential vanishes on Γa and a surface electric charge of density q2
is prescribed on Γb. We denote by S

d the space of second order symmetric tensors
on R

d or, equivalently, the space of symmetric matrices of order d. Also, below ν

represents the unit outward normal on Γ while “ ·” and ‖ ·‖ denote the inner product
and the Euclidean norm on R

d and S
d, respectively.

With the assumption above, the problem of equilibrium of the electroelastic body
in frictional contact with a foundation is the following.

Problem P . Find a displacement field u : Ω → R
d, a stress field σ : Ω → S

d, an
electric potential ϕ : Ω → R and an electric displacement field D : Ω → R

d such
that

σ = Fε(u) − ET E(ϕ) in Ω, (2.1)

D = Eε(u) + βE(ϕ) in Ω, (2.2)

Div σ + f0 = 0 in Ω, (2.3)

div D = q0 in Ω, (2.4)

u = 0 on Γ1, (2.5)

σν = f 2 on Γ2, (2.6)

− σν = S on Γ3, (2.7)
{

‖στ‖ ≤ µ(‖uτ‖)|S|, on Γ3,

στ = −µ(‖uτ‖)|S|
uτ

‖uτ‖
, if uτ 6= 0

(2.8)

ϕ = 0 on Γa, (2.9)

D · ν = q2 on Γb. (2.10)

In (2.1) – (2.10) and below, in order to simplify the notation, we do not indicate
explicitly the dependence of various functions on the spatial variable x ∈ Ω ∪ Γ .
Equations (2.1) and (2.2) represent the electroelastic constitutive law of the mate-
rial in which F is a given nonlinear function, ε(u) denotes the small strain tensor,
E(ϕ) = −∇ϕ is the electric field, E represents the third order piezoelectric tensor,
ET is its transposite and β denotes the electric permitivitty tensor. Details of the
linear version of the constitutive relations (2.1) and (2.2) can be find in [1, 2]. Equa-
tions (2.3) and (2.4) represent the equilibrium equations for the stress and electric-
displacement fields, respectively, (2.5) and (2.6) are the displacement and traction
boundary conditions, respectively, and (2.9), (2.10) represent the electric boundary
conditions.

We now provide some comments on the frictional contact conditions (2.7) and
(2.8), which are our main interest. Condition (2.7) states that the normal stress σν
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is prescribed on Γ3 since S denotes a given function. Condition (2.8) represents the
associated friction law in which στ is the tangential stress, uτ denotes the tangential
displacement and µ is the coefficient of friction. This law should be seen either as a
mathematical model suitable for proportional loadings or as a first approximation of
a more realistic model, based on a friction law involving the time derivative of uτ

(see for instance [4, 13]). Note that in (2.8) the coefficient of friction depends on the
slip ‖uτ‖ which leads to a nonstandard frictional contact problem.

3. Variational Formulations and Main Result

In this section we list the assumptions on the data, derive a variational formulation for
the contact problem (2.1) – (2.10) and state our main existence and uniqueness result,
Theorem 1. To this end we need to introduce notation and preliminary material.

We recall that the inner products and the corresponding norms on R
d and S

d are
given by

u · v = uivi , ‖v‖ = (v · v)
1

2 ∀u,v ∈ R
d,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1

2 ∀σ, τ ∈ S
d.

Here and everywhere in this paper i, j, k, l run from 1 to d, summation over repeated
indices is implied and the index that follows a comma represents the partial derivative

with respect to the corresponding component of the spatial variable, e.g. ui,j =
∂ui

∂xj

.

Everywhere below we use the classical notation for Lp and Sobolev spaces asso-
ciated to Ω and Γ . Moreover, we use the notation L2(Ω)d, H1(Ω)d and H and H1

for the following spaces:

L2(Ω)d = { v = (vi) | vi ∈ L2(Ω) }, H1(Ω)d = { v = (vi) | vi ∈ H1(Ω) },

H = { τ = (τij) | τij = τji ∈ L2(Ω) }, H1 = { τ ∈ H | τij,j ∈ L2(Ω) }.

The spaces L2(Ω)d, H1(Ω)d, H and H1, are real Hilbert spaces endowed with the
canonical inner products given by

(u,v)L2(Ω)d =

∫

Ω

u · v dx, (u,v)H1(Ω)d =

∫

Ω

u · v dx+

∫

Ω

ε(u) · ε(v) dx,

(σ, τ )H =

∫

Ω

σ · τ dx, (σ, τ )H1
= (σ, τ )H + (Div σ,Div τ )L2(Ω)d

and the associated norms ‖ · ‖L2(Ω)d , ‖ · ‖H1(Ω)d , ‖ · ‖H and ‖ · ‖H1
, respectively.

Here ε : H1 → H and Div : H1 → H are the deformation and divergence operators,
respectively, that is

ε(v) = (εij(v)), εij(v) =
1

2
(vi,j + vj,i) ∀v ∈ H1(Ω)d,

Div τ = (τij,j) ∀τ ∈ H1.

For every element v ∈ H1(Ω)d we also write v for the trace of v on Γ and
we denote by vν and vτ the normal and tangential components of v on Γ given by
vν = v · ν, vτ = v − vνν.
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Let us now consider the closed subspace of H1(Ω)d defined by

V = { v ∈ H1(Ω)d | v = 0 on Γ1 }.

Since meas (Γ1) > 0, the following Korn’s inequality holds:

‖ε(v)‖H ≥ cK ‖v‖H1(Ω)d ∀v ∈ V, (3.1)

where cK > 0 is a constant which depends only on Ω and Γ1. A proof of Korn’s
inequality can be found in, for instance, [15] p. 79. Over the space V we consider
the inner product given by

(u,v)V = (ε(u), ε(v))H (3.2)

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (3.1) that
‖ · ‖H1(Ω)d and ‖ · ‖V are equivalent norms on V . Therefore (V, ‖ · ‖V ) is a real
Hilbert space. Moreover, by the Sobolev trace theorem, (3.1) and (3.2), there exists
a constant c0 depending only on the domain Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V. (3.3)

We also introduce the spaces

W = { ψ ∈ H1(Ω) | ψ = 0 on Γa },

W = { D = (Di) | Di ∈ L2(Ω), div D ∈ L2(Ω) },

where div D = (Di,i). The spaces W and W are real Hilbert spaces with the inner
products

(ϕ, ψ)W = (ϕ, ψ)H1(Ω), (D,E)W = (D,E)L2(Ω)d + (div D, divE)L2(Ω).

The associated norms will be denoted by ‖ · ‖W and ‖ · ‖W , respectively. Notice also
that, since meas (Γa) > 0, the following Friedrichs-Poincaré inequality holds:

‖∇ψ‖L2(Ω)d ≥ cF ‖ψ‖W ∀ψ ∈ W, (3.4)

where cF > 0 is a constant which depends only on Ω and Γa.
In the study of the contact problem (2.1) – (2.10) we assume that































































(a) F : Ω × S
d → S

d.

(b) There existsMF > 0 such that
‖F(x, ξ1) −F(x, ξ2)‖ ≤MF‖ξ1 − ξ2‖ ∀ ξ1, ξ2 ∈ S

d, a.e. x ∈ Ω.

(c) There existsmF > 0 such that
(F(x, ξ1)) −F(x, ξ2)) · (ξ1 − ξ2) ≥ mF‖ξ1 − ξ2‖

2

∀ ξ1, ξ2 ∈ S
d, a.e. x ∈ Ω.

(d) The mapping x 7→ F(x, ξ) is Lebesgue measurable on Ω for any ξ ∈ S
d.

(e) The mapping x 7→ F(x,0) belongs to H.
(3.5)
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{

(a) E = (eijk) : Ω × S
d → R

d.

(b) eijk = eikj ∈ L∞(Ω).
(3.6)



























(a) β = (βij) : Ω × R
d → R

d.

(b) βij = βji ∈ L∞(Ω).

(c) There existsmβ > 0 such that βij(x)EiEj ≥ mβ‖E‖2 ∀E ∈ R
d,

a.e. x ∈ Ω.

(3.7)

f 0 ∈ L2(Ω)d, f2 ∈ L2(Γ3)
d (3.8)

q0 ∈ L2(Ω), q2 ∈ L2(Γb), (3.9)

S ∈ L∞(Γ3) and ‖S‖L∞(Γ3) > 0· (3.10)



































(a) µ : Γ3 × IR → IR+.

(b) There exist cµ1 ≥ 0 and cµ2 ≥ 0 such that
µ(x, r) ≤ c

µ
1 |r| + c

µ
2 ∀ r ∈ IR+, a.e. x ∈ Γ3.

(c) The mapping x 7→ µ(x, r) is Lebesgue measurable on Γ3 for any r ∈ IR.

(d) The mapping r 7→ µ(x, r) is continuous on IR+, a.e. x ∈ Γ3.

(3.11)

{

There exists Lµ > 0 such that

(µ(x, r2) − µ(x, r1)) · (r1 − r2) ≤ Lµ |r1 − r2|
2 ∀ r1, r2 ∈ IR, a.e. x ∈ Γ3.

(3.12)
We make in what follows some comments on the assumptions (3.5) – (3.12). As

stated in Section 2, below we suppress the dependence of various functions on the
spatial variable x ∈ Ω ∪ Γ .

First, we note that the condition (3.5) is satisfied in the case of the linear elastic
constitutive law σ = Fε(u) in which

Fξ = (fijklξkl), (3.13)

provided that fijkl ∈ L∞(Ω) and there exists α > 0 such that

fijkl(x)ξkξl ≥ α‖ξ‖2 ∀ ξ ∈ S
d, a.e. x ∈ Ω.

To provide examples of nonlinear constitutive laws which satisfy (3.5), for every
tensor ξ ∈ S

d we denote by tr ξ the trace of ξ and let ξD be the deviatoric part of ξ

given by

tr ξ = ξii, ξD = ξ −
1

d
(tr ξ)Id,
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where Id ∈ S
d represents the identity tensor. Let K denotes a nonempty closed con-

vex set in S
d and let PK represents the projection mapping on K. We also consider

a forth order symmetric and positively defined tensor E : S
d → S

d and take

F(ξ) = Eξ +
1

λ
(ξ − PKξ) ∀ξ ∈ S

d, (3.14)

where λ is a strictly positive constant. Using the properties of the projection mapping
it is straightforward to see that the elasticity operator F defined by (3.14) satisfies
condition (3.5). Constitutive laws of the form σ = Fε(u)) with F given by (3.14)
have been considered by many authors, see. e.g. [8], [17] p. 97 and [20] p. 68. Most
of them have defined the convex K by the relationship K = { ξ ∈ S

d | G(ξ) ≤ k}
where G : S

d → IR is a convex continuous function such that G(0) = 0 and k > 0.
A second example of nonlinear elastic equations is provided by nonlinear Hencky

materials (see [25] for details). For a Hencky material, the stress-strain relation is
given by

σ = K0(tr ε(u)) Id + ψ(‖εD(u)‖2) εD(u),

so that the elasticity operator is

F(ξ) = K0(tr ξ) Id + ψ(‖ξD‖2) ξD ∀ ξ ∈ S
d. (3.15)

Here, K0 > 0 is a material coefficient, the function ψ is assumed to be piecewise
continuously differentiable, and there exist positive constants c1, c2, d1 and d2, such
that for s ≥ 0

ψ(s) ≤ d1, −c1 ≤ ψ′(s) ≤ 0, c2 ≤ ψ(s) + 2ψ′(s) s ≤ d2.

Under these assumption it can be shown that the elasticity operator F defined in
(3.15) satisfies condition (3.5).

Next, as it is shown in (3.6) and (3.7), we see that the piezoelectric operator E as
well as the electric permitivitty operator β are assumed to be linear and, moreover, β
is symmetric and positive definite. Recall also that the transposite tensor ET is given
by ET = (eT

ijk) where eT
ijk = ekij , and the following equality holds:

Eσ · v = σ · E∗v ∀σ ∈ S
d, v ∈ R

d. (3.16)

We also remark that (3.8) represent regularity assumptions on the densities of
volume forces and surface tractions while (3.9) represent regularity assumptions on
the densities of volume and surface electric charges. Condition ‖S‖L∞(Γ3) > 0 in
(3.10) is imposed here in order to obtain a genuine frictional contact problem. Indeed,
if S = 0 a.e. on Γ3 then by (2.7) and (2.8) it follows that the Cauchy stress vector σν

vanishes on Γ3 and therefore problem (2.1) – (2.10) becomes a purely displacement-
traction problem for electroelastic materials.

Finally, we observe that the assumptions (3.11) on the coefficient of friction µ
are pretty general. Clearly, these assumptions are satisfied if µ is a bounded function
which is continuously differentiable with respect to the second variable, as it was
considered in [6]. We also remark that assumptions (3.11) and (3.12) are satisfied if
µ does not depend on the second argument and is a positive function which belongs
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to L∞(Γ3). This is the case when the coefficient of friction does not depend on the
slip. Frictional contact problems involving this last assumption on the coefficient of
friction were studied in [5, 17] in the case of purely elastic materials. Notice also that
assumption (3.12) is satisfied if µ(x, ·) : IR → IR+ is an increasing function, a.e.
x ∈ Γ3.

We now turn to the variational formulation of Problem P and, to this end, we
introduce further notation. Let h : V × V −→ IR be the functional

h(u,v) =

∫

Γ3

µ(‖uτ‖) |S| ‖vτ‖da, ∀u, v ∈ V (3.17)

and, using Riesz’s representation theorem, consider the elements f ∈ V and q ∈ W

given by

(f ,v)V =

∫

Ω

f 0 · v dx+

∫

Γ2

f2 · v da+

∫

Γ3

S vν da ∀v ∈ V, (3.18)

(q, ψ)W =

∫

Ω

q0ψ dx+

∫

Γb

q2ψ da ∀ψ ∈W. (3.19)

Keeping in mind assumptions (3.8) – (3.11) it follows that the integrals in (3.17) –
(3.19) are well-defined.

Using integration by parts, it is straightforward to see that if (u,σ, ϕ,D) are
sufficiently regular functions which satisfy (2.3) – (2.10) then

(σ, ε(v) − ε(u))H + h(u,v) − h(u,u) ≥ (f ,v − u)V ∀v ∈ V, (3.20)

(D, ψ)L2(Ω)d = (q, ψ)W ∀ψ ∈W. (3.21)

We plug (2.1) in (3.20), (2.2) in (3.21) and use the notation E = −∇ϕ to obtain
the following variational formulation of Problem P , in the terms of displacement
field and electric potential.

Problem PV . Find a displacement field u ∈ V and an electric potential ϕ ∈ W

such that

(Fε(u), ε(v) − ε(u))H + (ET∇ϕ,v − u)L2(Ω)d (3.22)

+h(u,v) − h(u,u) ≥ (f ,v − u)V ∀v ∈ V,

(β∇ϕ,∇ψ)L2(Ω)d − (Eε(u),∇ψ)L2(Ω)d = (q, ψ)W ∀ψ ∈W. (3.23)

Our main existence and uniqueness result which we establish in Section 5 is the
following.

Theorem 1. Assume that (3.5)–(3.10) hold. Then :
1) Under the assumption (3.11), Problem PV has at least one solution.
2) Under the assumptions (3.11) and (3.12), there exists L0, which depends only on
Ω, Γ1, Γ3, Γa, F , β, S, such that if Lµ < L0 then Problem PV has unique solution
(u, ϕ) which depends Lipschitz continuously on f ∈ V and q ∈W .
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A “quadriplet" of functions (u, σ, ϕ, D) which satisfy (2.1), (2.2), (3.22) and
(3.23) is called a weak solution of the piezoelectric contact problem P . We conclude
by Theorem 1 that, under the assumptions (3.5) – (3.11), the piezoelectric contact
problem (2.2) – (2.10) has at least a weak solution (u, σ, ϕ, D) such that u ∈ V ,
ϕ ∈ W . Moreover, it is easy to see that in this case σ ∈ H1 and D ∈ W . The
solution is unique and depends Lipschitz continuously on the data f 0, f2, q0 and
q2 if (3.12) holds with a sufficiently small constant Lµ. In particular, this case arise
when the coefficient of friction is a given positive bounded function which does not
depend on the slip.

4. An Abstract Existence and Uniqueness Result

To prove Theorem 1 we shall use an abstract existence and uniqueness result on el-
liptic quasivariational inequalities that we recall in what follows, for the convenience
of the reader.

Everywhere in this section X will represent a real Hilbert space endowed with
the inner product (·, ·)X and the associated norm ‖·‖X . We denote by “ ⇀′′ the weak
convergence on X . Let A : X −→ X be a non linear operator, j : X ×X −→ IR
and f ∈ X . With these data we consider the following quasivariational inequality:
find x ∈ X such that

(Ax, y − x)X + j(x, y) − j(x, x) ≥ (f, y − x)X ∀ y ∈ X (4.1)

In order to solve (4.1) we assume that A is strongly monotone and Lipschitz
continuous, i.e.



















(a) There exists m > 0 such that
(Ax1 −Ax2, x1 − x2)X ≥ m‖x1 − x2‖

2
X ∀x1, x2 ∈ X.

(b) There existsM > 0 such that
‖Ax1 −Ax2‖X ≤M‖x1 − x2‖X ∀x1, x2 ∈ X.

(4.2)

The functional j : X ×X → IR satisfies

j(η, ·) : X → IR is a convex functional onX, for all η ∈ X. (4.3)

Keeping in mind (4.3) it is well known that there exists the directional derivative of
j with respect to the second argument given by

j′2(η, x; y) = lim
λ↓0

1

λ

[

j(η, x+ λy) − j(η, x)
]

∀η, x, y ∈ X. (4.4)

We formulate in what follows some conditions on j and we recall that below m

represents the positive constant defined in (4.2).
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For every sequence {xn} ⊂ X with ‖xn‖X → ∞
and every sequence {tn} ⊂ [0, 1] one has

lim inf
n→∞

[ 1

‖xn‖2
X

j′(tnxn, xn;−xn)
]

< m.
(4.5)















For every sequence {xn} ⊂ X with ‖xn‖X → ∞
and every bounded sequence {ηn} ⊂ X one has

lim inf
n→∞

[ 1

‖xn‖2
X

j′(ηn, xn;−xn)
]

< m.
(4.6)











For every sequences {xn} ⊂ X and {ηn} ⊂ X such that
xn ⇀ x ∈ X, ηn ⇀ η ∈ X and for every y ∈ X one has
lim sup

n→∞

[

j(ηn, y) − j(ηn, xn)
]

≤ j(η, y) − j(η, x).
(4.7)

{

There exists α < m such that
j(x, y) − j(x, x) + j(y, x) − j(y, y) ≤ α ‖x− y‖2

X ∀x, y ∈ X.
(4.8)

In the study of the quasivariational inequality (4.1) we have the following result.

Theorem 2. Let conditions (4.2) – (4.3) hold. Then :
1) Under the assumptions (4.5) – (4.7) there exists at least one element x ∈ X which
solves (4.1).
2) Under the assumptions (4.5) – (4.8), problem (4.1) has unique solution x = xf

which depends Lipschitz continuously on f with the Lipschitz constant (m− α)−1.

Theorem 2 has been obtained in [14] and therefore we do not provide here the
details of the proof. We just specify that the proof was obtained in several steps and
it is based on standard arguments of elliptic variational inequalities and topological
degree theory.

5. Proof of Theorem 1

The proof of Theorem 1 will be carried out in several steps. To present it we consider
the product space X = V ×W together with the inner product

(x, y)X = (u,v)V + (ϕ, ψ)W ∀x = (u, ψ), y = (v, ψ) ∈ X (5.1)

and the associated norm ‖ · ‖X . Everywhere below we assume that (3.5) – (3.11)
hold.

We introduce the operator A : X → X defined by

(Ax, y) = (Fε(u), ε(v))H + (β∇ϕ,∇ψ)L2(Ω)d + (ET∇ϕ, ε(v))H (5.2)

− (Eε(u),∇ψ)L2(Ω)d ∀x = (u, ψ), y = (v, ψ) ∈ X

and we extend the functional h defined by (3.17) to a functional j defined onX×X ,
that is

j(x, y) = h(u,v) ∀x = (u, ψ), y = (v, ψ) ∈ X. (5.3)

Finally, we consider the element f ∈ X given by

f = (f , q) ∈ X. (5.4)

We start with the following equivalence result.
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Lemma 1. The couple x = (u, ϕ) is a solution to Problem PV if and only if

(Ax, y − x)X + j(x, y) − j(x, x) ≥ (f, y − x)X ∀ y ∈ X. (5.5)

Proof. Let x = (u, ϕ) ∈ X be a solution to Problem PV and let y = (v, ψ) ∈ Y .
We use the test function ψ − ϕ in (3.21), add the corresponding inequality to (3.20)
and use (5.1) – (5.4) to obtain (5.5). Conversely, let x = (u, ϕ) ∈ X be a solution
to the quasivariational inequality (5.5). We take y = (v, ϕ) in (5.5) where v is an
arbitrary element of V and obtain (3.22); then we take successively y = (v, ϕ+ ψ)
and y = (v, ϕ − ψ) in (5.5), where ψ is an arbitrary element of W ; as a result we
obtain (3.23), which concludes the proof. �

Notice that the quasivariational inequality (5.5) derived in Lemma1 is of the form
(4.1). Therefore, in order to apply the abstract result provided by Theorem 2, we start
with the study of the the properties of the operator A given by (5.2).

Lemma 2. The operator A : X → X is strongly monotone and Lipschitz continu-
ous.

Proof. Consider two elements x1 = (u1, ϕ1), x2 = (u2, ϕ2) ∈ X . Using (5.2) we
have

(Ax1 −Ax2, x1 − x2)X = (Fε(u1) −Fε(u2), ε(u1) − ε(u2))H

+ (β∇ϕ1 − β∇ϕ2,∇ϕ1 −∇ϕ2)L2(Ω)d + (ET∇ϕ1

− ET∇ϕ2, ε(u1) − ε(u2))H − (Eε(u1) − Eε(u1),∇ϕ1 −∇ϕ2)L2(Ω)d

and, since it follows by (3.16) that (ET∇ϕ, ε(u))H = (Eε(u),∇ϕ)L2(Ω)d for all
x = (u, ϕ) ∈ X , we find

(Ax1 −Ax2, x1 − x2)X =

(Fε(u1) −Fε(u2), ε(u1) − ε(u2))H + (β∇ϕ1 − β∇ϕ2,∇ϕ1 −∇ϕ2)L2(Ω)d .

We use now (3.5), (3.7) and Friedrichs-Poincaré inequality (3.4) to see that there
exists c1 > 0 which depends only on F , β, Ω and Γa such that

(Ax1 −Ax2, x1 − x2)X ≥ c1(‖u1 − u2‖
2
V + ‖ϕ1 − ϕ2‖

2
W )

and, keeping in mind (5.1), we obtain

(Ax1 −Ax2, x1 − x2)X ≥ c1 ‖x1 − x2‖
2
X . (5.6)

In the same way, using (3.5) – (3.7), after some algebra it follows that there exists
c2 > 0 which depends only on F , β and E such that

(Ax1 −Ax2, y)X ≥c2(‖u1 − u2‖V ‖v‖V + ‖ϕ1 − ϕ2‖W ‖v‖V

+ ‖u1 − u2‖V ‖ψ‖W + ‖ϕ1 − ϕ2‖W ‖ψ‖W )
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for all y = (v, ψ) ∈ V . We use (5.1) and the previous inequality to obtain

(Ax1 −Ax2, y)X ≤ 4c2 ‖x1 − x2‖V ‖y‖V ∀y ∈ X

and, taking y = Ax1 −Ax2 ∈ X , we find

‖Ax1 −Ax2‖X ≤ 4c2 ‖x1 − x2‖V . (5.7)

Lemma 2 is now a consequence of inequalities (5.6) and (5.7). �

Next we investigate the properties of the functional j given by (5.3), (3.17). We
first remark that j satisfies condition (4.3). Moreover, we have the following results.

Lemma 3. The functional j satisfies conditions (4.5), (4.6) and (4.7).

Proof. Let η = (w, ξ), x = (u, ϕ) ∈ X and let λ ∈]0, 1]. Using (5.3) and (3.17) it
results that

j(η, x− λx) − j(η, x) = −λ

∫

Γ3

µ(‖wτ‖) |S| ‖uτ‖ da

and, keeping in mind (4.4), we deduce that

j′2(η, x;−x) ≤ 0 ∀η, x ∈ X. (5.8)

We conclude by (5.8) that the functional j satisfies conditions (4.5) and (4.6).
Let now consider two sequences {xn} = {(un, ϕn)} ⊂ X and {ηn} =

{(wn, ξn)} ⊂ X such that xn ⇀ x = (u, ϕ) ∈ X , ηn ⇀ η = (w, ξ) ∈ X . Using
the compactness property of the trace map it follows that un → u and wn → w in
L2(Γ3)

d, which imply that

‖unτ‖ → ‖uτ‖ in L2(Γ3), (5.9)

‖wnτ‖ → ‖wτ‖ in L2(Γ3). (5.10)

Moreover, (3.12), (5.10) and Kranoselski’s theorem (see for instance [7]) yield

µ(‖wnτ‖) → µ(‖wτ‖) in L2(Γ3). (5.11)

Therefore, we use the definition of j, (5.9) and (5.11) to deduce that

j(ηn, y) → j(η, y) ∀y ∈ X and j(ηn, xn) → j(η, x), as n→ ∞.

We conclude that the functional j satisfies the condition (4.7). �

Lemma 4. If (3.12) holds, then the functional j satisfies the inequality

j(x, y) − j(x, x) + j(y, x) − j(y, y) ≤ c20Lµ‖S‖L∞(Γ3)‖x− y‖2
X ∀x, y ∈ X.

(5.12)
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Proof. Let x = (u, ϕ), y = (v, ψ) ∈ V . Using (5.3), (3.17) and (3.12) it follows
that

j(x, y) − j(x, x) + j(y, x) − j(y, y)

=

∫

Γ3

|S|
(

µ(‖uτ‖) − µ(‖vτ‖)
)

(‖vτ‖ − ‖uτ‖) da

≤ Lµ‖S‖L∞(Γ3)

∫

Γ3

∣

∣

∣
‖vτ‖ − ‖uτ‖

∣

∣

∣

2

da ≤ Lµ‖S‖L∞(Γ3)

∫

Γ3

‖u− v‖2 da.

Using now (3.3) and (5.1) in the previous inequality we deduce (5.12). �

We have now all the ingredients to prove the Theorem.

Proof. [Proof of Theorem 1.]
1) Assume that (3.5) – (3.11) hold. Then, Lemmas 2 and 3 allow us to use the

abstract results provided by the first part of Theorem 2; we obtain that the quasivari-
ational inequality (5.5) has at least a solution x = (u, ϕ) ∈ X and, using Lemma1,
we deduce that (u, ϕ) is a solution to Problem PV , which satisfies u ∈ V , ϕ ∈W .

2) Assume that (3.5) – (3.12) hold and let L0 =
c1

c20‖S‖L∞(Γ3)
where c1 and c0

are defined by (5.6) and (3.3), respectively. Clearly L0 depends only on Ω, Γ1, Γ3,
Γa, F , β and S. Let now assume that Lµ < L0. Then, there exists α ∈ R such
that c20Lµ‖S‖L∞(Γ3) < α < c1. Using (5.12) and (5.6) we obtain that the functional
j satisfies condition (4.8). Therefore, by the second part of Theorem 2, Lemma 1
and (5.4), we obtain that problem PV has a unique solution which depends Lipschitz
continuously on f ∈ V and q ∈W , which concludes the proof. �
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Pjezoelektriko sąlyčio su priklausomu nuo slydimo trinties koeficiento uždavinys

M. Sofonea, El-H. Essoufi

Mes nagrinėjame matematinį modelį, kuris aprašo sąlytį tarp pjezoelektriko ir kli ūties. Lai-
koma, kad medžiaga yra elektroelastinė ir nusakoma netiesiniu elastingumo operatoriumi.
Sąlytis modeliuojamas remiamtis sausos trinties Coulomb’o dėsniu, kuriame trinties koefi-
cientas priklauso nuo slydimo. Mes gavome variacinį modelio formulavimą lygčių sistemos
formoje, kurios nežinomaisiais yra perkeltasis laukas ir elektrinis potencialas. Įrodomas spren-
dinio silpnąja prasme egzistavimas ir su nedidelėmis prielaidomis vienatis. Įrodymas paremtas
rezultatais gautais [14] darbe, kuriame tiriamos elipsinės kvazivariacinės nelygybės.


