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Abstract. We consider a singular parabolic equation tβut − ∆u = f , for (x, t) ∈
Ω × (0, T ), arising in symmetric boundary layer flows. Here Ω ⊂ RN is a bounded
domain with C2 boundary ∂Ω, β ≤ 1, f = f(t, x) is bounded, and T > 0 is some
fixed time. We establish sufficient conditions for the existence and uniqueness of a
weak solution of this singular parabolic equation with Dirichlet boundary conditions,
and we investigate its regularity.

There are two different cases depending on β. If β < 1, for any initial data
u0 ∈ L2(Ω), there exists a unique weak solution, which in fact is a strong solution.
The singularity is removable when β < 1. While if β = 1, there exists a unique
solution of the singular parabolic problem tut −∆u = f . The initial data cannot be
arbitrarily chosen. In fact, if f is continuous and f(t) → f0, as t → 0, then, this
solution converges, as t → 0, to the solution of the elliptic problem −∆u = f0, for
x ∈ Ω, with Dirichlet boundary conditions. Hence, no initial data can be prescribed
when β = 1, and the singularity in that case is strong.

Keywords: singular parabolic equation, degenerate parabolic equations, existence, unique-

ness, symmetric boundary layer, regularity.
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1 Introduction

The main goal of this paper is to solve a singular linear heat equation with
a coefficient of the time derivative depending on t, and Dirichlet boundary
conditions. Specifically, given f = f(x, t) and some u0(x) to be prescribed

�
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later, let us consider the following singular parabolic equation
tβut −∆u = f, (x, t) ∈ Ω × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with C2 boundary ∂Ω, −∞ < β ≤ 1 and
T > 0 is some fixed time. The parabolic equation (1.1) is singular at t = 0.

Let us fix β < 1. We introduce a new ‘time’ variable s(= s(β, t)),

s :=
1

1− β
t1−β , then

ds

dt
= t−β , and t = [(1− β)s]

1
1−β . (1.2)

As t moves in (0, T ), s ranges between 0 and S, with

S = s(β, T ) := T 1−β/(1− β). (1.3)

Let u be a weak solution of the parabolic problem (1.1). The function

v(x, s) := u
(
x, [(1− β)s]

1
1−β
)
, is a solution of


vs −∆v = g, (x, s) ∈ Ω × (0, S),

v(x, s) = 0, (x, s) ∈ ∂Ω × (0, S),

v(x, 0) = u0(x), x ∈ Ω,
(1.4)

where

g(x, s) := f
(
x, [(1− β)s]

1
1−β
)
. (1.5)

Equation (1.4) is a standard parabolic problem, accordingly there exists a
unique weak solution of (1.4) (see, for instance, [5, 8, 13, 22, 25]), given by the
formula of variation of constants (see (4.1)). Recovering variable t, we obtain
that the problem (1.1) has a unique weak solution given by

u(t) =

∞∑
i=1

e−
λi

1−β t
1−β
〈u0, ϕi〉ϕi (1.6)

+

∞∑
i=1

(∫ t

0

e−
λi

1−β (t1−β−τ1−β)τ−β
〈
f(τ), ϕi

〉
ds

)
ϕi,

where 〈·, ·〉 is the usual scalar product in L2(Ω) and {λi}, {ϕi} are the eigenval-
ues and eigenfunctions (normalized in the L2−norm) of the Dirichlet eigenvalue
problem −∆ϕ = λϕ, x ∈ Ω , ϕ = 0, x ∈ ∂Ω. In Theorems 3 and 4 we analyze
the regularity of the solution, which is not the usual one.

Once known the case β < 1, we analyze what happens when β → 1. Ob-
viously, the decomposition (1.6) becomes singular as β → 1. Let us fix any
initial time t1 > 0. Instead of (1.1), given any initial data (t1, u1), we consider
the following initial value problem

tut −∆u = f(x, t), (x, t) ∈ Ω × (t1, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω × (t1, T ),

u(x, t1) = u1(x), x ∈ Ω.
(1.7)t1

Math. Model. Anal., 25(1):88–109, 2020.
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We next reconsider the time variable s = s(β, t) introduced in (1.2). To do

that, set s1 = s(β, t1) := 1
1−β t

1−β
1 , and introduce a new time variable θ :=

limβ→1[s(β, t)− s(β, t1)], obtaining

θ = ln

(
t

t1

)
,

dθ

dt
=

1

t
, and t = t1 e

θ. (1.8)

Obviously, as t moves in (t1, T ), the new variable θ ranges between
0
(

= ln(t1/t1)
)

and
Θ = Θ(T ) := ln(T/t1). (1.9)

Observe that, for any t > 0 fixed, limt1→0 ln
(
t
t1

)
= −∞.

Reasoning as above, (when β < 1), if u is a weak solution of the parabolic
problem (1.7)t1 , then the function v(x, θ) := u(x, t1e

θ
)
, is a solution of

vθ −∆v = g, (x, θ) ∈ Ω × (0, Θ),

v(x, θ) = 0, (x, θ) ∈ ∂Ω × (0, Θ),

v(x, 0) = u1(x), x ∈ Ω,
(1.10)

where
g(x, θ) := f

(
x, t1e

θ
)
. (1.11)

Recovering variable t = t1 e
θ, we obtain that the solution to the equation (1.7)t1

u(t) = u(t; t1, u1), through the variation of constants formulae, is given by

u(t) =

∞∑
i=1

(
t1
t

)λi
〈u1, ϕi〉ϕi +

∞∑
i=1

t−λi
(∫ t

t1

σλi−1 〈f(σ), ϕi〉 dσ
)
ϕi. (1.12)

Assume that t > 0 is fixed. Roughly speaking, letting t1 → 0 we obtain that
limt1→0 u(t; t1, u1) = u(t) where

u(t) :=

∞∑
i=1

t−λi
(∫ t

0

σλi−1 〈f(σ), ϕi〉 dσ
)
ϕi, (1.13)

or, changing the integration variable,

u(t) =

∞∑
i=1

(∫ 1

0

〈f(tτ), ϕi〉τλi−1 dτ
)
ϕi, (1.14)

and the initial data u1 can not be arbitrarily chosen as t1 → 0. The initial
value problem (1.7)t1 loses its initial condition as t1 → 0, and it is reduced to

tut −∆u = f(x, t), in Ω × (0, T ), u(x, t) = 0, on ∂Ω × (0, T ). (1.15)

Moreover, roughly speaking, if f(t, x)→ f0(x) when t→ 0, then

u(t)→ u(0) :=

∞∑
i=1

1

λi
〈f0, ϕi〉ϕi. (1.16)
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Henceforth, the unprescribed initial data in equation (1.15), coincides with the
solution of the Dirichlet problem

−∆u = f0, x ∈ Ω, u = 0, x ∈ ∂Ω.

As a conclusion, problem (1.1) for β = 1 and a general initial data u0 is ill
posed. In Theorems 7 and 8 we provide sufficient conditions on the source term
f for the existence of a unique weak solution of (1.15) and we also analyze its
corresponding regularity, which again is not the usual one.

Singular parabolic problems arise in a lot of fields of technology and natural
sciences. These problems may be divided on different classes accordingly to
their singularity with respect either to spatial variables [9, 12, 16, 26], to time
variable [3,14,17], or to the unknown u, or its gradient, see [1,2,4,7,10,15,18,
23,24,27,28].

Equation (1.1) arises in symmetric boundary layer flows. Let u be the tem-
perature for steady boundary layer flows around a blunt body. The governing
equation can be written in the form

ρcpw ut − λuzz = f (z, t, u, uz) , t > 0, z ∈ (0, l),

u(t, 0) = u1(t), u(t, l) = ul(t), for t ≥ 0,

u(0, z) = u0(z),

(1.17)

where ρ denotes the gas density, cp the gas heat capacity, w the tangential
velocity component, t a curvilinear coordinate measured along the body surface,
z the coordinate normal to the body surface, λ the gas thermal conductivity
and where f contains the lower order derivatives with respect to the normal
coordinate z, see [11, equation (2.13)]. For usual boundary layer flows, the
tangential velocity component w is positive in the interior of the domain, which
guarantees the standard parabolic aspect of (1.17). However, for symmetric
boundary layers, the tangential velocity w depends on t, and vanishes at t = 0
(w(0) = 0), in such a way that there is a singularity in the initial value problem
with respect to t.

Moreover, similar equations appear in energy resources and energy con-
sumption problems. Nowadays, the society demands a lot of energy consump-
tion. Fossil fuels overuse and effects their applications have caused, make the
study about green, renewable resources a priority. Mathematical models play
an important role on this development, trying to get insight in how the energy
sources work. On one hand, almost all the systems to produce energy use fossil
fuels, biomass or nuclear fuels to heat a fluid. After that, the fluid access a
turbine to work producing electricity subsequently. On the other hand, there is
a very solid technology that uses the solar resource, both directly or indirectly,
to produce electricity: solar power towers, photoelectric panels, wind farms
or other devices based on the water cycle. Related problems to (1.1) appear
modeling the use of salts in thermosolar power towers, and also in molten salt
reactors. In both models, a molten salt is heated by using solar energy or nu-
clear reactions respectively. The temperature rises up between 500 and 1000oC,
depending on the model, although not regularly in the first place. Until the salt
completely heats, there are different zones where the salt is hotter than oth-
ers. That creates density differences that leads to symmetric boundary layers.

Math. Model. Anal., 25(1):88–109, 2020.
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The understanding of this phenomena is directly related with the efficiency of
the salts to collect energy and avoid energy loss. For more information about
the processes involved in molten salt reactors and solar power towers, see [21]
and [6] respectively.

The case β = 1 is a limit case appearing in symmetric boundary layers like
(1.17), when the tangential velocity w(0) = 0, it is is such that w/(tz) remains
positive for t > 0, and 0 < z < l, so that the underlying operator is essentially
t(∂/∂t) − (1/z)(∂2/∂z2), or more generally, t(∂/∂t) + L, where L is a partial
differential operator with respect to the normal coordinate. In this situation,
no initial conditions with respect to t can be prescribed, due to the singularity,
and the temperature on the symmetry axis have to be obtained formally by
letting t = 0 in the PDE contained in (1.17). This singularity also appears with
the velocity governing equations in the case of incompressible boundary layer
flows. An existence result of Oleinik is available, see [20]. The flow equations,
after a suitable change of variable, can be reduced to the equationt vt −

ν(v)

z
vzz = f (z, t, v, vz) , s ≥ 0, 0 ≤ z ≤ 1,

v(t, 0) = v1(t), v(t, l) = v2(t), for s ≥ 0,

where (z, t) are rescaled tangential and normal coordinates to the body surface,
and v is a rescaled normal derivative of the tangential velocity component w, see
[20]. Since the same type of singularity appears for t = 0 as for the temperature
equation in compressible flows, no initial condition is to be prescribed for t = 0,
see [20], and this is the main difference with the non symmetric boundary
layer case where the tangential velocity w remains positive inside the domain,
see [19].

This paper is organized in the following way. Section 2 contains prelimi-
naries, and well known results, in order to reformulate problem (1.1) in a weak
framework. In Section 3 we state our main results. In Section 4 we study a
standard parabolic problem (1.4), (related with problem (1.1) when β < 1).
Section 5 considers the case β < 1. Section 6 covers the case β = 1, t1 > 0. In
Section 7 letting t1 → 0, we consider the singular problem (1.15) with β = 1.

2 Preliminaries, known results, and weak formulation

This section contains well known concepts, in order to precise a weak formula-
tion of (1.1). Let us consider the Hilbert spaces L2(Ω) and H1

0 (Ω) with their
usual scalar product and norms

〈u, v〉 :=
∫
Ω
u(x)v(x) dx, ‖v‖L2(Ω) :=

(∫
Ω
|v|2 dx

)1/2
,

(u, v) :=
∫
Ω
∇u(x) · ∇v(x) dx, ‖v‖H1

0 (Ω) :=
(∫
Ω
|∇v(x)|2 dx

)1/2
.

Let us consider the dual space of H1
0 (Ω) denoted by H−1(Ω), f ∈ H−1(Ω) if

f is a bounded linear functional on H1
0 (Ω). We denote the duality product of

H−1(Ω) in H1
0 (Ω) by 〈·, ·〉H−1(Ω),H1

0 (Ω). We define the norm

‖f‖H−1(Ω) := sup
v∈H1

0 (Ω)

{
〈f, v〉H−1(Ω),H1

0 (Ω) : ‖v‖H1
0 (Ω) ≤ 1

}
.
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A characterization of H−1(Ω) and its norm is given by the following theorem,
see [8, Theorem 1 in § 5.9.1].

Theorem 1. The function f ∈ H−1(Ω) if and only if there exist functions
fi ∈ L2(Ω), i = 0, 1, . . . , N such that

〈f, v〉H−1(Ω),H1
0 (Ω) =

∫
Ω

f0v +

N∑
i=1

∫
Ω

fi
∂v

∂xi
, ∀v ∈ H1

0 (Ω). (2.1)

Furthermore, given fi ∈ L2(Ω), i = 0, 1, . . . , N satisfying (2.1), then

‖f‖H−1(Ω) = inf
{(∫

Ω

N∑
i=0

|fi| 2 dx
)1/2}

. (2.2)

Fix β < 1. Let us assume that u(x, t) is a solution of (1.1) regular enough.
Multiplying (1.1) by an arbitrary test function φ ∈ H1

0 (Ω), and integrating
over Ω,

tβ
d

dt

∫
Ω

u(x, t)φ(x) dx+

∫
Ω

∇u(x, t) · ∇φ(x) dx =

∫
Ω

f(x, t)φ(x)dx,

for all φ ∈ H1
0 (Ω). We associate with u a mapping u : [0, T ]→ H1

0 (Ω) defined
by [u(t)](x) := u(x, t). We consider u not as a function of x, and t, but instead
as a mapping u of t into the space H1

0 (Ω). Similarly, we define f : [0, T ] →
L2(Ω). The singular heat equation (1.1) can be rewritten as follows: find a
function u : t ∈ [0, T ] −→ u(t) ∈ H1

0 (Ω) such that ∀φ ∈ H1
0 (Ω), ∀t ∈ (0, T ):

tβ
d

dt
〈u(t), φ〉+ a (u(t), φ) = 〈f(t), φ〉; u(0) = u0, (2.3)

where a is a bilinear form defined by a (u, v) :=
∫
Ω
∇u(x) · ∇v(x)dx, ∀u, v ∈

H1(Ω), so

a (u(t), φ) =

∫
Ω

∇u(x, t) · ∇φ(x) dx.

Next, observe that

tβ
d

dt
u(t) = f(t) + div∇u, a.e. in Ω × [0, T ].

The above right hand side lies in H−1(Ω), see Theorem 1, with

tβ ‖ut(t)‖H−1(Ω) ≤ ‖f(t)‖L2(Ω) + ‖u(t)‖H1
0 (Ω) . (2.4)

This estimate suggests to look for a weak solution with tβ d
dtu(t) ∈ H−1(Ω) for

a. e. t ∈ [0, T ], in which case, the first term in (2.3) can be re-expressed as the
duality pairing of H−1(Ω) in H1

0 (Ω) by 〈tβ d
dtu(t), φ〉H−1(Ω),H1

0 (Ω).
To define a weak solution, we introduce some Sobolev spaces involving time.

Let Y denote a Banach space with norm ‖ · ‖Y . The space Lp
(
(0, T );Y

)
, for

p ∈ [1,∞), consists of all strongly measurable functions u : [0, T ]→ Y with

‖u‖Lp((0,T );Y ) :=
(∫ T

0

‖u(t)‖ pY
)1/p

< +∞, (2.5)

Math. Model. Anal., 25(1):88–109, 2020.
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then the space L∞
(
(0, T );Y

)
comprises all strongly measurable functions u :

[0, T ]→ Y with

‖u‖L∞((0,T );Y ) := ess sup
t∈[0,T ]

‖u(t)‖Y < +∞, (2.6)

and the space C
(
(0, T );Y

)
consists of all continuous functions u : [0, T ] → Y

with
‖u‖C((0,T );Y ) := max

t∈[0,T ]
‖u(t)‖Y < +∞.

The next theorem concerns what happens when u and ut lie in different
spaces, see [8, Theorem 3 in § 5.9.2].

Theorem 2. Suppose u ∈ L2
(
(0, T );H1

0 (Ω)
)

with ut ∈ L2
(
(0, T );H−1(Ω)

)
.

Then, (after possibly being redefined on a set of zero measure), function u ∈
C
(
[0, T ];L2(Ω)

)
.

Definition 1. Let us fix β < 1. Given u0 ∈ L2(Ω) and f ∈ L∞
(
(0, T );L2(Ω)

)
,

we say that a function u ∈ L2
(
(0, T );H1

0 (Ω)
)
∩ C

(
[0, T ];L2(Ω)

)
with tβ ut ∈

L2
(
(0, T );H−1(Ω)

)
, and ut ∈ L1

(
(0, T );H−1(Ω)

)
, is a weak solution of the

parabolic problem (1.1) with β < 1, provided (2.3) is satisfied.

Remark 1. The usual definition of a weak solution in a standard parabolic prob-
lem (β = 0), gives f ∈ L2

(
(0, T );L2(Ω)

)
and asks for ut ∈ L2

(
(0, T );H−1(Ω)

)
.

If the data f ∈ L2
(
(0, T );L2(Ω)

)
, then the solution of (1.1) is not regular

enough. From (2.4),

‖ut(t)‖H−1(Ω) ≤ t
−β ‖f(t)‖L2(Ω) + t−β ‖u(t)‖H1

0 (Ω) ,

and by definition of ‖ · ‖L2((0,T );H−1(Ω)), see (2.5),

‖ut‖2L2((0,T );H−1(Ω)) ≤
∫ T

0

t−2β
(
‖f(t)‖L2(Ω) + ‖u(t)‖H1

0 (Ω)

)2
dt

≤ 2

∫ T

0

t−2β
(
‖f(t)‖2L2(Ω) + ‖u(t)‖2H1

0 (Ω)

)
dt. (2.7)

Obviously, if f ∈ L∞
(
(0, T );L2(Ω)

)
, and β < 1/2, then∫ T

0

t−2β ‖f(t)‖2L2(Ω) dt ≤
T 1−2β

1− 2β
‖f‖2L∞((0,T );L2(Ω)) .

This is not a completely satisfactory estimate, due to in one hand we would
like to allow β < 1, not to restrict β < 1/2. But moreover, on the other
hand, to be able to bound the second term on the right hand side of (2.7),
we need u ∈ L∞

(
(0, T );H1

0 (Ω)
)

(which is not a usual requirement for a weak
solution), and again β < 1/2. If instead, we look for un upper bound of
‖ut‖L1((0,T );H−1(Ω)) we deduce the following

‖ut‖L1((0,T );H−1(Ω)) ≤
∫ T

0

t−β
(
‖f(t)‖L2(Ω) + ‖u(t)‖H1

0 (Ω)

)
dt, (2.8)
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and if f ∈ L∞
(
(0, T );L2(Ω)

)
, and β < 1, then∫ T

0

t−β ‖f(t)‖L2(Ω) dt ≤
T 1−β

1− β
‖f‖L∞((0,T );L2(Ω)) . (2.9)

And again to bound the second term on the right hand side of (2.8), we need
u ∈ L∞

(
(0, T );H1

0 (Ω)
)
.

At this moment the hypothesis tβut ∈ L2
(
(0, T );H−1(Ω)

)
looks like the

natural one, but it is not immediate to deduce that ut ∈ L1
(
(0, T );H−1(Ω)

)
when β < 1. We will need sharper estimates.

We now concentrate our attention to the case β = 1. Fixing t1 > 0, we
study the standard parabolic equation with arbitrary initial data (t1, u1), given
by (1.7)t1 , and then let t1 → 0. We state the definitions of weak solutions. The
first definition is for t1 > 0 fixed. Reasoning as in the introduction, the second
definition is obtained letting t1 → 0 .

Definition 2. Given t1 > 0, u1 ∈ L2(Ω) and f ∈ L∞
(
(t1, T );L2(Ω)

)
, we say

that a function u(t) = u(t; t1, u1), u ∈ L2
(
(t1, T );H1

0 (Ω)
)
∩ C

(
[t1, T ];L2(Ω)

)
with tut ∈ L2

(
(t1, T );H−1(Ω)

)
, and ut ∈ L1

(
(t1, T );H−1(Ω)

)
, is a weak solu-

tion of (1.7)t1 provided

t 〈ut(t), φ〉+ a (u(t), φ) = 〈f(t), φ〉, ∀φ ∈ H1
0 (Ω), ∀t ∈ (t1, T ),

is satisfied, and also u(t1) = u1.

Remark 2. When β = 1, an estimate like (2.9) is unreachable, hence in that
case we can not wait for a solution with time derivative in L1

(
(0, T );H−1(Ω)

)
.

We look instead for a solution such that tut ∈ L2
(
(0, T );H−1(Ω)

)
.

Definition 3. Given f ∈ L∞
(
(0, T );L2(Ω)

)
, we say that a function u(t), u ∈

L2
(
(0, T );H1

0 (Ω)
)
∩C
(
[0, T ];L2(Ω)

)
with tut ∈ L2

(
(0, T );H−1(Ω)

)
, is a weak

solution of the parabolic problem (1.15) provided

t 〈ut(t), φ〉+ a (u(t), φ) = 〈f(t), φ〉, ∀φ ∈ H1
0 (Ω), ∀t ∈ (0, T ),

is satisfied.

3 Main results

In this Section 3 we state our main results, Theorems 3, 4 (case β < 1),
Theorems 5, 6 (case β = 1, t1 > 0), and Theorems 7, 8 (case β = 1).

The following two theorems provide a result on existence of a unique weak
solution of (1.1), when f ∈ L∞

(
(0, T );L2(Ω)

)
and β < 1.

Theorem 3. Given f ∈ L∞
(
(0, T );L2(Ω)

)
and β < 1, for each u0 ∈ L2(Ω),

the problem (1.1) has a unique weak solution given by (1.6). Moreover, there
exists a constant C > 0, depending only on Ω, β and T , such that

max
t∈[0,T ]

‖u(t)‖L2(Ω) + ‖u‖L2((0,T );H1
0 (Ω)) + ‖ut‖L1((0,T );H−1(Ω))

≤ C
(
‖u0‖L2(Ω) + ‖f‖L∞((0,T );L2(Ω))

)
.

Math. Model. Anal., 25(1):88–109, 2020.
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And, if β < 1/2, then ut ∈ L2
(
(0, T );H−1(Ω)

)
, and there exists a constant

C > 0 depending only on Ω, β and T , such that

‖ut‖L2((0,T );H−1(Ω)) ≤ C
(
‖u0‖L2(Ω) + ‖f‖L∞((0,T );L2(Ω))

)
.

The regularity of a weak solution of (1.1) can be improved assuming that
the boundary ∂Ω is regular enough.

Theorem 4. Given u0 ∈ L2(Ω), f ∈ L∞
(
(0, T );L2(Ω)

)
and β < 1, let u be

the unique weak solution of the problem (1.1) given by (1.6). Then, in fact
u ∈ L2

(
(0, T ), H2(Ω)

)
∩ L∞

(
(0, T );H1

0 (Ω)
)
, with ut ∈ L1

(
(0, T );L2(Ω)

)
, and

for some constant C > 0 (depending only on Ω, β and T ), we have the estimate

ess sup
t∈[0,T ]

‖u(t)‖H1
0 (Ω) + ‖u‖L2((0,T );H2(Ω)) + ‖ut‖L1((0,T );L2(Ω))

≤ C
(
‖u0‖L2(Ω) + ‖f‖L∞((0,T );L2(Ω))

)
.

The following two theorems provide a result on the existence of a unique
weak solution of the singular problem (1.7)t1 (for β = 1).

Theorem 5. Given t1 > 0, and f ∈ L∞
(
(0, T );L2(Ω)

)
, for each u1 ∈ L2(Ω),

the problem (1.7)t1 has a unique weak solution given by (1.12). Moreover, there
exists a constant C > 0, depending only on Ω, β and T , such that

max
t∈[t1,T ]

‖u(t)‖L2(Ω) + ‖u‖L2((t1,T );H1
0 (Ω)) + ‖ut‖L1((t1,T );H−1(Ω))

≤ C
(
‖u0‖L2(Ω) +

[
ln

(
T

t1

)]1/2
‖f‖L∞((0,T );L2(Ω))

)
. (3.1)

Assuming that the boundary ∂Ω is smooth enough, we improve the regu-
larity of a weak solution of (1.7)t1 .

Theorem 6. Given t1 > 0, u1 ∈ L2(Ω), and f ∈ L∞
(
(0, T );L2(Ω)

)
, let u be

the unique weak solution of the problem (1.7)t1 given by (1.12). Then, in fact
u ∈ L2

(
(t1, T ), H2(Ω)

)
∩ C

(
[t1, T ];H1

0 (Ω)
)
, with ut ∈ L1

(
(t1, T );L2(Ω)

)
, and

there exists some constant C > 0 depending only on Ω and T , such that

ess sup
t∈[0,T ]

‖u(t)‖H1
0 (Ω) + ‖u‖L2((0,T );H2(Ω)) + ‖ut‖L1((0,T );L2(Ω))

≤ C
(
‖u0‖L2(Ω) + [ln (T/t1)]

1/2 ‖f‖L∞((0,T );L2(Ω))

)
. (3.2)

Next we let t1 → 0. The following two theorems provide a result on the
existence of a unique weak solution of the singular problem (1.15) (for β = 1).
Obviously, estimates (3.1)–(3.2) do not apply when t1 → 0. We have to restrict
the space for the functions f . Let X(= X[0,T ]) be a Hilbert space defined by:

X :=
{
f ∈ L2

(
[0, T ];L2(Ω)

)
: ‖f‖X < +∞

}
, (3.3)

where its associated norm is defined by:

‖f‖X :=

[∫ T

0

( ∞∑
i=1

sup
σ∈[0,t]

∣∣〈f(σ), ϕi〉
∣∣2) dt

]1/2
. (3.4)
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Theorem 7. Assume that f ∈ X∩C
(
[0, T ];L2(Ω)

)
. Assume further that there

exists two constant C > 0, δ > 0 such that

∞∑
i=1

sup
σ∈[0,t]

∣∣〈f(σ), ϕi〉
∣∣2 ≤ C, for all t ≤ δ. (3.5)

Then, the following holds:

(i) The problem (1.15) has a unique weak solution u ∈ L2
(
(0, T );H1

0 (Ω)
)

with tut ∈ L2
(
(0, T );H−1(Ω)

)
, given by the formula of variation of con-

stants (1.13) or equivalently (1.14).

(ii) Moreover, there exists a constant C > 0, depending only on Ω, and T ,
such that

‖u‖L2((0,T );H1
0 (Ω)) + ‖tut‖L2((0,T );H−1(Ω)) ≤ C ‖f‖X .

Theorem 8. Assume that f ∈ X ∩C
(
[0, T ];L2(Ω)

)
. Let u be the unique weak

solution of the problem (1.15) given by (1.13). Then u ∈ L2
(
(0, T ), H2(Ω)

)
,

with tut ∈ L2
(
(0, T );L2(Ω)

)
, and we have the estimate

‖u‖L2((0,T );H2(Ω)) + ‖tut‖L2((0,T );L2(Ω)) ≤ C ‖f‖X,

for some constant C > 0 depending only on Ω and T . Furthermore, if

∞∑
i=1

sup
σ∈[0,t]

∣∣〈f(σ), ϕi〉
∣∣2 ≤ C, for all t ∈ (0, T ]. (3.6)

then, u ∈ C
(
(0, T ];L2(Ω)

)
. Moreover, if

∞∑
i=1

sup
σ∈[0,t]

∣∣〈f(σ)− f(0), ϕi〉
∣∣2 → 0 as t→ 0, (3.7)

then, there exists the limit limt→0 u(t) = u(0) in H2(Ω), and u(0) ∈ H2(Ω) is
the unique solution of the Dirichlet problem

−∆u(0) = f(0), x ∈ Ω, u = 0, x ∈ ∂Ω.

4 The standard parabolic problem

This section collects well known results for a standard parabolic problem.
The following theorem is a well known result on existence of a weak solution
v(s)(·) := v(s, ·) of the standard parabolic problem (1.4), for g(s)(·) := g(s, ·),
and S defined by (1.3), see for instance [5, 8, 13,22,25].

Theorem 9. Assume that g ∈ L2
(
(0, S);L2(Ω)

)
. Then for every u0 ∈ L2(Ω),

there is a unique weak solution of problem (1.4),

Math. Model. Anal., 25(1):88–109, 2020.
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v ∈ L2
(
(0, S);H1

0 (Ω)
)
∩C

(
[0, S];L2(Ω)

)
, with vs ∈ L2

(
(0, S);H−1(Ω)

)
, given

by the formula of variation of constants, that is

v(s) =

∞∑
i=1

e−λis〈u0, ϕi〉ϕi +

∞∑
i=1

(∫ s

0

e−λi(s−σ)〈g(σ), ϕi〉 dσ
)
ϕi. (4.1)

Moreover, there exists a constant C > 0 depending only on Ω and S, such that

max
s∈[0,S]

‖v(s)‖L2(Ω) + ‖v‖L2((0,S);H1
0 (Ω)) + ‖vs‖L2((0,S);H−1(Ω)) (4.2)

≤ C
(
‖u0‖L2(Ω) + ‖g‖L2((0,S);L2(Ω))

)
.

Proof. From [8, Theorems 3 and 4 in § 7.1.2], there exists a unique weak so-
lution of (1.4), v ∈ L2

(
(0, S);H1

0 (Ω)
)
, with vs ∈ L2

(
(0, S);H−1(Ω)

)
. Thanks

to Theorem 2.5, see also [8, Theorem 3 in §5.9.2], the solution is in
C
(
[0, S];L2(Ω)

)
, and so the initial condition makes sense. From [8, Theorem

2 in §7.1.2], we deduce the estimates (4.2). ut

The following theorem is a well known result improving the regularity of a
weak solution v of the standard parabolic problem (1.4).

Theorem 10. Assume that g ∈ L2
(
(0, S);L2(Ω)

)
. For every u0 ∈ L2(Ω), let

v be the unique weak solution of (1.4), given by the formula of variation of
constants (4.1). Then, in fact v ∈ L2

(
(0, S), H2(Ω)

)
∩ L∞

(
(0, S);H1

0 (Ω)
)
,

with vs ∈ L2
(
(0, S);L2(Ω)

)
, and there exists a constant C > 0 depending only

on Ω and S, such that

ess sup
s∈[0,S]

‖v(s)‖H1
0 (Ω) + ‖v‖L2((0,S);H2(Ω)) + ‖vs‖L2((0,S);L2(Ω))

≤ C
(
‖u0‖L2(Ω) + ‖g‖L2((0,S);L2(Ω))

)
. (4.3)

Moreover, if g ∈ L∞
(
(0, S);L2(Ω)

)
, then vs ∈ L∞((0, S);H−1(Ω)), and∥∥vs∥∥L∞((0,S);H−1(Ω)

≤ C
(
‖u0‖L2(Ω) + ‖g‖L2((0,S);L2(Ω)) + ‖g‖L∞((0,S);L2(Ω))

)
.

(4.4)

Proof. See [8, Theorems 5 in § 7.1.2] for proving (4.3). Next, we are going
to prove that if g ∈ L∞

(
(0, S);L2(Ω)

)
, then vs ∈ L∞((0, S);H−1(Ω)). From

(1.4) vs = div∇v + g, from characterization of H−1(Ω), see (2.2)
‖vs(s)‖H−1(Ω) ≤ ‖v(s)‖H1

0 (Ω) + ‖g(s)‖L2(Ω), therefore

‖vs‖L∞((0,S);H−1(Ω)) ≤ ‖v‖L∞((0,S);H1
0 (Ω)) + ‖g‖L∞((0,S);L2(Ω)).

Since (4.3), inequality (4.4) is accomplished, ending the proof. ut

5 Proof of Theorems 3 and 4 (case β < 1)

This section collects several results concerning the regularity of a weak solution
of (1.1), and further prove Theorems 3 and 4. All throughout this section, we
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assume that β < 1 is fixed. Let v be the unique weak solution of (1.4), see
Theorem 9. Define

u(t) := v
( 1

1− β
t1−β

)
, (5.1)

then it is easy to see that u is a weak solution of the parabolic problem (1.1).
Which is not so clear at this moment, is the regularity attained by u.

To unveil this question, we proceed with three technical Lemmata. The
first Lemma precises the conditions on f ensuring that g ∈ L2

(
(0, S);L2(Ω)

)
,

to be able to apply the standard theory for parabolic problems, Theorems 9
and 10. The second Lemma relates the regularity of u with the regularity of
v, more specifically, states upper bounds of norms of u in terms of norms of v.
The third Lemma goes further in the regularity of u, and as in the standard
parabolic problem, we improve the regularity of a weak solution.

Lemma 1. Assume that f ∈ L∞
(
(0, T );L2(Ω)

)
. Let g be defined by

g(s) := f
(
[(1− β)s]

1
1−β
)
, (5.2)

(see (1.5)), and S defined by (1.3). Then, g ∈ L2
(
(0, S);L2(Ω)

)
∩ L∞

(
(0, S);

L2(Ω)
)
, moreover

‖g‖L∞((0,S);L2(Ω)) = ‖f‖L∞((0,T );L2(Ω)), (5.3)

‖g‖L2((0,S);L2(Ω)) ≤
(
T 1−β

1− β

)1/2

‖f‖L∞((0,T );L2(Ω)).

Proof. By definition of g, see (5.2), ‖g(s)‖2L2(Ω) =
∥∥f([(1 − β)s]

1
1−β
)∥∥2
L2(Ω)

.

By definition of ‖ · ‖L∞((0,S);L2(Ω)), see (2.6), equality (5.3) is achieved.
By definition of ‖ · ‖L2((0,S);L2(Ω)), see (2.5), and of s, see (1.2),

‖g‖2L2((0,S);L2(Ω)) =

∫ T

0

t−β
∥∥f(t)∥∥2

L2(Ω)
dt ≤ T 1−β

1− β
‖f‖2L∞((0,T );L2(Ω)),

ending the proof. ut

Lemma 2. Assume that f ∈ L∞
(
(0, T );L2(Ω)

)
, and u0 ∈ L2(Ω). Let g be

defined by (5.2), and S defined by (1.3). Let v be the unique weak solution of
(1.4) provided by Theorem 9. Let u be given by (5.1). Then,

(i) u ∈ L2
(
(0, T );H1

0 (Ω)
)

and ‖u‖L2((0,T );H1
0 (Ω)) ≤ T β/2 ‖v‖L2((0,S);H1

0 (Ω)).

(ii) u ∈ C
(
[0, T ];L2(Ω)

)
and max

t∈[0,T ]
‖u(t)‖L2(Ω) = max

s∈[0,S]
‖v(s)‖L2(Ω).

(iii) tβut ∈ L2
(
(0, T );H−1(Ω)

)
, ut ∈ L1

(
(0, T );H−1(Ω)

)
, and

‖ut‖L1((0,T );H−1(Ω)) = ‖vs‖L1((0,S);H−1(Ω)).

(iv) If β < 1/2, then ut ∈ L2
(
(0, T );H−1(Ω)

)
, and

‖ut‖L2((0,T );H−1(Ω)) ≤
(
T 1−2β

1−2β

)1/2
‖vs‖L∞((0,S);H−1(Ω)).

Math. Model. Anal., 25(1):88–109, 2020.
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Proof. (i) By definition of u, see (5.1), their norm in H1
0 (Ω) satisfy the fol-

lowing equality ‖u(t)‖2
H1

0 (Ω)
=
∥∥∥v( 1

1−β t
1−β)∥∥∥2

H1
0 (Ω)

. By definition of the norm

‖ · ‖L2((0,T );H1
0 (Ω)), see (2.5), and of s, see (1.2),

‖u‖2L2((0,T );H1
0 (Ω)) =

∫ S

0

[(1− β)s]
β

1−β ‖v(s)‖2H1
0 (Ω) ds

≤ [(1− β)S]
β

1−β ‖v‖2L2(0,S;H1
0 (Ω)) = T β ‖v‖2L2(0,S;H1

0 (Ω)),

ending part (i) of the proof.

(ii) Obviously ‖u(t)‖2L2(Ω) =
∥∥v( 1

1−β t
1−β)∥∥2

L2(Ω)
. Moreover, when t ∈

[0, T ], then s ∈ [0, S], and so part (ii) is achieved.
(iii) From definition of u, see (5.1)

ut(t) = t−β vs

(
1

1− β
t1−β

)
, (5.4)

therefore tβut ∈ L2
(
(0, T );H−1(Ω)

)
. Moreover

‖ut‖L1((0,T );H−1(Ω)) =

∫ T

0

t−β
∥∥vs( 1

1− β
t1−β

)∥∥
H−1(Ω)

dt

=

∫ S

0

‖vs(s)‖H−1(Ω) ds = ‖vs‖L1((0,S);H−1(Ω)).

(iv) From definition, and (5.4), if β < 1/2,

‖ut‖2L2((0,T );H−1(Ω))=

∫ T

0

t−2β
∥∥vs( 1

1− β
t1−β

)∥∥2
H−1(Ω)

dt =

∫ S

0

[(1− β)s]
−β
1−β

× ‖vs(s)‖2H−1(Ω) ds ≤ ‖vs‖
2
L∞((0,S);H−1(Ω))

1

1− 2β
[(1− β)S]

1−2β
1−β ,

which ends the proof. ut

Lemma 3. Assume that f ∈ L∞
(
(0, T );L2(Ω)

)
, and u0 ∈ L2(Ω) are given.

Let g be defined by (5.2), and S defined by (1.3). Let v be the unique weak
solution of (1.4) provided by Theorem 9. Let u be given by (5.1). Then,

(i) u ∈ L2
(
(0, T );H2(Ω)

)
and ‖u‖L2((0,T );H2(Ω)) ≤ T β/2 ‖v‖L2((0,S);H2(Ω)).

(ii) u ∈ C
(
[0, T ];H1

0 (Ω)
)

and max
t∈[0,T ]

‖u(t)‖H1
0 (Ω) = max

s∈[0,S]
‖v(s)‖H1

0 (Ω).

(iii) ut ∈ L1
(
(0, T );L2(Ω)

)
and ‖ut‖L1((0,T );L2(Ω)) = ‖vs‖L1((0,S);L2(Ω)).

Proof. (i) By definition of u, see (5.1), ‖u(t)‖2H2(Ω) =
∥∥v( 1

1−β t
1−β)∥∥2

H2(Ω)
.

By definition of ‖ · ‖L2((0,T );H2(Ω)), see (2.5), and of s, see (1.2),

‖u‖2L2((0,T );H2(Ω)) =

∫ S

0

[(1− β)s]
β

1−β ‖v(s)‖2H2(Ω) ds

≤ [(1− β)S]
β

1−β ‖v‖2L2((0,S);H2(Ω)) = T β ‖v‖2L2((0,S);H2(Ω)),
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ending part (i) of the proof.

(ii) Obviously ‖u(t)‖2
H1

0 (Ω)
=
∥∥v( 1

1−β t
1−β)∥∥2

H1
0 (Ω)

. Moreover, when t ∈
[0, T ], then s ∈ [0, S], and so part (ii) of the proof is achieved.

(iii) From (5.4) ‖ut(t)‖L2(Ω) = t−β
∥∥vs( 1

1−β t
1−β)∥∥

L2(Ω)
, and

‖ut‖L1((0,T );L2(Ω)) =

∫ T

0

t−β
∥∥vs( 1

1− β
t1−β

)∥∥
L2(Ω)

dt

=

∫ S

0

‖vs(s)‖L2(Ω) ds = ‖vs‖2L1((0,S);L2(Ω)),

ending the proof. ut

Proof. [Proof of Theorem 3] It is a consequence of Theorem 9, Lemma 1 and
Lemma 2. ut

Proof. [Proof of Theorem 4] It is a consequence of Theorem 10, Lemma 1 and
Lemma 3. ut

6 Proof of Theorems 5 and 6 (case β = 1, t1 > 0)

This section collects several results concerning the regularity of a weak solution
of (1.7)t1 , and further prove Theorems 5 and 6. All throughout this section,
we assume that β = 1 and t1 > 0 is fixed.

Given f , let us define
g(θ) := f

(
t1e

θ
)
, (6.1)

see (1.11). Let v be the unique weak solution of (1.10), given by the formula
of variation of constants,

v(θ) =

∞∑
i=1

e−λiθ〈u1, ϕi〉ϕi +

∞∑
i=1

(∫ θ

0

e−λi(θ−σ)〈g(σ), ϕi〉 dσ
)
ϕi,

(see [5, 8, 13,22,25], see also Theorem 9 and equation (4.1)).
Define

u(t) := v
(

ln
(
t/t1

))
, (6.2)

then it is easy to see that u is a weak solution of the parabolic problem (1.7)t1 .
To study their regularity, we proceed with three technical Lemmata. The

first Lemma precise the conditions on f ensuring that g ∈ L2
(
(0, Θ);L2(Ω)

)
,

to be able to apply the standard theory for parabolic problems, Theorems 9
and 10. The second and third Lemmata relates the regularity of u with the
regularity of v, stating upper bounds of norms of u in terms of norms of v.

Lemma 4. Assume that f ∈ L∞
(
(0, T );L2(Ω)

)
. Let g be defined by (6.1),

and Θ be defined by (1.9). Let us fix an arbitrary t1 ∈ (0, T ). Then, g ∈
L2
(
(0, Θ);L2(Ω)

)
∩ L∞

(
(0, T );L2(Ω)

)
, moreover

‖g‖L∞((0,Θ);L2(Ω)) ≤ ‖f‖L∞((0,T );L2(Ω)),

‖g‖L2((0,Θ);L2(Ω)) ≤ [ln (T/t1)]
1/2 ‖f‖L∞((0,T );L2(Ω)).

Math. Model. Anal., 25(1):88–109, 2020.
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Furthermore,if there exists a constant C > 0 (depending on T ), such that

(H)

∫ T

0

1

t

∥∥f(t)∥∥2
L2(Ω)

dt ≤ C,

then

‖g‖L2((0,Θ);L2(Ω)) ≤

(∫ T

0

1

t

∣∣f(t)∣∣2
L2(Ω)

dt

)1/2

.

Proof. By definition of g, see (6.1), ‖g(θ)‖2L2(Ω) =
∥∥f(t1 eθ)∥∥2L2(Ω)

. By defini-

tion of ‖ · ‖L∞((0,Θ);L2(Ω)), see (2.6), ‖g‖L∞((0,Θ);L2(Ω)) = ‖f‖L∞((t1,T );L2(Ω)) ≤
‖f‖L∞((0,T );L2(Ω)). By definition of ‖ · ‖L2((0,Θ);L2(Ω)), see (2.5), and of θ, see
(1.8),

‖g‖2L2((0,Θ);L2(Ω)) =

∫ T

t1

1

t

∥∥f(t)∥∥2
L2(Ω)

dt ≤ ln

(
T

t1

)
‖f‖2L∞((0,T );L2(Ω)).

Moreover, ‖g‖2L2((0,Θ);L2(Ω)) =
∫ T
t1

1
t

∥∥f(t)∥∥2
L2(Ω)

dt ≤
∫ T
0

1
t

∥∥f(t)∥∥2
L2(Ω)

dt, end-

ing the proof. ut

Lemma 5. Assume that f ∈ L∞
(
(0, T );L2(Ω)

)
, assume also that u1 ∈ L2(Ω).

Let g be defined by (6.1). Let v be the unique weak solution of (1.10) provided
by Theorem 9. Let u be given by (6.2). Then,

(i) u ∈ L2
(
(t1, T );H1

0 (Ω)
)
, ‖u‖L2((t1,T );H1

0 (Ω)) ≤ T 1/2 ‖v‖L2((0,Θ);H1
0 (Ω)).

(ii) u ∈ C
(
[t1, T ];L2(Ω)

)
, and max

t∈[t1,T ]
‖u(t)‖L2(Ω) = max

θ∈[0,Θ]
‖v(θ)‖L2(Ω).

(iii) ut ∈ L1
(
(t1, T );H−1(Ω)

)
, ‖ut‖L1((t1,T );H−1(Ω)) = ‖vs‖L1((0,Θ);H−1(Ω)).

Proof. (i) By definition of u, see (6.2), their H1
0 (Ω)-norm satisfy the following

‖u(t)‖2
H1

0 (Ω)
=
∥∥v( ln

(
t/t1

))∥∥2
H1

0 (Ω)
. By definition of ‖ · ‖L2((t1,T );H1

0 (Ω))-norm,

see (2.5), and of θ, see (1.8),

‖u‖2L2((t1,T );H1
0 (Ω)) =

∫ T

t1

∥∥v(ln
( t
t1

))∥∥2
H1

0 (Ω)
dt =

∫ Θ

0

t1 e
θ ‖v(θ)‖2H1

0 (Ω) dθ

≤ t1 eΘ ‖v‖2L2((0,Θ);H1
0 (Ω)) = T ‖v‖2L2((0,Θ);H1

0 (Ω)),

ending part (i) of the proof.

(ii) Obviously ‖u(t)‖2L2(Ω) =
∥∥v( ln

(
t
t1

))∥∥2
L2(Ω)

. Moreover, when t ∈ [t1, T ],

then θ ∈ [0, Θ], and so part (ii) of the proof is achieved.
(iii) From definition of u, see (6.2)

ut(t) =
1

t
vθ
(
ln
(
t/t1

))
, (6.3)
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therefore ‖ut(t)‖H−1(Ω) = 1
t

∥∥vθ( ln
(
t/t1

))∥∥
H−1(Ω)

, and

‖ut‖L1((t1,T );H−1(Ω)) =

∫ Θ

0

‖vθ(θ)‖H−1(Ω) ds = ‖vs‖L1((0,Θ);H−1(Ω)),

which ends the proof. ut

Lemma 6. Assume that f ∈ L∞
(
(0, T );L2(Ω)

)
, and u1 ∈ L2(Ω). Let g be

defined by (6.1). Let v be the unique weak solution of (1.10) provided by The-
orem 9. Let u be given by (6.2). Then,

(i) u ∈ L2
(
(t1, T );H2(Ω)

)
, ‖u‖L2((t1,T );H2(Ω)) ≤ T 1/2 ‖v‖L2((0,Θ);H2(Ω)).

(ii) u ∈ C
(
[t1, T ];H1

0 (Ω)
)
, and max

t∈[t1,T ]
‖u(t)‖H1

0 (Ω) = max
θ∈[0,Θ]

‖v(θ)‖H1
0 (Ω).

(iii) ut ∈ L1
(
(t1, T );L2(Ω)

)
, and ‖ut‖L1((t1,T );L2(Ω)) = ‖vs‖L1((0,Θ);L2(Ω)).

Proof. (i) By definition of u, see (6.2), ‖u(t)‖2H2(Ω) =
∥∥v( ln

(
t/t1

))∥∥2
H2(Ω)

.

By definition of ‖ · ‖L2((t1,T );H2(Ω)), see (2.5), and of θ, see (1.8),

‖u‖2L2(t1,T ;H2(Ω)) =

∫ Θ

0

t1 e
θ‖v(θ)‖2H2(Ω)dθ

≤ t1 eΘ ‖v‖2L2((0,Θ);H2(Ω)) = T ‖v‖2L2((0,Θ);H2(Ω)),

ending part (i) of the proof.

(ii) Obviously ‖u(t)‖2
H1

0 (Ω)
=
∥∥v( ln

(
t
t1

))∥∥2
H1

0 (Ω)
. Moreover, when t ∈ [t1, T ],

then θ ∈ [0, Θ], and so part (ii) of the proof is achieved.

(iii) From (6.3) ‖ut(t)‖L2(Ω) = 1
t

∥∥vθ( ln
(
t/t1

))∥∥
L2(Ω)

, and

‖ut‖L1((t1,T );L2(Ω)) =

∫ Θ

0

‖vθ(θ)‖L2(Ω) dθ = ‖vθ‖2L1((0,Θ);L2(Ω)),

ending the proof. ut

Proof. [Proof of Theorems 5 and 6.] We merge both proofs due to their
similarity. Fixing an arbitrary t1 > 0, and u1 ∈ L2(Ω), the existence of a unique
solution of (1.7)t1 for t ∈ (t1, T ) is a consequence of Theorem 9, Lemma 4 and
Lemma 5. Moreover, its regularity is a consequence of Theorem 10, Lemma 4
and Lemma 6. ut

7 Proof of Theorems 7 and 8 (case β = 1, t1 → 0)

This section collects several results concerning the regularity of a weak solution
of (1.15), and further prove Theorems 7 and 8. All throughout this section, we
assume that β = 1.

Math. Model. Anal., 25(1):88–109, 2020.
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Proof. [Proof of Theorems 7 and 8.] We also merge both proofs thanks to
their similarity. Let us denote by u(t; t1, u1) the unique solution of (1.7)t1 for
t ∈ (t1, T ) provided by Theorems 5 and 6, and defined by (1.12).

In part I), fixing any t > 0, we analyze the asymptotic behavior of u(t; t1, u1)
as t1 → 0, and see that, for any u1 ∈ L2(Ω), it is independent of u1. Let us
denote it by u(t). In part II) we analyze the regularity of u(t), and prove
that u ∈ L2

(
(0, T ), H2(Ω)

)
and that tut ∈ L2

(
(0, T ), L2(Ω)

)
. In part III) we

prove that u ∈ C
(
(0, T ], L2(Ω)

)
. Finally in part IV), we study the asymptotic

behavior of u(t) as t→ 0.
I) Let u(t) be the solution of (1.7)t1 on (t1, T ) given by (1.12). Fixing any

t > 0, let us define u by (1.13). We next see that u(t) := limt1→0 u(t; t1, u1).
Let us first look at the first term on the right hand side in the equation (1.12).
From Parseval’s identity and since λ1 < λ2 ≤ · · · ≤ λi ≤ · · · , fixing any t > 0,
for any t1 < t we can write∥∥∥∥∥

∞∑
i=1

(
t1
t

)λi
〈u1, ϕi〉ϕi

∥∥∥∥∥
L2(Ω)

=

(
t1
t

)λ1
[ ∞∑
i=1

(
t1
t

)2(λi−λ1)

|〈u1, ϕi〉|2
]1/2

≤ (t1/t)
λ1 ‖u1‖L2(Ω) → 0 as t1 → 0.

Now we substract the limit of u as t1 → 0 given by (1.13) minus the second
term in the right hand side of (1.12) to obtain

∞∑
i=1

t−λi
(∫ t

0

σλi−1 〈f(σ), ϕi〉 dσ −
∫ t

t1

σλi−1 〈f(σ), ϕi〉 dσ
)
ϕi

=

∞∑
i=1

t−λi
(∫ t1

0

σλi−1 〈f(σ), ϕi〉 dσ
)
ϕi.

Assuming that f ∈ X ∩ C
(
[0, T ];L2(Ω)

)
(see (3.3)–(3.4)),∥∥∥∥∥

∞∑
i=1

t−λi
(∫ t1

0

σλi−1〈f(σ), ϕi〉dσ
)
ϕi

∥∥∥∥∥
2

H2(Ω)

=

∞∑
i=1

λ2i t
−2λi

×
(∫ t1

0

σλi−1〈f(σ), ϕi〉dσ
)2

≤
∞∑
i=1

λ2i t
−2λi sup

σ∈[0,t1]

∣∣〈f(σ), ϕi〉
∣∣2

×
(∫ t1

0

σλi−1dσ

)2

=

∞∑
i=1

(
t1
t

)2λi

sup
σ∈[0,t1]

∣∣〈f(σ), ϕi〉
∣∣2

=

(
t1
t

)2λ1 ∞∑
i=1

(
t1
t

)2(λi−λ1)

sup
σ∈[0,t1]

∣∣〈f(σ), ϕi〉
∣∣2

≤
(
t1
t

)2λ1 ∞∑
i=1

sup
σ∈[0,t1]

∣∣〈f(σ), ϕi〉
∣∣2.

Since hypothesis (3.5) on f ,∥∥u(t)−u(t; t1, u1)
∥∥2
L2(Ω)

≤
( t1
t

)2λ1

(
‖u1‖L2(Ω)+

∞∑
i=1

sup
σ∈[0,t1]

∣∣〈f(σ), ϕi〉
∣∣2)→ 0
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as t1 → 0, and limt1→0 u(t; t1, u1) = u(t) in L2(Ω).
II) At least formally

−∆u(t) =

∞∑
i=1

λit
−λi

(∫ t

0

σλi−1 〈f(σ), ϕi〉 dσ
)
ϕi,

and reasoning as above, for any t > 0

‖u(t)‖2H2(Ω) =

∞∑
i=1

λ2i t
−2λi

(∫ t

0

σλi−1 〈f(σ), ϕi〉 dσ
)2

≤
∞∑
i=1

λ2i t
−2λi

× sup
σ∈[0,t]

∣∣〈f(σ), ϕi〉
∣∣2 (∫ t

0

σλi−1dσ

)2

=

∞∑
i=1

sup
σ∈[0,t]

∣∣〈f(σ), ϕi〉
∣∣2.

Since f ∈ X (see (3.3)–(3.4)), then
( ∫ T

0
‖u(t)‖2H2(Ω) dt

)1/2 ≤ ‖f‖2X, and u ∈
L2
(
(0, T ), H2(Ω)

)
. Also, for any t > 0,

ut(t) =

∞∑
i=1

−λit−λi−1
(∫ t

0

σλi−1 〈f(σ), ϕi〉 dσ
)
ϕi +

∞∑
i=1

t−1〈f(t), ϕi〉ϕi

= t−1
∞∑
i=1

[
−λit−λi

(∫ t

0

σλi 〈f(σ), ϕi〉 dσ
)

+ 〈f(t), ϕi〉
]
ϕi

= t−1
∞∑
i=1

λit
−λi

(∫ t

0

σλi 〈f(t)− f(σ), ϕi〉 dσ
)
ϕi.

Moreover,

(
t‖ut(t)‖L2(Ω)

)2
=

∞∑
i=1

λ2i t
−2λi

(∫ t

0

σλi−1 〈f(t)− f(σ), ϕi〉 dσ
)2

≤
∞∑
i=1

λ2i t
−2λi sup

σ∈[0,t]

∣∣〈f(t)− f(σ), ϕi〉
∣∣2 (∫ t

0

σλi−1dσ

)2

=

∞∑
i=1

sup
σ∈[0,t]

∣∣〈f(t)− f(σ), ϕi〉
∣∣2.

Since

∞∑
i=1

sup
σ∈[0,t]

∣∣〈f(t)− f(σ), ϕi〉
∣∣2 ≤ ∞∑

i=1

(∣∣〈f(t), ϕi〉∣∣+ sup
σ∈[0,t]

∣∣〈f(σ), ϕi〉
∣∣)2,

(a+ b)2 ≤ 2(a2 + b2),

∞∑
i=1

∣∣〈f(t), ϕi〉∣∣2 = ‖f(t)‖2L2(Ω),

then ∫ T

0

(
t‖ut(t)‖L2(Ω)

)2
dt ≤ 2‖f‖2L2((0,T )2,L2(Ω)) + 2‖f‖2X ≤ 4‖f‖2X,

Math. Model. Anal., 25(1):88–109, 2020.
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and tut ∈ L2
(
(0, T ), L2(Ω)

)
.

III) Fix any t > 0. From (1.13) we deduce

u(t+ h)− u(t) =

∞∑
i=1

(t+ h)−λi

(∫ t+h

0

〈
f(σ), ϕi

〉
σλi−1 dσ

)
ϕi

−
∞∑
i=1

t−λi
(∫ t

0

〈
f(σ), ϕi

〉
σλi−1 dσ

)
ϕi,

therefore, for h > 0 we can write

‖u(t+ h)− u(t)‖2L2(Ω) =

∞∑
i=1

[
t−λi

(∫ t

0

〈
f(σ), ϕi

〉
σλi−1 dσ

)((
t+ h

t

)−λi
− 1

)

+ (t+ h)−λi

(∫ t+h

t

〈
f(σ), ϕi

〉
σλi−1 dσ

)]2
=:

∞∑
i=1

[
Ai(t, h) +Bi(t, h)

]2
.

Observe that
(
t+h
t

)−λi − 1 =
∫ 1

0
ψ(θ) dθ, with

ψ(θ) :=
d

dθ

[(
t+ hθ

t

)−λi]
= −λi

(
t+ hθ

t

)−λi−1 h

t
.

Then∣∣∣∣∣
(
t+ h

t

)−λi
− 1

∣∣∣∣∣ ≤ λi ht
∫ 1

0

(
t

t+ hθ

)λi+1

dθ ≤ λi
h

t
,

∣∣Ai(t, h)
∣∣ ≤ hλi t−λi−1(∫ t

0

∣∣〈f(σ), ϕi
〉∣∣σλi−1 dσ) ≤ h

t
sup
σ∈[0,t]

∣∣〈f(σ), ϕi
〉∣∣.

On the other side∣∣Bi(t, h)
∣∣ ≤ (t+ h)−λi sup

σ∈[t,t+h]

∣∣〈f(σ), ϕi
〉∣∣ ( (t+ h)λi − tλi

λi

)
=

1

λi
sup

σ∈[t,t+h]

∣∣〈f(σ), ϕi
〉∣∣(1−

( t

(t+ h)

)λi)
≤ h

t
sup

σ∈[t,t+h]

∣∣〈f(σ), ϕi
〉∣∣.

Consequently

‖u(t+ h)− u(t)‖2L2(Ω) ≤ 4

(
h

t

)2 ∞∑
i=1

sup
σ∈[0,t+h]

∣∣〈f(σ), ϕi
〉∣∣2.

Since (3.6), ‖u(t + h) − u(t)‖2L2(Ω) ≤ C
(
h
t

)2 → 0 as h → 0, and u ∈
C
(
(0, T ];L2(Ω)

)
.

IV) Finally, we analyze the asymptotic behavior of u(t) as t→ 0, assuming
that (3.7) holds. From (3.7), for any ε > 0 there exists a δ > 0 such that for
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any 0 < t < δ,
∑∞
i=1 supσ∈[0,t]

∣∣〈f(σ)− f(0), ϕi〉
∣∣2 < ε. Subtracting u(t) minus

u0 defined by (1.16), for any 0 < t < δ, we deduce

‖u(t)− u0‖2H2(Ω) =

∞∑
i=1

λ2i

[
t−λi

(∫ t

0

σλi−1 〈f(σ), ϕi〉 dσ
)
− 1

λi
〈f(0), ϕi〉

]2

=

∞∑
i=1

λ2i

[
t−λi

(∫ t

0

σλi−1 〈f(σ)− f(0), ϕi〉 dσ
)]2

≤
∞∑
i=1

λ2i t
−2λi sup

σ∈[0,t]

∣∣〈f(σ)− f(0), ϕi〉
∣∣2 (∫ t

0

σλi−1dσ

)2

=

∞∑
i=1

sup
σ∈[0,t]

∣∣〈f(σ)− f(0), ϕi〉
∣∣2 < ε,

which concludes the proof. ut
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