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Abstract. We consider the second-order nonlinear boundary value problems (BVPs)
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1 Introduction

We consider boundary value problem

x′′ = f(t, x, x′), f ∈ C1
(
[a, b]× R× R,R

)
, (1.1)

a1x(a)− a2x′(a) = A, b1x(b) + b2x
′(b) = B, (1.2)

where A,B ∈ R, a1, b1 ∈ R, a2, b2 ∈ R+ := (0,+∞), a21+a22 > 0 and b21+b22 > 0.
Our study continues a series of papers devoted to two-point boundary value
problems for the second order nonlinear differential equations [2, 3, 4]. This
research is motivated by the papers of L. Jackson [6], H. Knobloch [7] and
L. Erbe [5], who studied BVPs for equation (1.1) provided that there exist
the so called lower and upper functions. The method is very popular (consult
the book C. de Coster, P. Habets [1] for more information) and a lot of papers
were written devoted to various BVPs [8,9,10]. Generally the existence of lower
and upper functions and some additional conditions, which take into account
special features of the problem, imply the existence of a solution and provide
information about location of it.
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It was H. Knobloch, who first observed that more can be said about a
solution existing in presence of lower and upper functions. He showed for some
BVP that there exists a solution with the property (B) which is described later.
This interesting property implies that related equation of variations possesses
the property that it is disconjugate in the interval (a, b).

In articles [2,3,4] we investigated similar problems for the equation (1.1) in
the cases of the Dirichlet and Neumann boundary conditions. This article is a
continuation of research. Our study is based on the following works [5, 7, 12].

Assume α, β ∈ C[a, b] are lower and upper functions of problem (1.1), (1.2)
such that α(t) ≤ β(t),

a1α(a)− a2α′(a) ≤ A, a1β(a)− a2β′(a) ≥ A,
b1α(b) + b2α

′(b) ≤ B, b1β(b) + b2β
′(b) ≥ B. (1.3)

Assume the Nagumo condition

∀t ∈ [a, b], α(t) ≤ x(t) ≤ β(t), ∀x′(t) ∈ R
there exists ϕ(x) ∈ C(R+,R+) such that∣∣f(t, x, x′)

∣∣ ≤ ϕ(|x′|),∫ N

λ

s ds

ϕ(s)
> max

[a,b]
β(t)−min

[a,b]
α(t) (1.4)

is satisfied, where

λ =
2M

b− a
, M := max

[a,b]
{|β(t)|, |α(t)|}.

The objective of this paper is to consider the Sturm–Liouville conditions for
nonlinear second-order boundary value problem. We consider the case of mul-
tiple solutions. We have to distinguish between solutions of the BVP, therefore
define an index for solutions and call it the type of a solution. The presence of
the lower and upper functions α and β guarantees the existence of solutions of
the BVP. We show that there exists a solution with the specific property.

The paper is organized as follows. In Section 2 we give some preliminary
facts on which to base our results. In Section 3 definitions are given. An
example of the existence of solutions with several humps considered in Section 4.
In Section 5 the main result is formulated and proved, in Section 6 the example
of its application is shown.

2 Preliminary Results

It was H. Knobloch [7] who showed that the equation (1.1) in presence of
regularly ordered (α ≤ β) the upper β and lower α functions, has a specific
solution x(t) located in-between α and β which possesses the property (B).
A solution x(t) of (1.1) on a compact interval I of the real line is said to have
property (B) in case there exists a sequence of solutions xn, of (1.1) such that

• xn → x and x′n → x′ uniformly on I;
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• x− xn 6= 0, and has the same sign for all n ≥ 1 and all t ∈ I;

• |x′n − x′| ≤ c|xn − x| for all n ≥ 1 and all t ∈ I, where c is a constant
independent of n and t.

Later L.H. Erbe [5] formulated property (B)∗: a solution x of (1.1) is said
to have property (B)∗ on [a, b] in case there exists a sequence of solutions xn
of (1.1), all having property (B) on [a, b], such that xn → x and x′n → x′

uniformly on [a, b].

Remark 1. [5, p. 459] Under certain continuity conditions on the partial deriva-
tives fx, and fx′ the existence of a solution x(t) of (1.1) with property (B)
implies that the corresponding equation of variation along x(t)

y′′ = fx
(
t, x(t), x′(t)

)
y + fx′

(
t, x(t), x′(t)

)
y′ (2.1)

is disconjugate on (a, b), that is, the only solution of (2.1) with more than one
zero on I is the identically zero solution. Using the limiting process, we can
say that the same is true for solutions x(t) which possess the property (B)∗.

Also interesting for us is the following theorem, which L. H. Erbe has proved
in [5].

Theorem 1. [5, Th. 3.6, p. 465] Let α(t) be a lower solution and β(t) an
upper solution of (1.1) with α(t) ≤ β(t) on [a, b] and α(a) < β(a), α(b) < β(b).
Assume the Nagumo condition holds and let g(x, x′) ∈ G1 and h(x, x′) ∈ H.2
Then there is a solution x0(t) of the BVP

x′′ = f(t, x, x′), g
(
x(a), x′(a)

)
= 0 = h

(
x(b), x′(b)

)
,

which satisfies α(t) < x0(t) < β(t) on [a, b].

Remark 2. If we select the function g(x(a), x′(a)) = −a1x(a) +a2x
′(a) +A and

h(x(b), x′(b)) = b1x(b) + b2x
′(b) − B, then the inequalities (1.3) hold and the

BVP (1.1), (1.2) has a solution on [a, b].

Theorem 2. [5, Th. 4.5, p. 469] Assume all hypotheses of Theorem 1 and, in
addition, assume the Lipschitz condition3 with respect to x and x′ hold. Then
there is a solution x0(t) of the BVP

x′′ = f(t, x, x′), g
(
x(a), x′(a)

)
= 0 = h

(
x(b), x′(b)

)
,

which has property (B)∗ and satisfies α(t) ≤ x0(t) ≤ β(t) on [a, b].

1 The class of all continuous functions g(x, x′) defined on [α(a), β(a)]×R which are nonde-
creasing in x′ and satisfy g(α(a), α′(a)) ≥ 0, g(β(a), β′(a)) ≤ 0.

2 The class of all continuous functions h(x, x′) defined on [α(b), β(b)]×R which are nonde-
creasing in x′ and satisfy h(α(b), α′(b)) ≤ 0, h(β(b), β′(b)) ≥ 0.

3 There exist two non-negative constants K and L such that whenever (t, y, y′) and (t, x, x′)
are in the domain of f , the inequality |f(t, y, y′)−f(t, x, x′)| ≤ K|y−x|+L|y′−x′| holds.

Math. Model. Anal., 20(1):1–8, 2015.
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3 Definitions

Provided that function f(t, x, x′) has continuous partial derivatives fx and fx′

we construct the equation of variations for a particular solution ξ(t)

y′′ = fx
(
t, ξ(t), ξ′(t)

)
y + fx′

(
t, ξ(t), ξ′(t)

)
y′ (3.1)

and consider this with the normalized initial conditions

a1y(a)− a2y′(a) = 0 and y2(a) + y2(a) = 1. (3.2)

Definition 1. Let ξ(t) be a solution of problem (1.1), (1.2). We say that the
type of a solution ξ(t) is i (i 6= 0), if the solution y(t) of initial value problem
(3.1), (3.2) has exactly i zeros τi ∈ (a, b) and there is τ ∈ (τi, b) such that

b1y(τ) + b2y
′(τ) = 0 and b1y(b) + b2y

′(b) 6= 0. (3.3)

Denote this type(ξ) = i. If moreover b1y(b) + b2y
′(b) = 0, denote type(ξ) =

(i, i+ 1).

Remark 3. A solution x0(t) of problem (1.1), (1.2) is of type zero if either the
respective y(t) does not vanish in (a, b] or y(t) has exactly one zero τ1 in (a, b)
but b1y(t) + b2y

′(t) 6= 0 in (τ1, b].

Remark 4. If ξ(t) is an i-type solution of the problem (1.1), (1.2) according to
Def. 1, then for sufficiently close to ξ(t) solutions x(t) of the problem (1.1),
a1x(a)− a2x′(a) = A the difference u(t) = x(t)− ξ(t) has exactly i zeros ηi in
the interval (a, b) and in the interval (ηi, b) there is a point ζ such that u(ζ) = 0
and u(b) 6= 0. Solutions x(t) will be called neighboring solutions to solution ξ(t).

Similar definitions in other situation were introduced in [12].

4 Multibump Solutions

The type of a solution may be introduced also in this way (we do not use the
below Definition 2 due to below argument).

Definition 2. Let ξ(t) be a solution of problem (1.1), (1.2). We say that the
type of a solution ξ(t) is i (i 6= 0), if the solution y(t) of initial value problem
(3.1), (3.2) has exactly i points τ ∈ (a, b) such that

b1y(τ) + b2y
′(τ) = 0 and b1y(b) + b2y

′(b) 6= 0. (4.1)

We face then the following problem. There may be multiple points τ be-
tween two consecutive zeros of y(t), where the conditions b1y(τ) + b2y

′(τ) = 0
are fulfilled. To show that this is possible, let us consider the specific boundary
conditions (the Neumann ones)

x′(a) = 0, x′(b) = 0.

We will construct the example of a linear equation of the form y′′ = −q(t)y,
which possesses the property that there are multiple points τ where y′(t) van-
ishes.4

4 Solutions of t his type in the theory of the fourth order ordinary differential equations are
called in the literature “multibump” solutions [11]. This is why we use this term in our
study.
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Proposition 1. Linear differential equations of second order with continuous
coefficients may have multibump solutions.

The proof follows from the following example.

Example 1. We consider the problem

y′′ = −8 sin 10ty, y(0) = 1, y′(0) = 0. (4.2)

yHtL

y’HtL

1 2 3 4 5 6 7
t

-2

-1

1

2

yHtL

Figure 1. Graphs of y(t) (solid line) and y′(t).

As shown in Figure 1 there may be multiple zeros of y′(t) between two
consecutive zeros of y(t).

5 Main Results

Theorem 3. Suppose that solutions of x′′ = f(t, x, x′) are extendable to the
interval [a, b]. If there exist a solution x1 of problem (1.1), (1.2) of type i1 and
a solution x2 of type i2, |i1 − i2| ≥ 2, then there exist also all intermediate
solutions.

Proof. Consider boundary conditions (1.2) and denote the first one5 (1.2a)
and the second one6 (1.2b). We wish to show that if there exist solutions xi1
and xi2 of the problem (1.1), (1.2) then there exist at least |i1 − i2| − 1 other
solutions of the problem. We prove the result for the specific case i1 = 1 and
i2 = 3. Our goal is to show that there exists at least one more solution of the
problem. The proof for the general case can be conducted similarly.

Denote x1 a solution of type 1 and, similarly, x3 a solution of type 3. Both
solutions satisfy the conditions (1.2a) and (1.2b). For simplicity of notation and
for better understanding let us proceed with the Neumann boundary conditions

x′(a) = A, x′(b) = B, (5.1)

which are included in (1.2) (a1 = b1 = 0, a2 = −1, b2 = 1). Suppose for
definiteness that x1(a) < x3(a) and consider solutions x(t; γ) of the Cauchy
problems

x(a) = γ ∈
[
x1(a), x3(a)

]
, x′(a) = A. (5.2)

5 l1(a) : a1x(a)− a2x′(a) = A.
6 l2(b) : b1x(b) + b2x′(b) = B.

Math. Model. Anal., 20(1):1–8, 2015.
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Introduce functions

u1(t; γ) = x(t; γ)− x1(t), u3(t; γ) = x3(t)− x(t; γ).

Both functions satisfy u′(a; γ) = 0 for all γ ∈ [x1(a), x3(a)]. If for some γ∗ one
of the functions satisfies u′(b; γ∗) = 0 then a solution x(t; γ∗) solves BVP (1.1),
(5.1).

Consider u1(t; γ). For γ > x1(a) and close enough u1 has a zero t1(γ) in
(a, b) and a point τ ∈ (t1, b) such that u′(τ ; γ) = 0. This is true since x1
by assumption is a solution of type 1. If for some γ1 ∈ (x1(a), x3(a)) function
u1(t; γ1) has exactly two zeros t1 and t2 in (a, b) and a point τ ∈ (t1, b) such that
u′(τ) < 0, then, by continuity arguments, for some smaller γ it had u′(b; γ) = 0.
Therefore a solution x(t; γ) solves BVP (1.1), (5.1) and is different of x1 and x3.

Suppose u1(t; γ) for all γ ∈ [x1(a), x3(a)] has at most one zero in (a, b).
Consider function u3(t; γ). It has exactly three zeros t1, t2 and t3 in (a, b)
for γ < x3(a) and close enough since x3 is a solution of type 3. Notice that
u3(t;x1(a)) = x3(t) − x1(t) = u1(t;x3(a)). By assumption u1(t;x3(a)) has at
most 1 zero in (a, b). Therefore u3(t; γ) for γ close enough to x1(a) has one
zero in (a, b). Then there exist γ2 < γ3 in (x1(a), x3(a)) such that u3(b; γ3) = 0
(the third zero t3 passes through t = b) and u3(b; γ2) = 0 (the second zero t2
passes through t = b). Then there exists γ∗ ∈ (γ2, γ3) such that u′3(b; γ∗) = 0.
Therefore x(t; γ∗) solves BVP (1.1), (5.1) and is different of x1 and x3.

It may happen that u1(t; γ) for some γ ∈ [x1(a), x3(a)] has two zeros t1
and t2 but u′(t) 6= 0 in (t2, b) (then u′(t) > 0 for t ∈ (t2, b)). The same type
analysis can be made for u3 showing the existence of a solution of BVP. ut

Theorem 4. Suppose there exist lower and upper functions α and β in the
problem (1.1), (1.2) and the Nagumo condition holds. Suppose also that there
exists a solution ξ(t) of the type k (k > 1), ξ(t) is located between α(t) and
β(t). Then there exist at least 2k other solutions.

Proof. Since ξ(t) is located between α(t) and β(t) it does not coincide neither
with β nor with α. Consider the region ω(ξ, β) between ξ and β. One may
consider ξ as a lower function for this region since all the conditions for lower
functions are fulfilled. By Theorem 2 there exists a solution x0(t) of zero type
in this region. Consider now solutions ξ and x0 in the region ω(α, β). By
Theorem 3, there exist more k − 1 solutions of the problem. Totally there are
k solutions (with x0) not counted a solution ξ.

The same analysis, made for the region ω(α, ξ), shows that there are at
least k solutions in this region. Then the total number of solutions of the BVP
in the region ω(α, β) is at least 2k, a solution ξ not counted. ut
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6 Example

Example 2. We consider

x′′ = x3 −
(

5π

2

)2

x,

x(0)− x′(0) = 0, x(1) + x′(1) = 0. (6.1)

The upper and lower functions are β(t) ≡ 8 and α(t) ≡ −8. According to
Theorem 2 this problem has solution ξ∗ (and ξ∗) of zero type.

Let us construct the equation of variations for ξ2(t) ≡ 0 and consider with
the initial conditions:

y′′(t) = −
(

5π

2

)2

y, (6.2)

y(0)− y′(0) = 0, y2(0) + y′2(0) = 1.

The solution of this problem has two zeros in (0, 1), hence, type(ξ2 ≡ 0) = 2.
According to Theorem 3 this problem has solutions of type one: there is a
solution ξ1(t) and the symmetric of ξ1(t).

Figure 2 shows all types of this problem. Figure 3 shows the phase plane
respectively.

ΒHtL

typeHΞ2º0L=2

typeHΞ*L=0
typeHΞ1L=1

ΑHtL
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5

Figure 2. All types of the problem
(6.1)
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Figure 3. Phase plane (the trivial
solution ξ2 in the phase plane is a point

at the origin).

7 Conclusions

We can introduce types of solutions of Sturm–Liouville BVP. The BVP can
have solutions of different types. For instance, if upper and lower functions
exist, then there exists a solution of zero type. As a consequence, if there
exists a solution of type k, k > 0, then there exist more solutions of BVP. If
there exist solutions of different types k1 and k2, |k1−k2| ≥ 2, then there exist
at least |k1 − k2| − 1 solutions of BVP.
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