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Abstract. The convergence rate of histopolation on an interval with combined
splines of class C1 having linear/linear rational or quadratic polynomial pieces is
studied. The function to histopolate may have finite number of derivative zeros and
established convergence rate depends mainly on the behaviour of the derivative near
its zeros. Given numerical results are completely consistent with theoretical ones.
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1 Introduction

It is known that the histopolation problem could be reduced to the solution of
a corresponding interpolation problem, see, e.g., [14]. Then the derivative of
the interpolant serves as histopolant. This idea works in the case of polynomial
spline interpolant whose derivative is also a polynomial spline. The convergence
rates of polynomial spline interpolants and their derivatives are well known. On
the other hand, polynomial spline interpolants and histopolants do not preserve
geometric properties like positivity, monotonicity, convexity of the function to
approximate. An appropriate tool here is the use of rational or combined
splines. But, e.g., the derivative of the quadratic/linear function as a piece
of convexity preserving rational spline is not linear/linear function which is a
natural piece of monotonicity preserving rational spline. Therefore, the study of
histopolation with splines using linear/linear rational pieces is an independent
problem. In [3] we established the convergence rate of linear/linear rational
spline histopolants in case of strict (uniform) monotonicity. The main purpose
of this paper is to find out the convergence rate of histopolating combined
splines consisting of linear/linear rational or quadratic polynomial pieces when
the function to histopolate is not necessarily monotone.
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While interpolating polynomial splines is a classical research area [1,15,16],
there is also extensive literature about shape-preserving spline interpolation,
see [6]. Interpolating rational splines of low degree with free parameters as
a shape-preserving tool appeared later [7, 8, 10]. An example of the use of
interpolating rational splines at the solution of boundary value problems is
given in [5]. Histopolation problems with splines are also treated in many works,
let us mention of them [16] with several references therein, and [9, 11, 12, 13].
In our paper we will follow the main ideas, representation and basic equations
from [2, 4] for histopolating linear/linear rational or combined splines. The
most complicated problem in our research occurs to be the analysis of basic
equations determining spline parameters.

2 Histopolation Problem

In this section we introduce basic notions and recall some results about the
histopolation problem from [4].

Let it be given a mesh a = x0 < x1 < . . . < xn = b and real numbers
zi, i = 1, . . . , n, corresponding to subintervals [xi−1, xi], i.e. we have a given
histogram. We look for a function S ∈ C1[a, b] which is on each subinterval
either a quadratic polynomial or a linear/linear rational function of the form

S(x) =
ai + bi(x− xi−1)

1 + di(x− xi−1)
(2.1)

with 1 + di(x − xi−1) > 0 for all x ∈ [xi−1, xi] and satisfies the histopolation
conditions ∫ xi

xi−1

S(x)dx = zi(xi − xi−1), i = 1, . . . , n. (2.2)

In addition, we impose the boundary conditions

S′(x0) = α, S′(xn) = β (2.3)

or

S(x0) = α, S(xn) = β (2.4)

for given α and β. It is known that there are no such a two different com-
bined splines satisfying the same histopolation conditions (2.2) and boundary
conditions (2.3) or (2.4), see [4, 8].

To determine the kind of subintervals to be rational or quadratic we need
the following numbers each of them corresponding to one mesh point

δi = zi+1 − zi, i = 1, . . . , n− 1,

δ0 = α, δn = β for boundary conditions (2.3),

δ0 = z1 − α, δn = β − zn for boundary conditions (2.4).

In general, we choose [xi−1, xi] to be rational if δi−1δi > 0 and quadratic
otherwise. We call this choice the comonotone shape-preserving strategy.
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We say that a quadratic section, i.e., a maximal sequence of adjacent
quadratic intervals [xi, xi+1], . . . , [xi+k−1, xi+k], has a weak alternation of data
if the interval [xi−1, xi] being rational, intervals [xi, xi+1], . . . , [xi+k−1, xi+k]
quadratic and [xi−k, xi+k+1] again rational then,

δi > 0, δi+1 6 0, . . . , (−1)kδi+k−1 6 0, (−1)kδi+k > 0

or

δi < 0, δi+1 > 0, . . . , (−1)kδi+k−1 > 0, (−1)kδi+k < 0.

In the case of weak alternation of data a solution of the histopolation problem
exists (and is unique as was already mentioned). The histopolation problem
with the choice of subintervals according to the comonotone shape-preserving
strategy and without the weak alternation of data may not have a solution.
Because of that we consider the modified comonotone shape-preserving strategy
where in absence of the weak alternation of data one of the intervals [xi, xi+1]
or [xi+k−1, xi+k] is taken to be rational. Then the histopolation problem has
always a solution.

3 Representation and Basic Equations

In the study of spline algorithms the representation plays always an important
role, especially, in nonlinear case. We chose the representation via the derivative
values mi = S′(xi), i = 0, . . . , n, and histogram heights zi, i = 1, . . . , n. Then,
with the help of (2.2), (2.1) on [xi−1, xi] transforms to

S(x) = zi + hi
mi−1

((mi−1

mi
)1/2 − 1)2

log

(
mi−1

mi

)1/2

− hi
mi−1

((mi−1

mi
)1/2 − 1)(1 + t((mi−1

mi
)1/2 − 1))

(3.1)

with x = xi−1 + thi, hi = xi − xi−1, and on a quadratic interval [xi−1, xi] we
have

S(x) = zi +
hi
6

((
−2 + 6t− 3t2

)
mi−1 +

(
−1 + 3t2

)
mi

)
. (3.2)

We will use the function

ϕ(x) =

{
x2(log x−1)+x

(x−1)2 for x > 0, x 6= 0,
1
2 for x = 1.

From the properties of ϕ we need the following

ϕ(x) > 0, ϕ′(x) > 0, ϕ′′(x) < 0 for x > 0,

lim
x→0+

ϕ(x)

x
= 1, lim

x→∞

ϕ(x)

log x
= 1, ϕ′(1) =

1

3
, ϕ′′(1) = −1

6
.
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The continuity of S at xi between rational intervals [xi−1, xi] and [xi, xi+1]
gives the equation

mi

(
hiϕ

((
mi−1

mi

)1/2)
+ hi+1ϕ

((
mi+1

mi

)1/2))
= δi, (3.3)

between quadratic intervals [xi−1, xi] and [xi, xi+1]

hi
6
mi−1 +

hi + hi+1

3
mi +

hi+1

6
mi+1 = δi, (3.4)

between rational [xi−1, xi] and quadratic [xi, xi+1]

mi

(
hiϕ

((
mi−1

mi

)1/2)
+
hi+1

3

)
+
hi+1

6
mi+1 = δi, (3.5)

and symmetrical counterpart of equation (3.5) for quadratic [xi−1, xi] and ra-
tional [xi, xi+1]. The boundary conditions (2.3) fix the values m0 = α and
mn = β, but (2.4) gives according to (3.1) or (3.2) two additional equations
containing m0, m1 or mn−1, mn, respectively.

In the study of convergence we consider a given sufficiently smooth function
f : [a, b]→ R and calculate

zi =
1

hi

∫ xi

xi−1

f(x)dx, i = 1, . . . , n.

The conditions (2.3) and (2.4) are posed in the form

S′(x0) = f ′(x0), S′(xn) = f ′(xn) (3.6)

and

S(x0) = f(x0), S(xn) = f(xn). (3.7)

We are interested in the convergence rate of S−f and S′−f ′ in uniform norm
on [a, b] as h = max16i6n hi → 0.

4 Analysis of Basic Equations

Suppose that the given function f has a finite number of points ci in [a, b] such
that f ′(ci) = 0. Then the technique of [3] cannot be applied directly. At each
point ci we may allow the Taylor expansion

f(x) = f(ci) + f ′(ci)(x− ci) + . . .+
f (ki−1)(ci)

(ki − 1)!
(x− ci)ki−1

+
f (ki)(ci)

ki!
(x− ci)ki + o

(
(x− ci)ki

)
with f ′(ci) = 0, . . . , f (ki−1)(ci) = 0, f (ki)(ci) 6= 0. Generalizing the situa-
tion, we carry out our analysis for the differentiable functions f such that

Math. Model. Anal., 20(1):124–138, 2015.
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limx→ci, x>ci f
′(x)/|x − ci|α1 = γ1 6= 0 and limx→ci, x<ci f

′(x)/|x − ci|α2 =
γ2 6= 0 with some constants α1, α2 being positive and γ1, γ2. Our reasoning is
adequate in the small neighbourhood of points ci. For the regions far enough
from ci the analysis of [3] could be applied.

Let us indicate some general observations.
Supposing that f ′ ∈ Lip α, 0 < α 6 1, i.e. |f ′(x)− f ′(y)| 6 L|x− y|α for

some L, we have in the Taylor expansion f(x) = f(a) + f ′(a)(x− a) +R that
|R| 6 (L/(1 + α))|x− a|1+α. Then

δi =
1

hi+1

∫ xi+1

xi

f(x)dx− 1

hi

∫ xi

xi−1

f(x)dx =
1

2
(hi + hi+1)f ′(xi) +Ri

with |Ri| 6 (L/((1 + α)(2 + α)))(h1+αi + h1+αi+1 ).
At histopolation always the estimate ‖S′−f ′‖∞ = O(hα) yields ‖S−f‖∞ =

O(h1+α), see [3]. We also discuss in Section 5 how the estimate |mi − f ′i | =
O(hα) gives ‖S′ − f ′‖∞ = O(hα).

We will perform the reasoning in particular cases and see later the ways
of generalization. For simplicity of presentation, take the uniform partition of
[a, b], i.e., xi = a+ ih, i = 0, . . . , n, h = (b− a)/n. In the case of sufficiently
smooth function f we have

1

h
δi = f ′i +

h2

12
f ′′′i +O

(
h3
)
,

here and in the sequel we mean f ′i = f ′(xi) with similar significance for other
functions. Observe that outside of certain (small) neighbourhood of each ci the
reasoning of [3] is applicable and the estimate |mi − f ′i | = O(h2) for smooth
functions holds (or |mi − f ′i | = O(hα), 0 < α < 2, in the case of lower smooth-
ness, see [3]). Thus, the study only in the neighbourhood of ci is needed.
Nevertheless, we give a complete analysis independent of [3].

Let us start with the function f(x) = x2 sgnx, x ∈ [−1, 1].
For n even, we have xi = 0, i = n/2, and elementary calculations give

δi =
2

3
h2, δi+k = δi−k = 2kh2, k = 1, . . . ,

n

2
− 1.

As boundary conditions (3.6) are consistent we choose all subintervals to be
rational. For n odd, the point 0 is the midpoint of the interval [xi, xi+1] with
i = (n− 1)/2. Then

δi = δi+1 =
13

12
h2, δi+k = (2k − 1)h2, k = 2, . . . , (n− 1)/2,

and
δi−1 = δi+k+1 = (2k + 1)h2, k = 1, . . . , (n− 3)/2.

Here also all subintervals are rational. We will focus our attention mainly to
the case of n even.

The equations of the type (3.3) corresponding to the points xj are now

mj

(
ϕ

((
mj−1

mj

)1/2)
+ ϕ

((
mj+1

mj

)1/2))
=

1

h
δj = f ′j (4.1)
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and thus

mj − f ′j = f ′j
1− ϕ((

mj−1

mj
)1/2)− ϕ((

mj+1

mj
)1/2)

ϕ((
mj−1

mj
)1/2) + ϕ((

mj+1

mj
)1/2)

. (4.2)

Denote µj = mj−1/mj , j = 1, . . . , i, and µj = mj/mj−1, j = i+ 1, . . . , n. Our
aim is to estimate the values µj and then use them in (4.2). Let us consider
the situation at right hand side from xi = 0 (by symmetry, µi+k = µi−k+1 for
all k), then the equations (4.1) for j = i+ k and j + 1 give

µj+1 =
δj+1

δj

ϕ(µ
−1/2
j ) + ϕ(µ

1/2
j+1)

ϕ(µ
−1/2
j+1 ) + ϕ(µ

1/2
j+2)

(4.3)

with δj+1/δj = 1 + 1/k. Denote µ = (µ1, . . . , µn) and introduce the functions

Φj(µ) =
ϕ(µ

−1/2
j−1 ) + ϕ(µ

1/2
j )

ϕ(µ
−1/2
j ) + ϕ(µ

1/2
j+1)

, Ψj(µ) =
δj
δj−1

Φj(µ).

Then the equations (4.3) are µj = Ψj(µ). We need the following technical

Lemma. Suppose µj+l ∈ [1 + 1/(k+ l−1)− δ, 1 + 1/(k+ l−1) + δ], l = 0, 1, 2,
with sufficiently small δ > 0. Then for some positive constants c1, c2 it holds

Φj+1(µ) ∈
[
1− c1

k3
− 2

3
δ − c2δ2, 1 +

c1
k3

+
2

3
δ + c2δ

2

]
.

Proof. Take µ̄j+l = 1 + 1/(k + l − 1), l = 0, 1, 2, and estimate then Φj+1(µ̄).
The use of the Taylor expansion

ϕ
(
µ̄
1/2
j+1

)
= ϕ

((
1 +

1

k

)1/2)
= ϕ(1) + ϕ′(1)

((
1 +

1

k

)1/2

− 1

)
+
ϕ′′(1)

2

((
1 +

1

k

)1/2

− 1

)2

+
ϕ′′′(ξ)

6

((
1 +

1

k

)1/2

− 1

)3

and inside that

x1/2 − 1 =
1

2
(x− 1)− 1

8
(x− 1)2 +O

(
(x− 1)3

)
(4.4)

gives

ϕ
(
µ̄
1/2
j+1

)
=

1

2
+

1

6k
− 1

16k2
+O

(
1

k3

)
.

We get also

ϕ
(
µ̄
−1/2
j+1

)
= ϕ

((
1− 1

k + 1

)1/2)
=

1

2
− 1

6(k + 1)
− 1

16(k + 1)2
+O

(
1

k3

)
.

Then

ϕ
(
µ̄
−1/2
j

)
+ ϕ

(
µ̄
1/2
j+1

)
= 1− 1

8k2
+O

(
1

k3

)
Math. Model. Anal., 20(1):124–138, 2015.
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and

ϕ
(
µ̄
−1/2
j+1

)
+ ϕ

(
µ̄
1/2
j+2

)
= 1− 1

8(k + 1)2
+O

(
1

k3

)
.

Now

Φj+1(µ̄) =

(
1− 1

8k2
+O

(
1

k3

))(
1 +

1

8(k + 1)2
+O

(
1

k3

))
= 1 +O

(
1

k3

)
.

If the components of µ are such that µj+l ∈ [µ̄j+l − δ, µ̄j+l + δ], l = 0, 1, 2, we
take into account ϕ′(1) = 1/3, the boundedness of ϕ′′ and the Taylor expansion
(4.4) to arrive at the inclusion of Φj+1(µ) stated in the assertion. ut

As a consequence, in the assumption of Lemma, we get the inclusion

Ψj+1(µ) ∈
[
1 +

1

k
− c1
k3
− 2

3
δ − c2δ2, 1 +

1

k
+
c1
k3

+
2

3
δ + c2δ

2

]
, (4.5)

where the constants c1, c2 may be different compared to those of Lemma.
Take in Lemma δ = c0/k, c0 > 0, then Ψj+1(µ) ∈ [1 + 1/k − δ, 1 + 1/k + δ]

if c1/k
2 + c2c

2
0/k 6 c0/3 for c1, c2 in (4.5). This holds for some c0 > 0 and for

k > k0 with some fixed k0 taken after the choice of c0. Basing on the proof of
Lemma we get for the solution of µj+1 = Ψj+1(µ) the estimate

1− ϕ(µ
−1/2
j )− ϕ(µ

1/2
j+1)

ϕ(µ
−1/2
j ) + ϕ(µ

1/2
j+1)

= O

(
1

k2

)
+O(δ)

and, taking into account f ′j = 2kh,

mj − f ′j = 2kh

(
O

(
1

k2

)
+O(δ)

)
= O(h). (4.6)

It remains to study the behaviour of mj − f ′j for j = i, . . . , i + k0 − 1.
Because of f ′j = 2kh, j = i+ k, it is sufficient to establish the boundedness of
µj from below and from above by positive constants (not depending on h) for
finite number of indices k. The symmetry considerations allow to assert that
mi−1 = mi+1 (still for n even and i = n/2) and then µi = µi+1. The equation
(4.3) is in this case

µi = 3
ϕ(µ

−1/2
i ) + ϕ(µ

1/2
i )

ϕ(µ
−1/2
i ) + ϕ(µ

1/2
i+2)

. (4.7)

First, assume that µi → ∞. Then ϕ(µ
1/2
i ) ∼ (logµi)/2, µ−1i → 0 and

ϕ(µ
−1/2
i ) ∼ µ

−1/2
i → 0 (here and in the sequel ∼ means that the quotient of

these terms converges to some positive constant, mainly to 1). In the equation
(4.7) in the form

µi
(
ϕ
(
µ
−1/2
i

)
+ ϕ

(
µ
1/2
i+2

))
= 3
(
ϕ
(
µ
−1/2
i

)
+ ϕ

(
µ
1/2
i

))
(4.8)
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the right hand side of (4.8) behaves as 3(logµi)/2 but the left hand side in-

creases at least as µ
1/2
i which gives a contradiction. Secondly, let µi → 0.

Then ϕ(µ
1/2
i ) → 0, µ

−1/2
i → ∞ and the right hand side of (4.8) is of or-

der 3(logµ−1i )/2 while in the left hand side this order has to have the term

µiϕ(µ
1/2
i+2). This yields that µi+2 → ∞ and ϕ(µ

−1/2
i )/ϕ(µ

1/2
i+2) ∼ 2µi/3 → 0.

The particular case of (4.3) for j = i+ 1 gives

µi+2

(
ϕ
(
µ
−1/2
i+2

)
+ ϕ

(
µ
1/2
i+3

))
= 2
(
ϕ
(
µ
−1/2
i

)
+ ϕ

(
µ
1/2
i+2

))
,

where at right the main term is of order log µi+2 but at left we have at least

µ
1/2
i+2 which is impossible.

This completes the proof of boundedness of µi (and µi+1). It remains to
carry out the induction step which differs from the just presented reasoning
only by details and we omit it.

We have proved the estimate mi − f ′i = O(h) for the investigated function
f(x) = x2 sgnx, x ∈ [−1, 1].

Let us consider now briefly some other particular cases.
The function f(x) = x3, x ∈ [−1, 1], generates δj > 0 for all j and any

partition. On uniform partition, for n even and i = n/2 we get δi/h = h2/2
and δi+k/h = h2(6k2 + 1)/2, k > 1, and then

δi+k
δi+k−1

= 1 +
2

k
+O

(
1

k2

)
. (4.9)

For n odd and i = (n − 1)/2 we have xi = −h/2, xi+1 = h/2, δi/h = δi+1/h
= 5h2/4, δi+k+1/h = (3(2k+1)2/4+1/2)h2 and still (4.9) holds. The assertion
of Lemma about the inclusion of the value Φj+1(µ) takes places if we choose
µj+l ∈ [1 + 2/(k + l − 1)− δ, 1 + 2/(k + l − 1) + δ], l = 0, 1, 2, we only have
to take µ̄j+l = 1 + 2/(k + l − 1) in the proof. Then

ϕ
(
µ̄
−1/2
j

)
+ ϕ

(
µ̄
1/2
j+1

)
= 1− 1

6k2
+O

(
1

k2

)
and other changes in the proof of Lemma are obvious. Taking into account (4.9)
we establish the inclusion Ψj+1(µ) ∈ [1 + 2/k − δ, 1 + 2/k + δ] if the inequality(

1 +
c1
k3

+
2

3
δ + c2δ

2

)(
1 +

2

k
+
c3
k2

)
6 1 +

2

k
+ δ

holds (c3 reflects (4.9)). This is achieved with δ = c0/k
2 where c0 is sufficiently

great and k > k0 for some fixed k0. Now δj/h = 3k2h2 + h2f ′′′j /12 and instead
of (4.2) we have

mj − f ′j = f ′j
1− ϕ((

mj−1

mj
)1/2)− ϕ((

mj+1

mj
)1/2)

ϕ((
mj−1

mj
)1/2) + ϕ((

mj+1

mj
)1/2)

+
h2

12 f
′′′
j

ϕ((
mj−1

mj
)1/2) + ϕ((

mj+1

mj
)1/2)

,

Math. Model. Anal., 20(1):124–138, 2015.
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thus (4.6) is replaced by

mj − f ′j = 3k2h2
(
O

(
1

k2

)
+O(δ)

)
+O

(
h2
)

= O
(
h2
)
. (4.10)

The boundedness of µj for finite number of j could be obtained exactly as
presented above and, consequently, we have mj − f ′j = O(h2) for the function

f(x) = x3, x ∈ [−1, 1].
Next, consider the function f(x) = x2, x ∈ [−1, 1], and uniform partition

on [−1, 1]. For n even, we have xi = 0, i = n/2, and zi = zi+1, thus δi = 0.
We have also δj < 0, j = 0, . . . , i − 1, and δj > 0, j = i + 1, . . . , n. By the
comonotone strategy it should be chosen [xi−1, xi] and [xi, xi+1] quadratic, all
other particular intervals rational. But there is no weak alternation of data
in this section of quadratic intervals and, by the modified strategy, we choose
[xi−1, xi] to be rational, too. For n odd, the point 0 is the midpoint of the
interval [xi, xi+1] with i = (n − 1)/2. Then δj < 0, j = 0, . . . , i, and δj > 0,
j = i + 1, . . . , n. The comonotone strategy makes the subinterval [xi, xi+1] to
be quadratic and all others rational. We have here the weak alternation of
data. It is clear that only a finite number of basic equations corresponding
to the neighbourhood of [xi, xi+1] need the study. The equations of the types
(3.3)–(3.5) corresponding to the points xi−1, xi, xi+1 are now

mi−1

(
ϕ

((
mi−2

mi−1

)1/2)
+ ϕ

((
mi

mi−1

)1/2))
=

1

h
δi−1 = f ′i−1, (4.11)

miϕ

((
mi−1

mi

)1/2)
+

1

3
mi +

1

6
mi+1 =

1

h
δi = f ′i , (4.12)

1

6
mi +

1

3
mi+1 +mi+1ϕ

((
mi+2

mi+1

)1/2)
=

1

h
δi+1 = f ′i+1. (4.13)

Actually, we have to estimate mj − f ′j for j = i − 1, i, i + 1, for j < i − 1 and

j > i+ 1 the reasoning about the function f(x) = x2 sgnx is valid provided we
prove the boundedness of µi = mi−1/mi and µi+2 = mi+2/mi+1. We see that,
for n even, in (4.11) f ′i−1 = −2h, in (4.12) f ′i = 0, in (4.13) f ′i+1 = 2h, for n
odd, f ′i−1 = −3h, fi = −h, fi+1 = h.

Suppose mi−1/mi →∞. First, consider the case c1 6 mi/h 6 c2 with some
c1, c2 < 0. Dividing (4.12) by h, we see that mi+1/h→∞. Then (4.13) divided
by h gives a contradiction. Secondly, let mi/h → −∞. Dividing (4.12) by
mi we conclude that mi+1/mi → −∞. Then (4.13) divided by mi leads to a
contradiction. Thirdly, let mi/h→ 0, however mi < 0. Then h/mi → −∞ and
|h/mi| → ∞. Consider the case n even (then f ′i = 0). Dividing (4.12) by mi

gives mi+1/mi → −∞, we have also ϕ((mi−1/mi)
1/2) ∼ |mi+1/mi|/6 or

mi−1

mi
∼ e

1
3 |

mi+1
mi
|
. (4.14)

Dividing (4.11) by mi we get(
mi−1

mi

)1/2

+
mi−1

mi
ϕ

((
mi−2

mi−1

)1/2)
∼ 2

∣∣∣∣ hmi

∣∣∣∣
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and according to (4.14)

e
1
6 |

mi+1
mi
|
+ e

1
3 |

mi+1
mi
|
ϕ

((
mi−2

mi−1

)1/2)
∼ 2

∣∣∣∣ hmi

∣∣∣∣. (4.15)

Dividing (4.13) by mi gives

1

3

∣∣∣∣mi+1

mi

∣∣∣∣+

∣∣∣∣mi+1

mi

∣∣∣∣ϕ((mi+2

mi+1

)1/2)
∼ 2

∣∣∣∣ hmi

∣∣∣∣.
The boundedness of mi+2/mi+1 means that |mi+1/mi| and 2|h/mi| have the
same order and the left hand side of (4.15) has also the order of |mi+1/mi| which
is impossible. It remains to consider the case mi+2/mi+1 → ∞. Dividing the
counterpart of (4.11) corresponding to xi+2 by mi+1 gives

mi+2

mi+1

(
ϕ

((
mi+1

mi+2

)1/2)
+ ϕ

((
mi+3

mi+2

)1/2))
∼ h

mi+1
, (4.16)

which means also that h/mi+1 → ∞ because mi+1/mi+2 → 0. Then (4.13)
divided by mi+1 implies that h/mi+1 has the order of log(mi+2/mi+1) which is
in contradiction with (4.16). Consider now the case of n odd. Dividing (4.12)
by mi we get

ϕ

((
mi−1

mi

)1/2)
+

1

3
=

1

6

∣∣∣∣mi+1

mi

∣∣∣∣+

∣∣∣∣ hmi

∣∣∣∣.
The possibility ϕ((mi−1/mi)

1/2) ∼ |mi+1/mi| (the quotient is bounded from
above and below by positive constants) could be treated as in the case of n
even. If ϕ((mi−1/mi)

1/2) ∼ |h/mi| then dividing (4.11) by mi we get

mi−1

mi
ϕ

((
mi−2

mi−1

)1/2)
+
mi−1

mi
ϕ

((
mi

mi−1

)1/2)
= 3

∣∣∣∣ hmi

∣∣∣∣.
Here the right hand side is of order log(mi−1/mi) while the left hand side is of
order at least (mi−1/mi)

1/2 which is a contradiction. This completes the proof
of the boundedness of mi−1/mi from above.

Suppose next that mi−1/mi → 0, then mi/mi−1 → ∞. Dividing (4.11) by
mi−1 we get

ϕ

((
mi−2

mi−1

)1/2)
+ ϕ

((
mi

mi−1

)1/2)
= l

∣∣∣∣ h

mi−1

∣∣∣∣
with l = 2 or l = 3 depending on n to be even or odd. This means that
|h/mi−1| → ∞. If ϕ((mi−2/mi−1)1/2) is of order |h/mi−1| then

mi

mi−1
∼ ek|

h
mi−1

|
(4.17)

with some constant k (here also, ∼ means that the quotient is two-sided
bounded). Dividing (4.12) by mi−1 we see that

mi+1

mi−1
/
mi

mi−1
→ −2. (4.18)
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Dividing (4.13) by mi−1 gives

1

6

mi

mi−1
+

(
1

3
+ ϕ

((
mi+2

mi+1

)1/2))
mi+2

mi−1
= −l

∣∣∣∣ h

mi−1

∣∣∣∣
with l = 1 or l = 2 and this is a contradiction due to (4.18) and (4.17). If
ϕ((mi−2/mi−1)1/2) is of order |h/mi−1| then

mi−2

mi−1
∼ ek|

h
mi−1

|
. (4.19)

Now the counterpart of (4.11) corresponding to the point xi−2 divided by mi−1
gives

mi−2

mi−1
ϕ

((
mi−3

mi−2

)1/2)
+

(
mi−2

mi−1

)1/2

∼
∣∣∣∣ h

mi−1

∣∣∣∣,
which is a contradiction due to (4.19) and this ends the proof of boundedness
of mi−1/mi from below by a positive constant.

As any point xj is an endpoint of a rational interval and the quotient of two
values mj in any rational interval is bounded from above and below by positive
constants, we obtain the estimate mj − f ′j = O(h) for all j like in the case of

function f(x) = x2 sgnx.
The function f(x) = |x|3, x ∈ [−1, 1], could be treated joining the argu-

ments from treatments of two previous functions. Here we have the estimate
mj − f ′j = O(h2).

Ending this section let us indicate the framework at establishing the es-
timates. First, we prove the boundedness of µj for finite number of indices
j = i, . . . , i + k0 (or for j < i), with suitable fixed k0 and then use (4.6) or
(4.10). For j > i+ k0 (or j < i− k0) we use Bohl–Brouwer fixed point princi-
ple as it was done by us several times [2, 3, 4] basing on inclusions (4.5) or its
analogue in the analysis of function f(x) = x3.

However, we need a boundary value µj+1 = µi+k0 but, e.g., we take it from
the estimates mj = f ′j + α1, mj+1 − f ′j+1 = α2, |α1| 6 ch, |α2| 6 ch, c =const,
then µj+1 = mj+1/mj = 1 + 1/k0 + δ, |δ| 6 c0/k0. Such an estimate is valid
due to (4.6) but works as well if we use (4.10). At the other end we choose as
boundary condition µn+1 = 1 + 2/n or µn+1 = 1 + 1/n for the cases f(x) = x2

or f(x) = x3, respectively.

5 Convergence Results

In Section 4 we established the estimates mi − f ′i = O(hα), 0 < α 6 2, de-
pending on the function of f to histopolate. In the beginning we show how
this implies the estimate ‖S′− f ′‖∞ = O(hα). We mentioned already that this
yields ‖S − f‖∞ = O(h1+α).

The representation (3.1) gives on a rational interval [xi−1, xi]

S′(x) =
mi−1

(1 + x−xi−1

h ((mi−1

m1
)1/2 − 1))2

(5.1)
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and on a quadratic interval [xi−1, xi] from (3.2) follows

S′(x) = (1− t)mi−1 + tmi, (5.2)

actually, as the linear interpolation representation for derivative S′. On rational
intervals we have using (5.1) and (4.1)

S′(x)− f ′(x) = S′(x)− f ′j−1 + f ′j−1 − f ′(x)

=
1
hδi−1

(1 + x−xi−1

h ((mi−1

mi
)1/2 − 1))2(ϕ((mi−2

mi−1
)1/2) + ϕ(( mi

mi−1
)1/2))

− f ′i−1 +O(h). (5.3)

In the case of function f(x) = x2 and f(x) = x2 sgnx it holds δi−1/h = f ′i−1
and (5.3) gives S′(x) − f ′(x) = O(h) because f ′j+1 = 2kh, j = n/2 + k (or
j + 1 = (n− 1)/2 + k), j > n/2 and µj+1 = 1 +O(1/k). Near the central knot
we only use the boudedness of µj . The same reasoning works as well in the
case of functions f(x) = x3 and f(x) = |x|3 for k 6 k0, k0 fixed, because of
f ′j+1 = 3k2h2 and f ′i−1− f(x) = O(h2) due to f ′′(x) = O(h), 0 6 x 6 xn/2+k0 .

Then we obtain S′(x)− f ′(x) = O(h2). For k > k0, use the expansion

S′(x)− f ′(x) = mi−1 − f ′i−1 + (x− xi−1)(S′′i−1 − f ′′i−1)

+
(x− xi−1)2

2
(S′′′ − f ′′′)(ξ). (5.4)

Let us show how to establish S′′i−1 − f ′′i−1 = O(h). From (5.1) follows

S′′i−1 = −2mi−1

h

((
mi−1

mi

)1/2

− 1

)
.

It was shown that (i > n/2 + k0) µi = mi/mi−1 = 1 + 2/k + O(1/k2), then
(mi−1/mi)

1/2 − 1 = −1/k + O(1/k2)(see, e.g., [3]), f ′i−1 = 3k2h2 and we get
due to mi−1 = f ′i−1 +O(h2)

S′′i−1 =
−2(3k2h2 +O(h2))

h

(
−1

k
+O

(
1

k2

))
= 6kh+O(h).

Now, as f ′′i−1 = 6kh, we get S′′i−1 − f ′′i−1 = O(h). In addition, (5.1) gives

S′′′(x) =
6mi−1

1
h2 ((mi−1

mi
)1/2 − 1)2

(1 + x−xi−1

h ((mi−1

mi
)1/2 − 1))4

and using again (mi−1/mi)
1/2 − 1 = −1/k +O(1/k2), mi−1 = 3k2h2 +O(h2),

we obtain the uniform boundedness of S′′′ and from (5.4) S′(x)−f ′(x) = O(h2)
for k > k0, too. On the quadratic interval (5.2) gives

S′(x)− f ′(x) = (1− t)(mi−1 − f ′i−1) + t(mi − f ′i) + (1− t)f ′i−1 + tf ′i − f ′(x)

and from this the required order follows if we take into account the order of
linear interpolation on dependence on the smoothness of f .
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It is quite clear how all presented reasonings could be generalized to the
case considered at the beginning of Section 4. Let us indicate some important
moments. If in the point ci the function f ′ do not change the sign, we should
argue as in the case of f(x) = x2 sgnx or f(x) = x3. Then in (4.3) δj+1/δj = 1+
l/k+O(1/k2) with some constant l which can be fractional. Such a fractionality
of constants appears also in other formulae but all presented steps of the proofs
are valid. If f ′ changes the sign in the point ci, we follow the proof of the cases
of f(x) = x2 or f(x) = |x|3 and again the fractionality phenomina should be
taken into account. We have proved the following

Theorem. Suppose that a function f has a finite number of points ci in [a, b]
such that f ′(ci) = 0 and

lim
x→ci
x<ci

f ′(x)

|x− ci|αi1
= γi1 6= 0, lim

x→ci
x>ci

f ′(x)

|x− ci|αi2
= γi2 6= 0.

Let α = mini min{αi1, αi2, 2}. We also assume that f ′ ∈ Lip α if 0 < α 6 1
or f ′′ ∈ Lip(α − 1) if 1 < α 6 2. Then the combined histopolating spline S
which is constructed by comonotone or modified comonotone strategy, has in
the uniform norm on [a, b] the convergence rate ‖S − f‖∞ = O(h1+α) together
with ‖S′ − f ′‖∞ = O(hα).

Remark. We formulated and proved the results in the case of uniform mesh.
It is quite evident that our arguments work also in the case of a mesh with
0 < q1 6 hj/hi 6 q2 for |i − j| = 1 where q1, q2 are constants. The reason
here is that far enough from the points ci the results hold by [3], but in finite
number of intervals around the points ci such nonuniformity can change only
the constants, not the order of all given estimates. However, around the points
ci where the theoretical rate of convergence is lower than in regions with strict
uniform monotonicity, we can use the mesh with smaller step as the idea of
adaptive meshes. This compensates such a lower rate.

6 Numerical Tests

We histopolated the functions f(x) = x2 sgnx, f(x) = x3, f(x) = x2 and
f(x) = |x|3 on the interval [−1, 1]. For the first and third functions we obtain
convergence rate O(h2) and for others the rate O(h3). In our tests we used
the uniform mesh, for the third function we used also a nonuniform mesh,
where central knots were calculated as x(n+1)/2 = h/2, x(n+1)/2−1 = −h/2,
x(n+1)/2−2 = −3h/2, x(n+1)/2+1 = 3h/5. Other knots were spaced uniformly
on rest parts of the interval, i.e., xi = x0 + i(x(n+1)/2−2 − x0)/((n+ 1)/2− 2),
i = 1, . . . , (n+1)/2−3 and x(n+1)/2+1+i = xn− (n−1)(xn−x(n+1)/2+1)/((n+
1)/2−2), i = 1, . . . , n−1. For the function f(x) = x2 we made test for both, n
odd and n even. Other functions were tested only for n odd or only for n even
and on uniform mesh. Selection of the subinterval was made by comonotone
shape-preserving strategy in case of n odd and by modified comonotone shape-
preserving strategy in case of n even.
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Table 1. Numerical results for f(x) = x2, x ∈ [−1, 1], uniform mesh, n odd.

n 5 15 45 135 405

εn 7.34× 10−3 8.39× 10−4 9.33× 10−5 1.04× 10−5 1.15× 10−6

εn/εn/3 8.741958 9.000082 9.000000 9.000000

Table 2. Numerical results for f(x) = x2, x ∈ [−1, 1], uniform mesh, n even.

n 8 16 32 64 128

εn 7.88× 10−3 1.97× 10−3 4.93× 10−4 1.23× 10−4 3.08× 10−5

εn/εn/2 3.998068 3.999997 4.000000 4.000000

Table 3. Numerical results for f(x) = x2, x ∈ [−1, 1], nonuniform mesh, n odd.

n 5 15 45 135 405

εn 3.95× 10−2 9.44× 10−4 1.05× 10−4 1.16× 10−5 1.29× 10−6

εn/εn/3 41.790849 9.012392 9.003344 9.001046

Table 4. Numerical results for f(x) = x3, x ∈ [−1, 1], uniform mesh, n even.

n 8 16 32 64 128

εn 3.70× 10−3 5.23× 10−4 6.81× 10−5 8.66× 10−6 1.09× 10−6

εn/εn/2 7.086933 7.681549 7.856177 7.931600

Table 5. Numerical results for f(x) = |x3|, x ∈ [−1, 1], uniform mesh, n odd.

n 5 15 45 135 405

εn 1.27× 10−2 6.32× 10−4 2.47× 10−5 9.31× 10−7 3.47× 10−8

εn/εn/3 20.130665 25.566869 26.557522 26.858469

Table 6. Numerical results for f(x) = x2 sgnx, x ∈ [−1, 1], uniform mesh, n even.

n 8 16 32 64 128

εn 4.39× 10−3 1.10× 10−3 2.75× 10−4 6.86× 10−5 1.72× 10−5

εn/εn/2 3.998591 3.999998 4.000000 4.000000

We used the boundary conditions α = f ′(x0) and β = f ′(xn). The ap-
proximates to the errors ‖S − f‖∞ were calculated on ten times refined grid
as

εn = max
16i6n

max
16k610

∣∣∣∣S(xi−1 +
kh

10

)
− f

(
xi−1 +

kh

10

)∣∣∣∣.
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Nonlinear system of mi, i = 0, . . . , n, was solved by Newton’s method. Results
of numerical tests are presented in Tables 1–6.

Numerical results are completely in concordance with theoretical ones.
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