
Mathematical Modelling and AnalysisVolume 4, 1999, pages 124{134c 1999 TechnikaPARALLEL COMPUTATION OFROTATING FLOWSL.K. LUNDIN1, V.A. BARKER2 and J.N. S�RENSEN31Los Alamos National Laboratory/CIC-3MS B256, Los Alamos, NM 87545, USA2Department of Mathematical Modelling, Technical University of Denmark3Department of Energy Engineering, Technical University of DenmarkDK-2800 Lyngby, DenmarkE-mail: 1lkl@lanl.gov, 2vab@imm.dtu.dkE-mail: 3jns@et.dtu.dkReceived September 30, 1999ABSTRACTThis paper deals with the simulation of 3-D rotating ows based on the velocity-vorticityformulation of the Navier-Stokes equations in cylindrical coordinates. The governingequations are discretized by a �nite di�erence method. The solution is advanced to a newtime level by a two-step process. In the �rst step, the vorticity at the new time level iscomputed using the velocity at the previous time level. In the second step, the velocity atthe new time level is computed using the new vorticity. We discuss here the second partwhich is by far the most time-consuming. The numerical problem is that of solving asingular, large, sparse, over-determined linear system of equations, and the iterativemethod CGLS is applied for this purpose. We discuss some of the mathematical andnumerical aspects of this procedure and report on the performance of our software on awide range of parallel computers.1. INTRODUCTIONRotating ows play an important role in nature as well as in industry. Innature they are found, for example, in cyclones and tornados. In industry theyare used in combustion chambers to mix fuel and air, and in cyclone-separatorswhere the rotation contributes to the dissolution of phases of di�erent density.Rotating ows have a number of interesting characteristics, such as the abilityto maintain inertia waves and the propagation of vortex break-down.The physical system considered in this paper is that of a cylinder of radius



Parallel Computation of Rotating Flows 125R and height H containing a uid with kinematic viscosity �. A no-slipboundary condition applies everywhere on the cylinder surface. The motionof the uid depends on the initial motion of the uid and the motion of theuid on the boundary of the cylinder. LetD denote the interior of the cylinderand @D its boundary. A cylindrical coordinate system is placed in the cylinderwith origin at the center of the bottom surface. Thus the typical point of Dis (r; �; z), where 0 � r < R, 0 � � < 2� and 0 < z < H .Our mathematical model consists of the Navier-Stokes equations in thevelocity-vorticity formulation,@~!@t +r� (~! � ~v) = 1Rer�r� ~!; (1.1)r� ~v = ~!; (1.2)r � ~v = 0 (1.3)for (r; �; z) 2 D; t > 0. Here Re = Ru0=�, where u0 is a problem-dependentcharacteristic speed. The unknowns of the problem are the velocity vector~v(r; �; z; t) 2 R3 and the vorticity vector ~!(r; �; z; t) 2 R3 . The componentsof ~v and ~! are denoted ~v = (vr; v�; vz) = (U; V;W ) and ~! = (!1; !2; !3),respectively. It is assumed that ~v (and hence ~! via (1.2) is known everywherein D for t = 0 and everywhere on @D for t > 0.Our procedure for solving problem (1.1)-(1.3) is to advance the solutionfrom time level tn to tn+1 in two steps: First, the vorticity vector ~!n+1 is foundby solving (1.1) with given velocity vector ~vn. Then, the velocity vector ~vn+1is found by solving the system (1.2)-(1.3) with given vorticity vector ~!n+1.Since the second step has proven to be the most time consuming by far, wehenceforth con�ne our attention to that.2. THE DISCRETE SYSTEMEquations (1.2)-(1.3) in cylindrical coordinates are:@(rU)@r + @V@� + r@W@z = 0; (2.1)@W@� � r@V@z = r!1; (2.2)@U@z � @W@r = !2; (2.3)@(rV )@r � @U@� = r!3: (2.4)Viewing this system as an independent problem, the correct boundary condi-tion is the speci�cation of the normal component of the velocity vector on @D.(See [4]). Consequently, the tangential velocity component on @D is part of



126 L.K. Lundin, V.A. Barker, J.N. S�rensenthe solution. Hence we have a possible conict, since the boundary conditionfor problem (1.1)-(1.3) also determines the tangential velocity component on@D. Experience has shown that the following approach to discretizing theCauchy-Riemann equations is e�ective [5]:� The correct tangential velocity component on @D is used in the discretiza-tion of (2.1).� Di�erence equations arising from (2.2)-(2.4) are not used in those caseswhere one or more grid points belong to @D.To discretize the cylinder we divide it into cells with vertices(ri; �j ; zk) = (i�r; j��; k�z)for i = 0; 1; : : : ; N1 , j = 0; 1; : : : ; N2�1 , k = 0; 1; : : : ; N3 , where �r = R=N1 ,�� = 2�=N2 , and �z = H=N3 . (See Fig. 1.)

Figure 1. A portion of the discretized cylinder.The cell vertices de�ne the grid that is used in the discretization of (2.1)-(2.4). In introducing a notation for the unknown velocity components it isnecessary to distinguish between grid points o� the center axis (i > 0) andthose on the axis (i = 0). In the �rst case the typical velocity componentsare denoted (Ui;j;k; Vi;j;k ;Wi;j;k). In the second case the radial and tangential



Parallel Computation of Rotating Flows 127components of the velocity vector are not de�ned. Here we express the velocityvector in terms of Cartesian coordinates~vr=0 = (U0; V0;W0)and discretize these by~vr=0 = (U0 k; V0 k;W0 k); k = 0; 1; : : : ; N3:In the di�erence equations that involve grid points at r = 0 there is a needfor the components of the horizontal velocity in the directions � and �+�=2.These are expressed byU0;j;k = U0 k cos �j + V0 k sin �j ;V0;j;k = V0 k cos �j � U0 k sin �j ;where j = 0; 1; : : : ; N2 � 1; k = 0; 1; : : : ; N3. (See Fig. 2.)6V0 k
-U0 k��������: U0;j;kCCCCCCC

COV0;j;k
�j�j

Figure 2. Horizontal velocity at i = 0.Space limitations prohibit a complete description of the di�erence equa-tions here, (see [2] and [3] for details), but the basic ideas are the following:Equation (2.1) is discretized on every cell by balanced �nite di�erence approx-imations that yield a truncation error of second order with respect to the stepsizes. To illustrate, the discretization of the �rst term in (2.1) with respect tothe cell in Fig. 3 is@(rU)@r � 14�r f(rU)i+1;j;k + (rU)i+1;j;k+1 + (rU)i+1;j+1;k+1+(rU)i+1;j+1;k � (rU)i;j;k + (rU)i;j;k+1 + (rU)i;j+1;k+1 + (rU)i;j+1;kgwhere, for example, (rU)i+1;j;k = ri+1Ui+1;j;k . Cells which touch the centeraxis are 5-sided and require special treatment. Regarding equations (2.2)-(2.4), each of these is discretized on just one of the cell surfaces. For example,



128 L.K. Lundin, V.A. Barker, J.N. S�rensen(2.2) is discretized on the surface r = ri (see Fig. 3) as follows:1�� �12 [Wi;j+1;k +Wi;j+1;k+1 ]� 12 [Wi;j;k +Wi;j;k+1]�� ri�z �12 [Vi;j;k+1 + Vi;j+1;k+1]� 12 [Vi;j;k + Vi;j+1;k ]�= ri4 [(!1)i;j;k + (!1)i;j;k+1 + (!1)i;j+1;k+1 + (!1)i;j+1;k ] :
(i+1,j,k)(i,j+1,k)

(i,j,k)

(i+1,j+1,k)

(i,j+1,k+1)

(i+1,j+1,k+1)
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(i,j,k+1)

Figure 3. A typical cell.The total set of di�erence equations constitutes an overdetermined linearalgebraic system which, after an ordering of the unknowns and equations, canbe expressed in the matrix-vector formAx = b: (2.5)Let N denote the number of grid points in the cylinder. The dimensions ofA, x and b are, respectively, m � n, n � 1 and m � 1, where m � 4N andn � 3N . Our chosen orderings of unknowns and equations proceed upwardthrough the cylinder, level by level, producing a matrix A with the sparsitypattern shown in Fig. 4. This matrix can be partitioned in a form involvingonly four distinct blocks: A1, A2, A3 and A4. Blocks A1 and A4 appear onlyat the ends of the main diagonal, while block rows consisting of A2 and A3are repeated between these.An important property of A is that when N2 is even then its null spaceN(A) = fx 2 RnjAx = 0ghas dimension N1�2. Further, for each of the values i = 2; 3; : : : ; N1�1 thereis a vector in null(A) with the nonzero componentsWi;j;k = � 1; j + k even;�1; j + k odd:
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nz = 21779Figure 4. Sparsity pattern of the matrix A.These vectors comprise an orthogonal basis of N(A).Overdetermined systems are generally inconsistent; i.e., they have no solu-tion. However, (2.5) is \almost" consistent in the sense that the minimumleast-squares error e = minx2Rn k b�Ax k : (2.6)where k y k= (yT y)1=2 , is at the level of the truncation errors in the dif-ference approximations used above. This is a consequence of the fact thatproblem (2.1)-(2.4) is itself consistent, being satis�ed by the solution of prob-lem (1.1)-(1.3).To obtain a completely consistent algebraic problem we replace (2.5) by itsnormal system, ATAx = ATb; (2.7)ATA is a symmetric semipositive de�nite matrix of order n. This system hasthe solution set S(A;b) = fx 2 Rnjx = bx+ y; y 2 N(A)g;where bx is the unique solution of (2.7) orthogonal to N(A). It is easy to showthat k b�Ax k= e for all x 2 S(A;b) , where e is given by (2.6).To obtain a well-formulated problem we need a criterion for selecting pre-cisely one vector from S(A;b). An analysis, which we omit, shows that if x istaken to be the grid values of a given, smooth velocity �eld (U; V;W ), then thecomponent of x in N(A) goes to zero very rapidly as the grid is re�ned. On



130 L.K. Lundin, V.A. Barker, J.N. S�rensenthe basis of this observation we identify bx as the physically relevant solutionof (2.7).3. A CONJUGATE GRADIENT METHODThe normal system (2.7) may be solved iteratively by the conjugate gradientmethod, a procedure that has several formulations. The one adopted here,CGLS ( [1]), is shown below. The oating-point operation counts are givenfor each step:.a) p(k+1) = s(k) + �kp(k) 2n FLOPsb) q(k+1) = Ap(k+1) 32n FLOPsc) �k+1 = kq(k+1)T q(k+1) 83n FLOPsd) r(k+1) = r(k) � �k+1q(k+1) 83n FLOPse) x(k+1) = x(k) + �k+1p(k+1) 2n FLOPsf) s(k+1) = AT r(k+1) 32n FLOPsg) k+1 = s(k+1)T s(k+1) 2n FLOPsh) �k+1 = k+1k 1 FLOPsThe iterations are initialized by setting �1 = 0; p(1) = ~0; r(1) = b � Ax(1)and, with k = 0, executing steps f) and g).Regarding the choice of the initial vector x(1), when the conjugate gradientmethod is applied to (2.7) then the solution it �nds is the vector in S(A;b)with the same null space component as x(1). Since we want to �nd the vectorin S(A;b) with no null space component, an obvious choice of initial vector isx(1) = 0. Recall, however, that the computational problem under discussionis part of a time-stepping procedure. Since the velocity at the new time levelwill typically be close to the velocity at the previous time level, one would liketo use the previous velocity as x(1) in the new CGLS computation. Now thisis possible provided only that the velocity computed at the �rst time levelt = t1 has no null space component.4. PERFORMANCEThe procedure outlined above is the basis for a computer program that hasbeen run over a wide range of machines. For implementation details see [3].As pointed out in [5], the rate of convergence of the CGSL iterations can besigni�cantly improved by equilibrating the rows of (2.5), a variant we denoterCGLS. Further, another variant, rCGLS-1, is sometimes e�ective in reducingcommunication costs of distributed computing. (See [3]).For our experiments and simulations we have used the computers shownin the table below. Figs. 5 and 6 show the parallel speedup achieved on anumber of computers. We have obtained the speed-ups by measuring for eachcomputer the elapsed wall-clock time, Tn, spent performing 100 iterations ofrCGLS using n processors. The parallel speed-up is then computed as T1=Tn.



Parallel Computation of Rotating Flows 131In all experiments the problem size is (Nr; N�; Nz) = (63; 66; 129) leading toa matrix with dimensions app. 1:5 � 106 � 2:0 � 206 and about 700 distinctnon-zeros. Calculations are done in single precision1.Table 1.Computer Short Name CPU's Peak [MFLOP/s] TnFujitsu VPP700 VPP 32 70400 1:00�Cray T3E/450 T3E450 64 57600 2:75�Cray T3E/300 T3E300 64 38400 3.67NEC SX-4 NEC 16 35200 1:97�SGI Origin 2000/250 O2K250 64 32000 1:41�Cray T3D/150 T3D 64 19200 6.73IBM SP-2 SC/120 SP120 32 15360 4.08SGI Origin 2000/195 O2K195 32 12480 2.68Convex SPP-2000 SPP 16 11520 7.78IBM SP-2 Thin/67 SPthin 32 8512 8:62�SGI PC R8000 R8K 16 5760 5.84IBM SP-2 Wide/67 SPwide 16 4256 8.57SGI PC R4000 R4K 16 4000 11.26Meiko CS-2 CS2 14 1400 22.67SGI PC R10000 R10K 6 2328 23.90CRAY T90 T90 1 1920 65.54SUN HPC450 SUN 2 1000 45.67CRAY C92A C90 1 960 29.02HP 9000/180 HP 1 720 166.24IBM SP-2 SC/135 SP135 1 540 49.10CRAY Y-MP YMP 1 330 62.72Pentium PRO/200 PC 1 200 370.76Each of the timings is the fastest of rCGLS and rCGLS-1. Tn in the tableis normalized to Tn on the fastest computer, the VPP-32. The actual FLOP-rate obtained on this computer is 9012 MFLOP/s. Timings Tn obtained withrCGLS-1 are marked with * in the table.Since the maximum number of processors per computer varies from 6 to 64,the results are shown in two plots: one with measurements with at most 16processors and another with measurements with at least 16 processors.Some comments:� With SPthin the measurements on 8, 16 and 32 processors are with rCGLS-1. For the NEC this is the case for 14 and 16 processors. With the NECthere is no speed-up from 14 to 16 processors with rCGLS because thework is too small compared with the time spent in the inner product com-munication. With our largest test case, (Nr; N�; Nz) = (127; 256; 193), thespeed-up on NEC-16 increases to 80% of the number of processors. With1Single-precision on a Cray and NEC is equal to double precision on the other testedcomputers.
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Figure 5. Parallel speed-up, at most 16 processors.
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Figure 6. Parallel speed-up, at least 16 processors.this resolution the speed-up on the VPP-32 increases to from 76% to 86%of the number of processors.� R4K, R8K, O2K195 and O2K250 exhibit super-linear speed-up even withthis rather large system. This happens because each CPU has a much largercache than the other computers and because of the low storage requirementfor A. There is however no super-linear speed-up with our larger test cases.� In the described test case the load-balance is only optimal with 2p proces-sors. This explains why the speed-up of the NEC and the CS22 at 12 and14 processors is low.� The speed-up of the IBM SP-2 (all three variants) is quite low. This maybe because the SP-2 nodes compute quite fast. The timings for 1 processor2Tests are conducted with one CPU per node.



Parallel Computation of Rotating Flows 133vary with less than 1%, while the timings with 32 processors vary with morethan 20%. We therefore believe the relatively poor speed-up is also causedby the fact that the inter-processor communication in our SP-2 experimentsis competing for the bandwidth of the inter-processor connection againstthe communication between processors of other users.� With T3D and T3E450 the speed-up from 32 to 64 processors is modestand with O2K250 the same speed-up is poor. With 64 processors thereare only two levels per processor, and therefore not much computationto overlap with the communication. This reveals a weakness of the chosenparallelization strategy: with a massively parallel computer a large numberof levels is necessary to obtain a good speed-up. There us no speed-up curvefor the T3E300 because this machine does not have enough memory to runthe code on a single processor. The speed-up from 2 to 64 processors ishowever 29.7 which is 92.7% of a perfect speed-up. Since the processorsof this computer operate at a lower clock than those of the T3E450, thecommunication overhead is relatively smaller, which is why rCGLS-1 is notfaster on this machine.It is common to measure the parallel scalability of an algorithm by measur-ing the scaled speed-up. Scaled speed-up is obtained by increasing the numberof processors while keeping the amount of work per processor constant. Witha perfectly parallel algorithm such an experiment should produce timings thatare independent of the number of processors. An easy way to construct suchan experiment for our problem would be to assign a �xed number of k-levelsto each processor and then simply increase the vertical resolution along withthe number of processors. However, due to the special cases of our Cauchy-Riemann equations at the �rst and last k-levels this approach would result inan uneven amount of work per processor, making it di�cult to analyze scaledspeed-up. We have therefore not pursued this.REFERENCES[1] A. Bj�orck. Numerical Methods for Least Squares Problems. SIAM, 1996.[2] L. K. Lundin. Computing the velocity of a rotating ow. Parallel Computing, 24 (14),1998, 2021 { 2034.[3] L. K. Lundin. Parallel Computation of Rotating Flows. (Ph.D. thesis), Technical ReportIMM-PHD-1998-49, Department of Mathematical Modelling, Technical University ofDenmark, 1998.[4] C. G. Speziale. On the advantages of the vorticity-velocity formulation of the equationsof uid dynamics. J. Comp. Phys., 73 (2),1987, 476 { 480.[5] S. N. S�rensen, W. Z. Shen and M. O. L. Hansen. Vorticity-velocity formulation of the3D Navier-Stokes equations in cylindrical coordinates. J. Comp. Phys. , (submitted).



134 L.K. Lundin, V.A. Barker, J.N. S�rensenLYGIAGRETIEJI BESISUKAN�CIUc SKYS�CIUc MODELIAVIMOALGORITMAIL.K. LUNDIN, V.A. BARKER, J.N. SORENSENDarbe sprend�ziamas trimatis Navje-Stokso u�zdavinys, kai lygtys formuluojamos cilindrin_ejekoordina�ciuc sistemoje, o ne�zinomaisiais yra grei�cio komponent_es ir s�ukurys. Diferenciali-n_es lygtys aproksimuojamos baigtiniuc skirtumuc metodu. Vienac algoritmo �zingsnic sudarodu etapai. Pirmajame etape panaudodami senas grei�cio komponen�ciuc reik�smes apskai�ciuo-jame s�ukurio reik�smec naujuoju laiko momentu. Antrajame etape apskai�ciuojamos naujosgrei�cio komponen�ciuc reik�sm_es. Straipsnyje did�ziausias d_emesys skiriamas antrajam etapui,kadangi �sios algoritmo dalies realizacija reikalauja daugiausia skai�ciavimuc. Sprend�ziamaperpildyta tiesiniuc lyg�ciuc sistema, kurios matrica yra siguliari, reta ir didel_es dimensijos.Naudojamas CGLS iteracinis metodas. Aptariamas lygiagretusis algoritmas ir pateikiamirezultatai skai�ciavimo eksperimentuc, kurie buvo atlikti su icvairaus tipo lygiagre�ciaisiaiskompiuteriais.


