Numerical Simulations For Non Conservative Hyperbolic System. Application to Transient Two-Phase Flow with Cavitation Phenomenon


A numerical method for simulating transient flows of gas-liquid mixtures is proposed. The mathematical model, established for a suspension of gas bubbles in liquid, includes an equation taking into account the relative velocity between the gas and liquid. A numerical technique based on the Mac Cormack scheme combined with the method of characteristics is presented. Theoretical results for transients initiated by a rapid closing valves are compared with measurements. A good agreement is found particularly for large values of initial dissolved gas concentration.

Keyword : non conservative system, MacCormack scheme, hyperbolic system, two phase flow, cavitation

How to Cite
El Idrissi, A., Achchab, B., & Agouzal, A. (2019). Numerical Simulations For Non Conservative Hyperbolic System. Application to Transient Two-Phase Flow with Cavitation Phenomenon. Mathematical Modelling and Analysis, 24(2), 218-235.
Published in Issue
Feb 5, 2019
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


R. Abgrall and S. Karni. A comment on the computation of non-conservative products. Comput. Phys., 229(8):2759–2763, 2010.

A. Bernard-Champmartin, O. Poujade, J. Mathiaud and J.M. Ghidaglia. Modelling of an homogeneous equilibrium mixture modelHEM. Acta Applicandae Mathematicae, 129(1):1–21, 2014.

A. Biesheuvel and L.V. Wijngaarden. Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. Fluid Mech., 148(11):301–318, 1984.

A. Canestrelli, A. Siviglia, M. Dumbser and E.F. Toro. Well-balanced high-order centred schemes for non-conservative hyperbolic systems. applications to shallow water equations with fixed and mobile bed. Adv. Water Resour., 32(6):834–844, 2009.

C.E. Castro and E.F. Toro. A Riemann solver and upwind methods for a twophase flow model in non-conservative form. Numer. Meth. Fluids, 50(3):275-307, 2006.

P.J. Mart´ınez Ferrer, T. Fl˚atten and S.T. Munkejord. On the effect of temperature and velocity relaxation in two-phase flow models. ESAIM: M2AN,
46(2):411–442, 2012.

U.S. Fjordholm and S. Mishra. Accurate numerical discretizations of nonconservative hyperbolic systems. ESAIM: M2AN, 46(1):187–206, 2012.

A. Qadi El Idrissi. Ecoulement Transitoire en Conduite avec Prise en Compte de Ph´enom`enes Diphasiques. Thesis, Institut National des Sciences Appliques de Lyon (France), 1996.

A. Jafarian and A. Pisheva. An exact multiphase Riemann solver for compressible cavitating flows. Multiphase Flow, 88:152–166, 2017.

D. Liuzzi. Two-Phase Cavitation Modelling. Thesis, University of Rome - La Sapienza, 2012.

S.T. Munkejord, S. Evje and T. Fl˚atten. A Musta scheme for a nonconservative two-fluid model. SIAM J. Sci. Comput., 31(4):2587–2622, 2009.

M.L. Munoz-Ruiz and C. Par´es. Godunov method for nonconservative hyperbolic systems. Math. Model. Numer. Anal, 41(1):169–185, 2007.

C. Par´es. Numerical methods for nonconservative hyperbolic systems: A theoretical framework. SIAM J. Numer. Anal., 44(1):300–321, 2006.

A. Prosperetti and L.V. Wijngaarden. On the characteristics of the equations of motion for a bubbly flow and the related problem of critical flow. Eng. Math., 10(2):153–162, 1976.

O.V. Vasilyev R.S. Lagumbay and A. Haselbacher. Homogeneous equilibrium mixture model for simulation of multiphase/multicomponent flows. Numer. Meth. Fluids, 00:1–6, 2007.

N.D. Tam. Fluid Transients in Complex Systems with Air Entrainment. Thesis, National University of Singapore, 2009.

H.S. Tang and D. Huang. A second-order accurate capturing scheme for 1D inviscid flows of gas and water with vacuum zones. Comput. Phys., 128:301–318, 1996.

D.C. Wiggert and M.J. Sundquist. The effect of gaseous cavitation on fluid transients. Fluids Eng., 101(1):79–86, 1979.