Share:


Contraction-mapping algorithm for the equilibrium problem over the fixed point set of a nonexpansive semigroup

    Trinh Ngoc Hai Affiliation
    ; Le Qung Thuy Affiliation

Abstract

In this paper, we consider the proximal mapping of a bifunction. Under the Lipschitz-type and the strong monotonicity conditions, we prove that the proximal mapping is contractive. Based on this result, we construct an iterative process for solving the equilibrium problem over the fixed point sets of a nonexpansive semigroup and prove a weak convergence theorem for this algorithm. Also, some preliminary numerical experiments and comparisons are presented.


First Published Online: 21 Nov 2018

Keyword : bilevel optimization, contractive mapping, nonexpansive semigroup, equilibrium problem, strong monotonicity

How to Cite
Hai, T., & Thuy, L. (2019). Contraction-mapping algorithm for the equilibrium problem over the fixed point set of a nonexpansive semigroup. Mathematical Modelling and Analysis, 24(1), 43-61. https://doi.org/10.3846/mma.2019.004
Published in Issue
Jan 1, 2019
Abstract Views
104
PDF Downloads
67
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

P.K. Anh and T.N. Hai. Splitting extragradient-like algorithms for strongly pseudomonotone equilibrium problems. Numer. Algor., 76(1):67-91, 2017. https://doi.org/10.1007/s11075-016-0244-2.

P.K. Anh and D.V. Hieu. Parallel hybrid iterative methods for variational inequalities, equilibrium problems, and common xed point problems. Vietnam J.Math., 44(2):351-374, 2016. https://doi.org/10.1007/s10013-015-0129-z.

P.N. Anh, T.N. Hai and P.M. Tuan. On ergodic algorithms for equilibrium problems. J. Global Optim., 64(1):179-195, 2016. https://doi.org/10.1007/s10898-015-0330-3.

A.S. Antipin. Gradient approach of computing xed points of equilibrium problems. J. Glob. Optim., 24(3):285-309, 2002. https://doi.org/10.1023/A:1020321209606.

E. Blum and W. Oettli. From optimization and variational inequalities to equilibrium problems. Mathematics Students, 63(2):123-145, 1994.

K. Fan. A minimax inequality and applications, Inequalities III. Academic Press, New York, 1972.

F. Giannessi, A. Maugeri and P.M. Pardalos. Equilibrium problems: nonsmooth optimization and variational inequality models. Kluwer, Dordrecht, 2004. https://doi.org/10.1007/b101835.

T.N. Hai. Contraction of the proximal mapping and applications to the equilibrium problem. Optimization, 66(3):381{396, 2017. https://doi.org/10.1080/02331934.2016.1269764.

D.V. Hieu, P.K. Anh and L.D. Muu. Modied hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl., 66:75-96, 2017. https://doi.org/10.1007/s10589-016-9857-6.

D.V. Hieu, L.D. Muu and P.K. Anh. Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer. Algor., 73:197-217, 2016. https://doi.org/10.1007/s11075-015-0092-5.

H. Iiduka. Fixed point optimization algorithm and its application to power control in cdma data networks. Math. Program., 133(1-2):227-242, 2012. https://doi.org/10.1007/s10107-010-0427-x.

H. Iiduka and I. Yamada. An ergodic algorithm for the power-control games for cdma data networks. J. Math. Model. Alg., 8(1):1-18, 2009. https://doi.org/10.1007/s10852-008-9099-4.

H. Iiduka and I. Yamada. A subgradient-type method for the equilibrium problem over the xed point set and its applications. Optimization, 58(2):251-261, 2009.https://doi.org/10.1080/02331930701762829.

J.K. Kim, P.N. Anh and T.N. Hai. The Bruck's ergodic iteration method for the Ky Fan inequality over the xed point set. Int. J. Comput. Math., 94(12):2466-2480, 2017. https://doi.org/10.1080/00207160.2017.1283414.

G. Mastroeni. Gap function for equilibrium problems. J. Glob. Optim., 27(4):411-426, 2004. https://doi.org/10.1023/A:1026050425030.

J.J. Moreau. Proprietes des applications prox. C.R. Acad. Sci. Paris, 256(2):1069-1071, 1963.

L.D. Muu and W. Oettli. Convergence of an adative penalty scheme for finding constrained equilibria. Nonlinear Anal. TMA, 18(12):1159-1166, 1992. https://doi.org/10.1016/0362-546X(92)90159-C.

M.O. Osilike. Stability results for xed point iteration procedures. J. Nigerian Math.Soc., 14(2):17-29, 1995.

T.D. Quoc, P.N. Anh and L.D. Muu. Dual extragradient algorithms extended to equilibrium problems. J. Glob. Optim., 52(1):139-159, 2012. https://doi.org/10.1007/s10898-011-9693-2.

T.D. Quoc, L.D. Muu and V.H. Nguyen. Extragradient algorithms extended to equilibrium problems. Optimization, 57(6):749-776, 2008. https://doi.org/10.1080/02331930601122876.

R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970. https://doi.org/10.1515/9781400873173.

T. Shimizu and W. Takahashi. Strong convergence to common xed points of families of nonexpansive mappings. J. Math. Anal. Appl., 211(1):71-83, 1997. https://doi.org/10.1006/jmaa.1997.5398.

G. Stampacchia. Formes bilineaires coercitives sur les ensembles convexes. Comptes Rendus de l' Academie des Sciences, Paris, 1964.

L.Q. Thuy, P.K. Anh, L.D. Muu and T.N. Hai. Novel hybrid methods for pseudomonotone equilibrium problems and common xed point problems. Numer. Funct. Anal. Optim., 38(4):443-465, 2001.https://doi.org/10.1080/01630563.2016.1254244.

L.Q. Thuy and T.N. Hai. A projected subgradient algorithm for bilevel equilibrium problems and applications. J. Optim. Theory Appl., 175(2):411{431, 2017. https://doi.org/10.1007/s10957-017-1176-2.

L.Q. Thuy and L.D. Muu. A hybrid method for a system involving equilibrium problems, variational inequalities and nonexpansive semigroup. Korean J. Math., 23(3):457-478, 2015. https://doi.org/10.11568/kjm.2015.23.3.457.