Share:


Sturm‐Liouville problem for stationary differential operator with nonlocal integral boundary condition

    S. Pečiulyte Affiliation
    ; O. Štikoniene Affiliation
    ; A. Štikonas Affiliation

Abstract


The Sturm‐Liouville problem with various types of nonlocal integral boundary conditions is considered in this paper. In the first part of paper we investigate Sturm‐Liouville problem with two cases of nonlocal integral boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such problem in the complex case. In the second part we investigate real eigenvalues case. The spectrum depends of these problems on boundary condition parameters is analyzed. Qualitative behaviour of all eigenvalues subject to nonlocal boundary condition parameters is described.



Šiame straipsnyje nagrinejamas Šturmo‐Liuvilio uždavinys su viena nelokaliaja integralinio tipo kraštine salyga. Pirmoje straipsnio dalyje tiriamas Šturmo‐Liuvilio uždavinys su dvieju tipu integraline nelokaliaja salyga. Irodytos tikriniu funkciju ir tikriniu reikšmiu bendrosios savybes komplesineje plokštumoje. Antroje dalyje plačiau ištirtas realiuju tikriniu reikšmiu atvejis. Straipsnyje nagrinejama kaip Šturmo‐Liuvilio uždavinio spektras priklauso nuo kraštiniu salygu parametru. Priklausomai nuo nelokaliuju kraštiniu salygu parametru, aprašytas kokybinis tikriniu reikšmiu pasiskirstymas.


First Published Online: 14 Oct 2010

Keyword : Sturm‐Liouville problem, nonlocal integral condition

How to Cite
Pečiulyte, S., Štikoniene, O., & Štikonas, A. (2005). Sturm‐Liouville problem for stationary differential operator with nonlocal integral boundary condition. Mathematical Modelling and Analysis, 10(4), 377-392. https://doi.org/10.3846/13926292.2005.9637295
Published in Issue
Dec 31, 2005
Abstract Views
232
PDF Downloads
113