## Abstract

In the present paper a mathematical model of creation plasma spray coating with the given properties is developed. The flattening and simultaneous solidification of a liquid particle upon its impingement onto a solid surface has been mathematically described and numerically simulated. Numerical simulation has been accomplished on the basis of the full Navier‐Stokes equations in cylindrical co‐ordinates. Heat transfer process in particle and substrate has been simulated by 2‐D problem heat conduction taking into account hydrodynamic processes into molten particle and forces of pressure. Particle solidification has been described by means of one‐dimensional Stefan problem. It was investigated the effects of some important processing parameters such as impact velocity, droplet diameter, pressure and temperature of plasma on the flattening and solidification of a single liquid particle. Calculations computational algorithm on the basis of finite‐difference method were created and a complex of applied programs was developed.

Dalelių poveikio ir kietėjimo processo matematinis modeliavimas

Santrauka

Nagrinejamas uždavinys yra apie plazminio užpurškimo dangos generavima. Sudarytas pilnas matematinis modelis, kuriame ivertinami svarbiausi fiziniai procesai. Skaičiavimo eksperimentai atlikti naudojant Navje‐Stokso lygtis, užrašytas cilindrinese koordinatese. Šiluminiai procesai dalelese ir pagrindo medžiagoje aprašomi dvimačiu šilumos laidumo uždaviniu, kuriame atsižvelgiama i hidrodinamines ir slegio jegas. Daleliu kietejimo procesas modeliuojamas vienmačiu Stefano tipo uždaviniu. Ištirta ivairiu parametru, tokiu kaip daleliu judejimo greitis, diametras, plazmos temperatūra ir slegis, itaka. Uždavinys sprendžiamas baigtiniu skirtumu metodu bei aprašytas sudarytu taikomuju programu paketas.

First Published Online: 14 Oct 2010

Keyword : -

How to Cite
Gromyko, G., Zayats, G., & Sherbaf, A. (2000). Mathematical modeling of particle impact and solidification in a thermal spray process: Particle ‐ substrate interaction. Mathematical Modelling and Analysis, 5(1), 67-75. https://doi.org/10.3846/13926292.2000.9637129
Published in Issue
Dec 15, 2000
Abstract Views
213