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abstract. Iowa is a state rich in renewable energy resources, especially biomass. The successful 
development of renewable energy industry in Iowa is concomitant with increase in freight traffic 
and is likely to have significant impacts on transportation infrastructure condition and increased 
maintenance expenses for the state and local governments. The primary goal of this paper is to 
investigate the feasibility of employing the Neural Networks (NN) methodology to forecast the 
impacts of Iowa’s biofuels and wind power industries on Iowa’s secondary and local road condition 
and maintenance-related costs in a panel data framework. The data for this study were obtained from 
a number of sources and for a total of 24 counties in clusters in Northern, Western, and Southern 
Iowa over a period of ten years. Back-Propagation NN (BPNN) using a Quasi-Newton second-
order training algorithm was chosen for this study owing to its very fast convergence properties. 
Since the size of the training set is relatively small, ensembles of well-trained NNs were formed to 
achieve significant improvements in generalization performance. The developed NN forecasting 
models could identify the presence of biofuel plants and wind farms as well as large-truck traffic as 
the most sensitive inputs influencing pavement condition and granular and blading maintenance 
costs. Pavement deterioration resulting from traffic loads was found to be associated with the pres-
ence of both biofuel plants and wind farms. The developed NN forecasting models can be useful 
in identifying and properly evaluating future transportation infrastructure impacts resulting from 
the renewable energy industry development and thus help Iowa maintain its competitive edge in 
the rapidly developing bioeconomy.

keywords: neural networks, renewable energy, biofuel plants, wind farms, forecasting, panel data, 
infrastructure impacts.
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introduction

Iowa has not only become a leading producer of sustainable biofuels such as grain-based 
ethanol and soy-based biodiesel, but is also becoming a leading center of wind energy gen-
eration (Kedron, Bagchi-Sen 2011). While trying to meet the U.S. Energy Independence and 
Security Act of 2007 (EISA) goal of 36 billion gallons per year of renewable transportation 
fuels by 2022 (U.S. DOE 2012) Iowa’s renewable energy industry is now expanding into de-
veloping second generation of biofuels based on cellulosic feedstock such as wheat and rice 
straw, switch grass, etc. (Wakeley et al. 2008). All these could have significant implications 
on Iowa’s transportation infrastructure system as a result of heavier, more frequent and large-
sized vehicular traffic (Fu et al. 2008).

According to recent statistics reported by the Iowa Department of Economic Development 
(IEDA 2012), Iowa ranks 1st in the U.S. in ethanol production, 4th in biodiesel production, and 
2nd in wind generation output. In addition, 25% of national ethanol production comes from 
Iowa, which is also the leading producer of raw biomass in the U.S. Maps of ethanol plants, 
biodiesel plants (as of November 16, 2010), and wind farms in Iowa are displayed in Fig. 1.

Since Iowa’s thriving renewable energy industry involves production/collection and 
distribution of raw materials as well as finished products, its success heavily depends on 
the quality of service that the transportation infrastructure can provide. Like the traditional 
agricultural products grown in Iowa today, new energy crops will likely originate along the 
90,000 miles of rural county roads that make up the state’s secondary system. The increased 
traffic, especially resulting from highly transportation-intensive biofuel distribution, will not 
only likely impact the physical condition of the transportation infrastructure, but will also 
result in increased maintenance expenses for state and local governments (Haddad et al. 2009).

Given that most biofuel plants or wind farms are located very close to a county road or the 
secondary road system which falls under the jurisdiction of the county, this adds an additional 
burden of maintenance to the counties which are already overloaded with more roads than what 
they can maintain (Bai et al. 2011). The secondary system accounts for 79% of all state, county 
and municipal roads distributed throughout Iowa; 74% are gravel, 21% are paved, and 5% are 
unmaintained dirt roads (Gkritza et al. 2011). In addition, Iowa roads and secondary systems 
were not originally designed to accommodate so long and heavy vehicles that are required to 
carry wind turbines and other parts from manufacturing plants to the wind turbine construc-
tion site. Recent projections estimate that $23.4 billion will be needed to maintain and upgrade 
the secondary system over the next 20 years, while only $10.9 billion in projected revenues are 
forecast to address these needs during the same period (Gkritza et al. 2011). 

In order to document the current physical and fiscal impacts of Iowa’s existing biofuels 
and wind power industries on transportation infrastructure, Gkritza et al. (2011) conducted 
a statewide survey to identify counties with existing biofuel production plants, wind farms, 
as well as, to obtain infrastructure and financial data related to these renewable energy fa-
cilities. Based on the survey results, a total of 24 counties in clusters in Northern, Western, 
and Southern Iowa that represent a variety of soil, terrain, and environmental conditions 
were selected. Information related to maintenance-related costs, indicator of road pavement 
condition, renewable energy plant capacity and years of operation, as well as environmental 



S159Technological and Economic Development of Economy, 2013, 19(Supplement 1): S157–S175

Fig. 1. (a) Map of Iowa ethanol; (b) Map of Iowa wind farms  
(Source: Iowa Department of Economic Development; Iowa DOT)

(a)

(b)

and agricultural factors were collected for the 24 counties during the period 1999–2008 and 
assembled in a panel data framework. 

The primary goal of this paper is to investigate the feasibility of employing Neural Networks 
(NNs) in developing forecasting models that would predict transportation infrastructure 
impacts from Iowa’s renewable energy industry based on existing traffic volumes and other 
related inputs.
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1. objective and scope

In this paper, NN modeling is proposed as an alternative tool for forecasting transportation 
infrastructure impacts of renewable energy industry in Iowa using panel data. Since panel data 
are generally characterized by high number of cross-sections (regions) and a limited number 
of years for which the data is available, they do not easily lend themselves to the application 
of standard econometric techniques (Autant-Bernard 2012; Platoni et al. 2012). Econometric 
techniques adapted for panel data analysis are nowadays quite easily implemented in standard 
statistical packages. However, such techniques may not be able to produce reliable short-term 
forecasts owing to the constraints imposed for estimating the parameters (Longhi et al. 2005). 
Neural networks, owing to their ability to model arbitrary and complex functions of the data 
quite well, without a priori knowledge of the underlying phenomenon, have become a popular 
forecasting tool (Monteiro et al. 2013; Huang, Tian 2013; Ye et al. 2012). The choice of using 
NN as a forecasting tool in this study stems from its success in improving macroeconomic 
forecasts and achieving superior business forecasts as documented by several studies (Adya, 
Collopy 1998; Swanson, White 1997; Chen 2011; Qi, Chang 2011).

2. neural networks review

In recent years NNs have been applied to complex engineering problems in various civil 
engineering areas such as pavement and geotechnical engineering, structural engineering, 
transportation, water resources and environmental engineering (Adeli 2001; Sun et al. 2012; 
Gupta, Cohn 2012). 

NNs are computational intelligence systems that simulate the behavior of the human brain 
and nervous system. The basic element in the NN is a processing element, called an artificial 
neuron or node. Each neuron contains a very limited amount of local memory and performs 
basic mathematical operations on data passing through them. These neurons are highly in-
terconnected in layers such as an input layer, an output layer and one or more hidden layers. 
The computational power of NN comes from this interconnection which makes input data 
concurrently processed in artificial neurons (TRB Circular 1999).

An artificial neuron receives information (signal) from other neurons, processes it, and 
then relays the filtered signal to other neurons (Tsoukalas, Uhrig 1997). The receiving end of 
the neuron has incoming signals (x1, x2, x3….and xn). Each of them is assigned a weight (wji) 
that is based on experience and likely to change during the training process. The summation 
of all the weighted signal amounts yields the combined input quantity (Ij) which is sent to a 
preselected transfer function (f), sometimes called an activation function. A filtered output (yj) 
is generated in the outgoing end of the artificial neuron (j) through the mapping of the transfer 
function. The parameters can be expressed in the form of following equations:

 1
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There are several types of transfer functions that can be used, including sigmoid, tangent 
hyperbolic, threshold, and Gaussian functions. The sigmoid function is the most commonly 
used transfer function because of its differentiability. The sigmoid function can be represented 
by the following equation:

 

1( )
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where j  = positive scaling constant, which controls the steepness between the two asymptotic 
values 0 and 1 (Tsoukalas, Uhrig 1997).

The hyperbolic tangent function (tanh) is also a commonly used (sigmoid) nonlinear 
activation function for which the amplitude of the output lies in the range –1 £ f(Ij) £ 1 and 
is expressed as follows:
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NN performs two major functions: learning (training) and testing. A training data set 
and an independent testing data set are prepared for these functions. Inputs from a training 
data set are presented to the input layer to start the propagation of data. Inside the network, 
weights are adjusted when data pass between artificial neurons along the connections. Since 
interconnected neurons have the flexibility to adjust the weights, NN has the ability to ana-
lyze complex problems. It uses a learning rule to find a set of weights such that the error is 
minimum. This process is called “learning” or “training” (Shahin et al. 2001). The learning 
mechanisms used by NN are of three primary types (TRB Circular 1999):

 – Supervised learning: system/weight is adjusted by comparing the network output with 
a given or desired output;

 – Unsupervised training: the network is trained to form categories based on similarity 
among the data and identify irregularities in data; 

 – Reinforcement learning: the network attempts to learn the input-output vectors by 
trial and error through maximizing a performance function. The system can identify 
whether a given output is correct or not but cannot estimate the exact output.

In order to track the performance of the network, the Mean Squared Error (MSE) (or 
any other performance measure) is calculated at the end of each epoch. An epoch is defined 
as one full presentation of all training vectors to the network. It would be expected that the 
MSE would decrease almost monotonically with respect to the increase in the number of 
epochs until it reaches an optimum number. It would ultimately level off (converge) at which 
point the network has ‘fully learnt’.

Once the training phase of the model has been successfully accomplished, the network 
performance is verified by presenting independent testing datasets to the NN. This process 
is called “testing.” Details regarding the theory and mathematics behind the NN is widely 
available (Aleksander, Morton 1990; Fausett 1994; Haykin 1998; Bishop 1995; Swingler 1996). 

There are many different types of NN used in many areas of engineering. These differ 
in the arrangement and degree of connectivity of their neurons, the types of calculations 
performed within each neuron, the degree of supervision they receive during training, 
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the determinism of the learning process, and the overall learning theory under which 
they operate (Mehra, Wah 1992). However, certain types of NN are more repeatedly used, 
either because they are broadly applicable to a wide variety of problems or ideally suited 
for a narrow range of problems (TRB Circular 1999). These include hopfield nets, adaptive 
resonance theory (ART) networks, self-organized feature maps (SOFM), backpropaga-
tion neural networks (BPNN), feedback (sequential) neural networks (FBNN), counter 
propagation networks, radial basis function  network (RBF), and  generalized regression 
neural networks (GRNN).

Multi-Layer Perceptron (MLP) BPNN is one of the most preferred NN in civil engineer-
ing related applications of NN because of its powerfulness, versatility, and simplicity (TRB 
Circular 1999; Adeli 2001). BPNN can be taught a mapping from one data space to another 
using a representative set of patterns/examples to be learned. BPNN refers to a multi-layered, 
feed-forward neural network trained using an error backpropagation algorithm (Fig. 2). The 
algorithm, pseudo-code, and theory behind BPNN are well-documented (Adeli, Hung 1995; 
Haykin 1998). 

Cheng and Titterington (1994) provide an interesting review of NN from a statistical 
perspective. The reported applications of NNs for analyzing panel data are rather limited 
(Lin 1992). Longhi et al. (2005) and Patuelli et al. (2006) developed a NN tool for forecasting 
regional employment patterns based on employment data collected for 327 West German 
regions over a period of fourteen years. Giovanis (2008) developed a NN model to examine 
all factors that impact greenhouse effect in fiteen countries of the European Union from 
1990 to 2005.

Fig. 2. Schematic of a typical feed-forward Multi-Layered Perceptron (MLP)  
BackPropagation Neural Network (BPNN) (Note: this architecture with a single hidden layer is 

denoted as A-B-C, where A represents the number of inputs (n); B represents the number of hidden 
neurons (m); and C represents the number of outputs (1))
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3. description of data

The data for this study come from a number of sources including a local agency survey con-
ducted to study the physical and fiscal impacts to the transportation system due to renewable 
energy facility construction and operations in Iowa (Gkritza et al. 2011). The dataset is struc-
tured as a panel of 24 cross-sections (24 counties in the northern, western, and southern parts 
of Iowa) and ten time periods from 1999 to 2008. The data include maintenance-related costs, 
Pavement Condition Index (PCI), renewable energy plant capacity, years of plant operation, 
traffic volumes, and environmental and agricultural factors.

The data source for maintenance-related costs is the annual county expense reports pre-
pared by county engineers and filed annually with the Iowa DOT. The Iowa Environmental 
Mesonet (ISU 2012) provided the environment-related data for the study. The annual corn 
production and soybean production data per county was obtained from the U.S. Depart-
ment of Agriculture, National Agriculture Statistic Service (USDA 2012). The Iowa DOT 
Geographic Information Management System (GIMS) provided the traffic data, while the 
pavement condition data were extracted from the Iowa DOT Pavement Management In-
formation System (PMIS). 

The original intention was to use all maintenance-related cost variables, which include 
asphalt and concrete pavement maintenance costs, granular and blading costs, winter main-
tenance costs, as well as bridge maintenance costs. Preliminary NN analysis revealed that it 
would not be possible to model the impact of Iowa’s renewable energy industry operations 
on asphalt and concrete pavement maintenance costs, winter maintenance costs and bridge 
maintenance costs using the limited data available for this study. Therefore, the mainten-
ance-related cost category includes only granular and blading costs related to gravel road 
maintenance.

A brief summary of the data utilized in this study is provided in Table 1. The input and 
output variables selected for developing the forecasting models were based on comprehensive 
literature review, county surveys, as well as existing information (Gkritza et al. 2011). 
The goal is to forecast the gravel road maintenance-related costs and PCI in each region 
r (with r ranging from 1 to 24) in year t, given the traffic volumes, renewable energy 
plant capacity, years of plant operation, and environmental and agricultural factors in 
the previous years.

There are certain limitations to the collected data which need to be acknowledged up-
front. The PCI data was collected for both primary and secondary road systems. Northern 
counties in Iowa, however, had not collected PCI data for their secondary road system 
since 2004 (Gkritza et al. 2011). As a result, PCI for the primary road system alone was 
utilized in this study. Further, owing to these data limitations, maintenance costs reported 
in the annual county expense reports were used as an indirect indicator of pavement 
condition and deterioration over time. It should be noted that the maintenance-related 
costs are based on available funds rather than actual needs. As such, the magnitude of 
impacts could be higher than that reflected in the maintenance costs.
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Table 1. Summary description of NN inputs and outputs

Category Variable Description/Comments

Pavement 
Condition 
(Output)

Pavement Condition Index 
(PCI)

A numerical index between 0 (very poor) and 100 (ex-
cellent) widely used to indicate pavement condition 
and deterioration over time based on measurements of 
roughness and surface distress. PCI for the primary road 
system only was available for this study.

Mainte-
nance-re-
lated Costs 
(Output)

Granular and Blading Cost 
(dollars)

Maintenance costs were used as an indirect indicator of 
pavement condition and deterioration over time. The 
amount spent on maintenance is based on available 
funds rather than actual needs and, as such, the magni-
tude of impacts could be higher than that reflected in the 
maintenance costs.

Traffic 
Volume 
Informa-
tion  
(Input)

Primary Rural VMT
Annual Vehicle Miles Traveled (VMT) for all vehicles for 
primary rural road systems. Traffic volume was used as a 
measure of repeated traffic loading.

Primary Urban VMT
Annual VMT for all vehicles for primary urban road 
systems. Traffic data were extracted from annual VMT 
reports provided by Iowa DOT.

Primary Rural LVMT
Annual Large-truck VMT (LVMT) for primary rural 
road systems. Large truck is defined here as defined as 
single- or multiple-trailer trucks with four or more axles.

Primary Urban LVMT Annual LVMT for primary urban road systems.
Secondary LVMT Annual LVMT for secondary road systems.
Secondary VMT Annual VMT for secondary road systems.
Local LVMT Annual LVMT for local road systems.
Local VMT Annual VMT for local road systems.

Renew-
able Fuel 
Produc-
tion and 
Energy 
Plant In-
formation 
(Input)

Ethanol Plant Present 1 if present, 0 otherwise
Biodiesel Plant Present 1 if present, 0 otherwise
Wind Farm Present 1 if present, 0 otherwise
Number of Ethanol Plants

Two categories of impacts associated with renewable fuel 
production (ethanol and biodiesel) plants are consid-
ered: heavy vehicle traffic transporting grain to the bio-
fuel plant and the finished products to retail markets.

Number of Biodiesel Plants
Years of Operation of Etha-
nol Plant
Years of Operation of Bio-
diesel Plant
Number of Wind Turbines Impacts associated with the transportation of turbines, 

parts and materials with oversized vehicles from manu-
facturing plants to the wind turbine construction site are 
considered. The operation of wind farm is not expected 
to generate ongoing heavy vehicle traffic like the biofuel 
plants. 

Years of Operation of Wind 
Farm

Capacity of Ethanol Plant 
(million gallons)

Currently, Iowa has the capacity to produce more than 
3.28 billion gallons of ethanol annually which accounts 
for more than 25% of the entire U.S. ethanol production 
(IEDA 2012).Capacity of Biodiesel Plant 

(million gallons)
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Category Variable Description/Comments
Agri-
cultural 
Factors 
(Input)

Corn Production (bushel) Annual corn and soybean production information by 
county was obtained from U.S. Department of Agricul-
ture (USDA) and National Agriculture Statistic Service.

Soybean Production 
(bushel)

Environ-
mental 
Factors 
(Input)

Snow Depth (inch) Both temperature and precipitation influence the 
strength of the pavement layers. The effect of tempera-
ture was modeled using a freezing index measured in de-
gree-days below freezing. Snow depth and rainfall depth 
were used as proxies to model the effects of precipitation 
levels on pavement deterioration. Environment-related 
data were obtained from Iowa Environmental Mesonet.

Rainfall Depth (inch)

Freezing Index in northern 
counties (degree-days)

4. neural network forecasting models

As seen in Table 1, the panel data set consists of 24 inputs (traffic volumes, renewable fuel 
production and energy plant related information, agricultural factors, and environmental 
factors) and two outputs (PCI and granular and blading costs). 

In panel data regression modeling, the effect of specific regional and time characteristics 
are taken into account by means of regional dummies and time dummies, respectively. In 
developing the NN forecasting models, a slightly modified approach was used in account-
ing for these effects as suggested by Longhi et al. (2005). The regional effects were modeled 
using a discrete variable (“County”) computed as (1/R)*r, where r ranges from 1 to 24, and 
R = 24 (counties). Similarly, the effect of time-specific characteristics was modeled using 
a discrete variable (“Year”) computed in the same way with r ranging from 1 to 9 and R = 
9 (years). The data for the last year (2008) was completely set aside for testing the NN 
model’s forecasting performance. This method of accounting for regional effects and time 
effects eliminates a number of additional explanatory variables required in the NN model-
ing equal to the number of counties and the number of years, which will adversely affect 
the forecasting performance. Note that both variables, County and Year, were included as 
two additional inputs in NN modeling, thus increasing the total number of inputs to 26.

The NN model development, parameter tuning, and performance evaluation were carried 
out in STATISTICA® and MATLAB® sotware environment. The available data from years 1999 
to 2007 for all 24 counties were used in training the NNs and identifying the optimum net-
work architectures. The best-performance NNs were then tested on year 2008 data to obtain 
ex-post forecasts which were used in evaluating the NN forecasting model’s generalization 
properties. As mentioned previously, individual forecasting models were developed for PCI 
and gravel road maintenance costs as shown in Table 1. All input and output variables were 
scaled using linear transformations in the range of 0 to 1 to prevent network saturation effect.

The choice of learning algorithm, number of hidden layers and hidden neurons, and 
other network parameters need to be carefully selected through a sensitivity analysis to 
achieve best-performance settings. If the NN architecture consists of too many hidden 
layers and/or hidden neurons, it will most likely result in “memorization” of input-output 

Continued Table 1
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patterns resulting in poor generalization performance. On the other hand, if the network 
is too simple, it may not learn the mapping at all, once again leading to poor forecasting 
performance. A single hidden layer was used in this study. The optimum number of hid-
den neurons was chosen by varying the number of hidden neurons in the range of 6 to 20 
and comparing its effect on the performance for a large number of network architectures. 
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Quasi-Newton second-order training 
algorithm was chosen owing to its very fast convergence properties. The sigmoid transfer 
function (Eq. (3)) was used as the non-linear activation function in the hidden layer of 
the network. 

Best-performance networks were selected for each transportation infrastructure 
impact indicator (PCI and granular and blading maintenance cost) based on a search of 
over 500 network configurations and trials. In general, ensembles of well-trained NNs are 
formed to achieve significant improvements in generalization performance, especially 
when the size of the training set is small. In this study, five best-performance member 
networks were used to form ensemble NN prediction models for each output. The five 
best-performance member networks for each of the forecasted variable are identified in 
Table 2 under second column. Here, the designation MLP x-y-z for each member network 
refers to Multi-Layered Perceptron (MLP) neural network architecture with x input nodes, 
1 hidden layer with y hidden neurons and z output nodes. Ensembles can be conceived 
as collection of best-performance neural networks that cooperate in providing a predic-
tion. The member networks’ predictions are typically averaged (or voted in the case of a 
classification problem) to obtain the ensemble outputs ater weighting the average using 
the networks’ membership weights. This provides a relatively simple way to reduce model 
variance without increasing model bias. The results reported and discussed in the next 
section pertain to ensemble NN predictions.

Table 2. Forecasting performance of NN models

Output Network MAE MAPE MSE RMSE

PCI MLP 26-6-1 3.601 0.153 19.942 4.466
MLP 26-10-1 3.810 0.130 18.511 4.302
MLP 26-7-1 3.461 0.151 17.296 4.159
MLP 26-7-1 3.003 0.143 18.366 4.286
MLP 26-7-1 3.796 0.143 19.146 4.376

Ensemble 3.112 0.142 13.158 3.627
Granular and 
Blading Costs 
($)

MLP 26-13-1 237,454 0.228 7.4E+10 272,380
MLP 26-11-1 240,171 0.250 7.5E+10 273,479
MLP 26-7-1 213,391 0.236 6.8E+10 261,008

MLP 26-11-1 243,110 0.233 7.6E+10 276,046
MLP 26-10-1 226,401 0.295 7.1E+10 266,299

Ensemble 227,410 0.237 6.6E+10 256,318
Note: MLP x-y-z refers to Multi-Layered Perceptron Neural Network with x input nodes; 1 hidden layer with 
y hidden neurons; and z output neuron.
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5. results and discussion

The goodness-of-fit statistics for the NN predictions were computed using ex-post forecasts 
for the year 2008 and statistical indicators such as the Mean Absolute Error (MAE), Mean 
Absolute Percentage Error (MAPE), MSE and Root-Mean Squared Error (RMSE). However, 
such indicators are calculated over all 24 counties for one year due to the panel structure 
of the data. Thus, the forecasting errors computed as the difference between actual and NN 
model forecasts for all counties are summed up to obtain the global forecasting error. As a 
result, the variability across regions, rather than time, is captured by the statistical indicators. 
The statistical indicators are defined as follows: 

 1
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where: t
iy and p

iy are the target (actual) and forecasted values, respectively; t
iy and p

iy are 
the mean of the target and forecasted values corresponding to n patterns, respectively. Here n 
represents the total number of counties (24). MAE, MAPE, MSE, and RMSE are commonly used 
statistical indicators reported in the time-series literature and studies related to NN modeling 
of panel data (Swanson, White 1997; Longhi et al. 2005). In general, smaller values of these 
errors indicate more accurate forecasting results. All four statistical indicators were used in 
assessing the overall prediction accuracy of the forecasting models with respect to the test data.

The NN models’ forecasting performance is summarized in Table 2. It can be observed 
that the use of ensemble NNs provide lower error magnitudes across all statistical indicators. 
Lewis (1982) provided a scale for interpreting the forecast accuracy based on MAPE values 
as follows:

 – Highly accurate forecast: MAPE < 0.1 (10%);
 – Good forecast: 0.1 (10%) < MAPE < 0.2 (20%);
 – Reasonable forecast: 0.2 (20%) < MAPE < 0.5 (50%);
 – Inaccurate forecast: MAPE > 0.5 (50%).

Thus, applying the scale developed by Lewis (1982) on the results summarized in Table 2, 
it can be concluded that NN-based PCI prediction model provides good forecasting accuracy. 
With the availability of data for more years, the NN forecasting accuracy can be significantly 
improved. A scatterplot of observed and (ensemble) NN predicted PCI values is shown in Fig. 3 
revealing the closeness of the graph to the 45-degree line. Similar results for NN predicted 
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granular and blading maintenance costs are displayed in Fig. 4. A MAPE of 24% (Fig. 4) for the 
ensemble NN granular and blading maintenance cost model indicates that it can provide reas-
onable prediction accuracy. The histograms of network (error) residuals for ensemble PCI and 
granular and blading maintenance costs are displayed in Figs 5 and 6, respectively, confirming 
that the residuals are close to a normal distribution with a mean value of zero.  

Fig. 3. Scatterplot of observed versus ensemble NN predicted PCI

Fig. 4. Scatterplot of observed versus ensemble NN predicted granular  
and blading maintenance costs 
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Fig. 5. Histograms of ensemble NN PCI error residuals  
(predicted – target) using both training and test data

Fig. 6. Histograms of ensemble NN granular and blading maintenance cost  
error residuals (predicted – target) using both training and test data

A Global Sensitivity Analysis (GSA) was carried out to investigate the relative importance 
of variables used in NN modeling. GSA determines the effect of changes in input variables on 
network predictions and the prediction error rates. Thus, the prediction error will not increase 
much if an unimportant variable is changed or removed. Fig. 7 displays the Global Sensitivity 
Ratios (GSRs) obtained using the ensemble NN PCI model by dividing the network error with 
a given input omitted by the network error with the input available. Variables with GSR equal 
to or less than 1.0 are likely to be less important in terms of their contribution to network 
performance. The presence of both biofuel plants and wind farms, as well as rural vehicle 
miles traveled (VMT) seem to be significant factors impacting pavement deterioration (PCI). 
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Fig. 7. Global sensitivity analysis results using Ensemble NN PCI model

Similar GSRs obtained using the ensemble NN granular and blading maintenance cost 
model are displayed in Fig. 8. Again, the presence of ethanol plants and biodiesel plants 
followed by secondary VMT and large-truck VMT (LVMT) have significant influence on 
granular and blading maintenance costs. This is also consistent with the findings reported 
by Gkritza et al. (2011) who observed an increasing trend in maintenance-related costs in 
the year a biofuel plant was constructed as well as ater it became operational. Fig. 8 also 
seems to indicate that the effect of biodiesel/ethanol plants is higher on gravel roads main-
tenance-related costs than that of wind farms. This is because once the wind turbines are 
installed, there might be no further road deterioration due to the operation of wind turbines 
as opposed to ethanol and biodiesel plants that require regular transportation of raw material 
and final products during operation.

As mentioned before, the primary goal of this paper was to investigate the feasibility of 
employing the NN methodology to forecast the impacts of Iowa’s biofuels and wind power 
industries on Iowa’s secondary and local road condition and maintenance-related costs. The 
developed NN forecasting models are expected to become more robust in their predictive 
accuracy as the database expands with data collected over many years. These models would 
be useful in evaluating isolated impacts of renewable energy industry on Iowa’s transporta-
tion infrastructure. For instance, One-at-A-Time (OAT) local sensitivity analysis could be 
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carried out to study the effect of input factors such as the presence of biofuel plants and wind 
farms, categorized VMT, etc. on pavement deterioration (PCI). The input factors could then 
be triaged qualitatively (very sensitive, sensitive, and not sensitive) based on their expected 
effects on pavement deterioration. Similarly, the ensemble NN models could be used to run 
a large number of GSA simulations to provide predictions of pavement deterioration at ran-
dom discrete locations in the problem domain which could then be fitted using a continuous 
Response Surface Model (RSM).

summary and conclusions

U.S. continues to be a leading producer of biofuels and wind energy. In order to meet the 
U.S. Energy Independence and Security Act of 2007 (EISA) goal of 36 billion gallons per 
year of renewable transportation fuels by 2022, a dramatic increase in ethanol and biodiesel 
production and distribution is expected. Consequently, the stress on the transportation 
infrastructure resulting from production and shipping of raw materials as well as finished 
products is expected to be significant. While semi-trucks are used mainly to transport corn 
and soybean from farm to biofuel plants, longer and heavier vehicles are required to move 

Fig. 8. Global sensitivity analysis results using Ensemble NN granular and blading  
maintenance costs model
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wind turbine blades and other parts from manufacturing sites to the wind farms. In coming 
years, these drivers are expected to significantly impact Iowa’s rural transportation infrastruc-
ture, much of which is near or beyond its original design life. At the same time, public sector 
maintenance and rehabilitation costs associated with Iowa’s rural pavements and unpaved 
roadways are expected to escalate to sustain the renewable energy industry-oriented traffic.

In this paper, NN modeling was proposed as an alternative tool for forecasting transport-
ation infrastructure impacts of renewable energy industry in Iowa using panel data. The data 
for this study was collated from a number of sources aimed at documenting the physical and 
fiscal impacts to the transportation system due to renewable energy facility construction or 
operations in Iowa. The data is structured as a panel of 24 cross-sections (24 counties in the 
northern, western, and southern part of Iowa) and ten time periods from 1999 to 2008, and 
includes maintenance-related costs, Pavement Condition Index (PCI), renewable energy 
plant capacity, years of plant operation, traffic volume information, and environmental and 
agricultural factors.

Back-propagation NN models using a Quasi-Newton second-order training algorithm 
were developed to compute forecasts. Ensembles of well-trained NNs were formed to achieve 
significant improvements in generalization performance. NN models seem to offer good fore-
casts of pavement condition (PCI) and reasonable forecasts of gravel road maintenance-related 
costs for the year on which the models were tested. Further, the NN models could identify 
the presence of biofuel plants and wind farms as well as large-truck traffic as the most sens-
itive parameters impacting pavement condition and maintenance-related costs. Pavement 
deterioration resulting from traffic loads are associated with both the biofuel plants and wind 
farms. The effect of biodiesel/ethanol plants is higher on gravel roads maintenance-related 
costs than that of wind farms. This is because the operation of wind turbines may not im-
pact roads at a regular basis as opposed to ethanol and biodiesel plants that require regular 
transportation of raw material and final products during operation.

Due to the availability of limited data, it was difficult to estimate the number of years 
(time periods) required for proper training, validation, and testing. As a result, the developed 
models could only be tested for one year. The availability and use of longer time series is a 
promising avenue to validate this work. 

In developing the NN forecasting models,  the effect of specific regional and time char-
acteristics were taken into account using a slightly modified approach rather than using 
regional dummies and time dummies as typically done in panel data regression modeling. 
An alternative way of modeling regional-specific characteristics is to group the 24 counties 
in three directional bins (north, south, west), in which case r ranges from 1 to 3, and R = 3. 
It is recommended that future studies validate the efficacy of this approach.
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