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Abstract. Numerical investigations have shown, that different function profiles for the description 
of variants are possible. This should be taken into account for mapping of characteristic values on a 
dimensionless interval [1; 0] or [1; ~ 0]. The purpose of the study was to investigate the impact of 
linear, concave and convex function profiles for mapping on a dimensionless interval (normalisa-
tion). Ten different formulas were examined. 

The analysis of calculation approaches in the past revealed that only a single transformation 
formula was used for all criteria. A specific investigation into a functional character of the different 
initial values has not been done. Hence, the question whether this being a real or fictitious calcula-
tion was not answered. The performed analyses are supposed to contribute to the prevention of 
erroneous decisions.

Keywords: multi-criteria decisions, calculation of dimensionless values, game theory, non-linear 
decision making problems, optimal variant selection, construction management.
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Introduction

There are numerous publications dealing with the mapping of characteristic values on a di-
mensionless interval [1; 0] or [1; ~ 0] (normalisation). However, a definite recommendation 
for application of a certain formula cannot be given up to date. Most publications focused 
on the application of only a few formulas for practical implementation, however a rationale 
for selection of these formulas is missing. The studies of Aydın Celen (2014) and Jahan, A., 
Edwards, K. L. (2015) are mentioned as examples. While Aydın Celen used only the TOPSIS 
method for comparative analysis of the normalisation procedure, Jahan, A. and Edwards, K. 
L. (2015) investigated the impact of normalisation on improvement of material selection in 
engineering with eight formulas. They concluded that already little differences could have 
considerable consequences on the quality of the decision. 
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Wallace and Burgess (1995) observe that most methods are based on experiments. A 
differentiated investigation into the results is however not performed. For the calculation of 
the characteristic values, Farag (2002) uses quotients which accord to the analysed formula 
(6). There is no statement on the different treatment of maximisation and minimisation. 
The options of normalisation of the characteristic values according to five different stand-
ards are analysed by Milani, Shanian, Madiolat and Nemes (2005). Two different rankings 
are obtained as result. Finally they conclude that both linear and nonlinear standards can 
be recommended for safe engineering decisions. Zavadskas et al. (2006a, 2006b) investigate 
the influence of a normalization method on ranking accuracy in multi-criteria decisions. In 
doing so they limit their analysis to the particular vector normalization and linearly nor-
malization transformation for the method Topsis. Rao and Davim (2008) do not include a 
distinction between maximization and minimization. They only use the maximization part 
of the formula (5). As a basis for the material selection, Ullah and Harib (2008) only use the 
interval between max and min besides other mathematical operations for the normalization.

Up to date it has been missed in the available papers to describe research into the char-
acter of applied functions for mapping onto the dimensionless interval. Even the numerous 
publications should not hide this fact. 

Although evidence of differing results by the use of different formulas for the mapping 
to the interval [1; 0] or [1; ~ 0] was given by Peldschus (2008, 2009), specific investigations 
of the suitability of particular formulas are not reported.

A novel method for multiple criteria analysis, “Grey Additive Ratio Assessment (ARAS-G) 
Method” is presented by Turskis and Zavadskas (2010). With this new additive ratio analysis 
method with grey criteria scores, a way to evaluate and rank alternatives by applying grey val-
ues, and to compare scores of alternatives with the ideal possible alternative is introduced to 
researchers and stakeholders. The authors are therein using a linear function for the normal-
ization in maximization requirements and a hyperbolic function in the minimization ones. 
An explanation for the different assessment of maximization and minimization is not given.

In a materials selection with COPRAS and COPRAS-G methods, Chatterjee & 
Chakraborty (2012) are using a linear function for the normalization, for which the sum of 
all characteristic values serves as a quotient. Hence, they obtain low values with small differ-
ences, for which the sum is always 1. This approach resembles the calculation of weighting 
factors.

Also in the classification into qualitative and quantitative attributes by Peng & Xiao (2013) 
an investigation on the suitability of particular formulas for the transformation is missing.

After an analysis of the transformation options Stanujkic, Magdalinovic and Jovanovic 
(2013) are deciding for a linear transformation without further investigation on its suitability 
for the assessment of their initial values.

In their analysis of the impact of normalisation on panel weighting results in life cycle 
assessment, Myllyviita, Leskinen and Seppälä (2014) are using only the difference between 
minimum and maximum as reference value and are combining that with weighting factors 
of the logarithmic functions. A new approach is analysed by Song, Wang, Lei and Xue (2014) 
with the combination of interval-valued belief structures based on intuitionistic fuzzy set. 

http://de.pons.com/%C3%BCbersetzung/englisch-deutsch/vector
http://de.pons.com/%C3%BCbersetzung/englisch-deutsch/normalisation
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http://de.pons.com/%C3%BCbersetzung/englisch-deutsch/linearly
http://de.pons.com/%C3%BCbersetzung/englisch-deutsch/normalisation
http://de.pons.com/%C3%BCbersetzung/englisch-deutsch/normalisation


Technological and Economic Development of Economy, 2018, 24(4): 1695–1717 1697

The authors thereby conclude that despite the large computation efforts the optimal approx-
imation is not satisfactory and thus remains a problem to be solved. For their multi-criteria 
analysis of projects’ performance in construction Zavadskas et al. (2014) are using a loga-
rithmic function for the normalization. Although the logarithmic function is only suitable 
for particular problems a specific analysis on its suitability is not performed.

Chatterjee and Chakraborty (2014) focus in their investigation of the effect of normal-
ization norms in flexible manufacturing system selection on the methods Promethe, Grey 
Relational Analysis (GRA) and Topsis. They conclude, that all three methods are suitable for 
the calculation of rankings in decision problems. For the normalization, the vector transfor-
mation is identified as preferred method. Hafezalkotob Arian, Hafezalkotob Ashkan (2015) 
defined a normalization technique to consider target-based attributes for the MULTIMOO-
RA method. Therein, a quotient based on the spread between maximum and minimum is 
used. In a further development to the interval-valued intuitionistic fuzzy MULTIMOORA 
method for group decision making in engineering from Zavadskas et al. (2015) the initial 
values are calculated with the vector normalization without discussion of the unequal use of 
the interval. Also for their modified weighted sum method based on the decision-maker’s 
preferred levels of performances Stanujkic and Zavadskas (2015) are using only the spread 
between minimum and maximum in the normalization. No problems are observed in the 
normalization within the study of Kaftanowicz and Krzemiński (2015) on multiple-criteria 
analysis of plasterboard systems, as they only address maximization and are hence obtaining 
only negligible differences for the calculated rankings. The fact that the application of the 
logarithmic function is indicated only for particular problems is not considered. A linear 
transformation with associated weights is applied by Mir et al. (2016) to develop an opti-
mized municipal solid waste management model. 

Van Niekerk, A. et al. (2016) are using for their development of a multi-criteria spatial 
planning support system for growth potential many weighted factors and a linear function 
on the basis of the difference between minimum and maximum.

In summary, it can be assessed that the investigations published so far have not included a 
differentiated analysis of the course of the function for the different criteria. Instead all crite-
ria are transformed with a single formula independent of the actual function. It is attempted 
to compensate an apparently unknown phenomenon by multiple calculations with different 
solution methods, which does not solve the actual problem. Publications not listed in the 
review above do not add further findings either.

In these study numerical investigations in multi-criteria decision making using ten differ-
ent transformation formulas with considerably different functions revealed significant differ-
ences of calculated values. Linear as well as convex and concave functions were investigated. 
Due to the fact that these values are used for different numerical methods in multi-criteria 
decision making, different results may occur with the use of the same method. It is already 
important whether a small or large numerical value is used for calculation and how the val-
ues are changing numerically or functionally in the considered interval. As a solution to this 
problem a distinguished investigation of each criterion is suggested. 
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1. Linear functions

Every linear transformation results in values which seem to be reasonable. There is no de-
formation of transformed values. After a linear transformation concave functions will have a 
concave function profile. The same applies to convex functions. The criticised limitations of 
a linear transformation thereby remain unaffected. Every linear transformation is applicable 
to problems of maximization without limitations. Difficulties occur for problems of minimi-
zation. If values are within the interval x ≤ 2min, the method of Körth is applicable. If the 
values are larger, a calculation with interval limits could be applied. For the latter, it must 
be noted, that for repeated calculations including also unfavourable variants, the result may 
change. Therefore, the solution is not robust. These considerations apply in the same way to 
combined problems of maximization and minimization. 

2. Non-linear functions

For every non-linear transformation, the mapping on a dimensionless interval causes a de-
formation in dependence on the selected function. It seems however reasonable to use such 
a transformation to emphasise the concept of optimisation. But for this purpose it should be 
verified in advance whether the initial function describing the variant is concave or convex. If 
this is not taken into account the transformation of a concave function profile with a convex 
function may result in a considerably modified function profile. A function with a linear or 
inversely curved profile might be generated. 

The investigated non-linear transformation formulas show either a concave or convex 
function profile. To transform concave as well as convex function profiles with the same 
quality characteristics, the square root will be added to the square function and cubic func-
tion (formula 7). 

Square root, square function and cubic function
For convex functions:
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The proposed formulas fulfil the following requirements: 
–– The calculated values represent a share of the optimal value.
–– The calculated values are roughly equal for maximization and minimisation in case 
of an identical percentaged change related to the optimal value.

–– For a minimization a useful value must be calculated also for a multiple of the min-
imal value.

–– The formulas are applicable for concave as well as for convex function profiles.
An advantage of this method is that there is no limit for the input values. Even for a 

multiple of the minimal value, which may occur in case of minimisation, an adaption of the 
calculated values is carried out. Because of the application of non-linear functions a stronger 
emphasis is put on the optimal values. An unintentional weighting between maximisation 
and minimisation is avoided.

As limitation it must be accepted that the calculated values are more reduced. Therefore 
non-optimal values become less important. 

For the numerical series 10, 11,..., 20, as an example, the effect of transformation for 
concave and convex function profiles is demonstrated for maximisation and minimisation 
(Figure 1 and 2).

Figure 1. Results for maximization

Figure 2. Results for minimisation
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3. Summary of transformation formulas

The following Table 1 lists all of the examined transformation formulas and their suitability 
for maximization and minimization, respectively.

Table 1. Evaluation of formulas (1) … (10)

Formula Optimization Function
profile Conditions for use Literature
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Formula Optimization Function
profile Conditions for use Literature

7

a

2

 
max

ij
ij

iji

a
b

a

 
 =  
 

Maximization convex no limitation

Peldschus 
19863min

   
iji

ij
ij

a
b

a

 
 =
 
 

Minimization convex no limitation

b

 
i

 
Max

ij
ij

ij

a
b

a
= Maximization concave no limitation

  

 

3 

2Min  
          

Min
  

min
                  

i ij ij

i ij

ij
iji

ij

a a

a
b

a

a

 −




   
 
 

=




Minimization convex no limitation

8

0,5
 
 

i iu
i

io iu

Q Q
q

Q Q
 − 
 
  

=
−

Maximization concave no limitation Hwang, 
Yoon 1981; 
Zavadskas, 
Kaklauskas 
2007

0,5
 
 

io i
i

io iu

Q Q
q

Q Q
 − 
 
  

=
−

Minimization concave no limitation

9

2
 
 

i iu
i

io iu

Q Q
q

Q Q
 − 
 

−
=
  

Maximization convex no limitation Hwang, 
Yoon 1981; 
Zavadskas, 
Kaklauskas 
2007

2
 
 

io i
i

io iu

Q Q
q

Q Q
 − 
 

−
=
  

Minimization convex no limitation

10

( )
1

ln
 
ln( )

ij
ij n

iji

a
b

a
=

=
∏

Maximization concave

no limitation,
unequal allocation  
of the interval
concentration 
towards zero

Zavadskas, 
Turskis 2008

1

ln
1  

ln( )
  

1

ij
n

iji
ij

a

a
b

n
=

−

=
−
∏ Minimization concave

no limitation, 
unequal allocation 
of the interval, 
concentration 
towards 1, calculated 
values significantly 
smaller

End of Table 1



1702 F. Peldschus. Recent findings from numerical analysis in multi-criteria decision making

4. Discussion of transformation formulas 

Due to the fact, that linear as well as concave and convex function profiles may occur through 
the selection of variants according to multiple criteria, it is generally suggested to make the 
following considerations: 

1.	 For each criterion it should be tested which function profile fulfils the description 
of variants.

2.	 On the basis of this test the selection of the transformation formula should be made 
for each criterion, respectively.

3.	 The calculation of the characteristic values for the selected multi-criteria decision 
method should follow this recommendation.

The suggestion to use only the selected transformation formula for each criterion, respec-
tively, represents a new idea in this context. For the first time it is suggested to use different 
transformation formulas for the transformation of values to take also different function pro-
files into account that may occur for the description of variants. 

For the selection of the transformation formulas the following should be also considered: 
If there is only a maximisation, the application of a linear transformation is recommended. 
The mapping on the interval [0; 1] occurs always unequivocally. The function profile would 
not be modified independently of the form, and the solution is stable. A distinct rationale 
would be required for different transformation formulas because the function profile will be 
modified. 

For problems of minimisation a stable solution with a linear transformation is only pos-
sible for values x ≤ 2Min. If this value is exceeded, a careful problem-based selection must 
be made taking the mentioned considerations into account. 

For a concurrent examination of maximisation and minimisation the problem of non-dis-
crimination must be additionally taken into account. For example, it is not reasonable, if the 
calculated values are differently reduced, because this would imply an unintended weighting 
between maximisation and minimisation without a reason. 

5. Examples of application

Using the following examples it should be demonstrated what differences may occur for the 
transformation with specifically selected transformation formulas for each criterion respec-
tively compared to the use of only one transformation formula. 

5.1. Example 1

5.1.1. Linear functions

A combined problem of maximisation and minimisation is presented. Due to the fact that the
initial values for the minimisation are within the interval x ≤ 2Min, the formulas (1) and 

(2) are applicable for mapping on the interval [0; 1] (Table 2). 
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Table 2. Initial and transformed values with formula (2) for example 1

Example 1 K 1(Min) K 2 (Min) K 3 (Max) B1, F(2) K 1 (Min) K 2 (Min) K 3 (Max) Sum

Variant 1 14 4000 0.77 Variant 1 0 1,000 0.895 1.895

Variant 2 12 4200 0.72 Variant 2 0.285 0.950 0.837 2.072

Variant 3 10 4400 0.86 Variant 3 0.571 0,900 1.000 2.471

Variant 4 9 4600 0.75 Variant 4 0.715 0,850 0.872 2.437

Variant 5 7 4800 0.73 Variant 5 1.000 0,800 0.849 2.649

5.1.2. Non-linear functions

If a non-linear function is used for the transformation, different values will occur after the 
transformation.

5.1.2.1. Square root

For application of formula (8) the following values occur (Table 3):

Table 3. Initial and transformed values with formula (4) for example 1

Example 1 K 1(Min) K 2 (Min) K 3 (Max) B1, F(8) K 1 (Min) K 2 (Min) K 3 (Max) Sum

Variant 1 14 4000 0.77 Variant 1 0 1.000 0.598 1.598

Variant 2 12 4200 0.72 Variant 2 0.535 0.866 0 1.401

Variant 3 10 4400 0.86 Variant 3 0.756 0.707 1.000 2.463

Variant 4 9 4600 0.75 Variant 4 0.845 0.500 0.463 1.808

Variant 5 7 4800 0.73 Variant 5 1.000 0 0.267 1.267

5.1.2.2. Quadratic function

For application of formula (9) the following values occur (Table 4):

Table 4. Initial and transformed values with formula (5) for example 1

Example 1 K 1(Min) K 2 (Min) K 3 (Max) B1, F(9) K 1 (Min) K 2 (Min) K 3 (Max) Sum

Variant 1 14 4000 0.77 Variant 1 0 1.0000 0.1275 1.1275

Variant 2 12 4200 0.72 Variant 2 0.0816 0.5625 0 0.6441

Variant 3 10 4400 0.86 Variant 3 0.3265 0.2500 1.000 1.5765

Variant 4 9 4600 0.75 Variant 4 0.5102 0.0625 0.0459 0.6186

Variant 5 7 4800 0.73 Variant 5 1.000 0 0.0051 1.0051

5.1.2.3. Results

For the three criteria the following function profiles occur for the initial and transformed 
values (Figure 3).

Looking at this graphical illustration, considerable differences are detectable. For the line-
ar transformation with formula 2, the function profile is not modified, therefore the function 
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profile represents the original function. For transformation with the formulas (8) and (9), a 
deformation of the function profile occurs with regard to the initial function. The transfor-
mation with formula (8) causes a concave influence. The almost linear function for criterion 
1 shows a considerably concave modification after the transformation. The linear function 
for criterion 2 also leads to a definitely concave function profile. For the convex function of 
criterion 3, a function profile that is similar to a straight line results after transformation with 
the concave function with formula (8). 

The transformation with formula (9) causes a convex appearance. The nearly linear func-
tion for the criterion 1 shows a considerably convex modification after transformation. The 

Figure 3. Results for initial and transformed values with the formulas (2), (8) and (9)
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linear function for criterion 2 shows now a definitely convex function profile. For the convex 
function of criterion 3, the character of the function is not changed after transformation with 
formula (9). There is only an increased curvature, which can be seen as an emphasis of the 
optimisation objective. 

Interesting to note is an examination of the different sums of the rows which occur as a 
result of the transformed values (Table 5). 

If these values are graphically displayed, significant differences are detectable (Figure 4).
The graphs of the sum of rows represent a remarkable image. While the results of the 

linear transformation with formula (2) show a relatively balanced linear course, the results for 
formulas (8) and (9) reveal significantly lower values. Notably, there is a particular emphasis 
on Variant 3. Furthermore, the maximal value for the linear transformation results from 
Variant 5. In contrast, due to the deformation of the function profile the use of formulas (8) 
and (9) for Variant 5 results in the lowest sum, respectively. 

The graphs of Figure 6 should not be interpreted as a parallel translation as each graph 
represents a different course. Notably, the use of formula (9) results in the lowest sum of rows 
for every variant. Therefore, it is not surprising that the use of these values for the common 
solution methods of multi-criteria decision making, for which the sum of rows may be of 
importance, result in different values, respectively.

Table 5. Sum of the rows of transformed values with the formulas (2), (8) and (9)

formula (2) formula (8) formula (9)

Variant 1 1.895 1.598 1.1275
Variant 2 2.072 1.401 0.6441
Variant 3 2.471 2.463 1.5765
Variant 4 2.437 1.808 0.6186
Variant 5 2.649 1.267 1.0051

Figure 4. Sum of rows for transformed values with the formulas (2), (8) and (9)

V1 V2 V3 V4 V5
formula (2) 1.895 2.072 2.471 2.437 2.649
formula (8) 1.598 1.401 2.463 1.808 1.267
formula (9) 1.128 0.644 1.577 0.619 1.005
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5.1.4. Solutions

For the values resulting from the formulas (2), (8) and (9), solutions will be calculated. The 
solution of Laplace and the game-theory equilibrium solution are selected. With the solution 
of Laplace the optimal solution is determined by the maximum of the sum of rows. Thereby 
an equality of criteria is assumed. 

For the game-theory equilibrium solution all elements of the matrix are incorporated. 
The point of equilibrium results from combinations of strategies for the variants as well as 
for the criteria.

Solution of Laplace (Peldschus 1986) (Table 6):

	

* 
1 1 1 1 1

1 / max( ) .
n

i i ijji
S S S S a

n =
 = ∈ ∩ 
 

∑  	 (11)

Table 6. Solution of Laplace

B1, F(2) K 1 (Min) K 2 (Min) K 3 (Max) 1/n ∑

optimal order: V5, V3, V4, V2, V1

Variant 1 0 1.000 0.895 0.632
Variant 2 0.285 0.950 0.837 0.691
Variant 3 0.571 0.900 1.000 0.824
Variant 4 0.715 0.850 0.872 0.812
Variant 5 1.000 0.800 0.849 0.883

B1, F(8) K 1(Min) K 2(Min) K 3 (Max) 1/n ∑

optimal order: V3, V4, V1, V2, V5 

Variant 1 0 1.000 0.598 0.533
Variant 2 0.535 0.866 0 0.467
Variant 3 0.756 0.707 1.000 0.821
Variant 4 0.845 0.500 0.463 0.603
Variant 5 1.000 0 0.267 0.422

B1, F(9) K 1(Min) K 2(Min) K 3 (Max) 1/n ∑

optimal order: V3, V1, V5,V2, V4

Variant 1 0 1.0000 0.1275 0.3758
Variant 2 0.0816 0.5625 0 0.2147
Variant 3 0.3265 0.2500 1.000 0.5255
Variant 4 0.5102 0.0625 0.0459 0.2062
Variant 5 1.000 0 0.0051 0.3350

The calculated orders from the criterion of Laplace correspond to the graphs of the sum 
of rows, because they are based on the same logic concept. Figure 3 demonstrated that the 
original function profile was not changed by the linear transformation. Therefore this solu-
tion can be rated as correct. The formulas (8) and (9) produce a deformation of the original 
function profile and thus reveal also different transformed values. This produces a solution 
of a modified function. Therefore, these results can not be rated as correct for the original 
problem. 
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Game-theory equilibrium solution (Peldschus 1986):

	 ν(Γ) =   )max min ,  mi m( ) n  a   (x ,p P q Q q Q p PE p q E p q∈ ∈ ∈ ∈=  = E * *( ), .p q  	 (12)

B1 F(2) – Var5: 62.19% Var3: 37.81% K2: 81.10% 	 K1: 18.9%
B1 F(8) – Var3: 87.11% Var2: 12.89 K2: 58.16% 	 K1: 41.84%
B1 F(9) – Var3: 37.71% Var1: 32.59% Var5: 29.70% 	 K1: 41.92% K2: 39.67% K3: 18.41%.

The solution of the game-theory equilibrium confirms the results from the Laplace crite-
rion for this example. However, the solutions may be also different because the logic of the 
solution of Laplace and of the game-theory equilibrium is not identical. 

5.2. Example 2

5.2.1. Square root, quadratic and cubic function

Application of formula (7) results in the following values (Table 7):

Table 7. Original and transformed values with formula (7) for example 2

Example 2.1 K1 (Min) K2 (Max) K3 (Min) B2.1 F(7) K1 (Min) K2 (Max) K3 (Min) sum

Variant 1 130 40 1270 Variant 1 1.0000 0.0028 0.0727 1.0755

Variant 2 150 220 530 Variant 2 0.9199 0.0861 1.0000 2.0060

Variant 3 190 480 920 Variant 3 0.7338 0.4096 0.1912 1.3346
Variant 4 240 750 1480 Variant 4 0.3922 1.0000 0.0459 1.4381

5.2.2. Formation of quotients with a summand

Application of formula (4) results in the following values (Table 8):

Table 8. Original and transformed values with formula (4) for example 2

Example 2.1 K1 (Min) K2 (Max) K3 (Min) B2.1 (F4) K1 (Min) K2 (Max) K3 (Min) sum

Variant 1 130 40 1270 Variant 1 0.8169 0.0268 0.6976 1.5413
Variant 2 150 220 530 Variant 2 0.7887 0.1477 0.8738 1.8102
Variant 3 190 480 920 Variant 3 0.7324 0.3221 0.7810 1.8255
Variant 4 240 750 1480 Variant 4 0.6620 0.5034 0.6476 1.8130

5.2.3. Square root as quotient

Application of formula (5) results in the following values (Table 9): 

Table 9. Original and transformed values with formula (5) for example 2

Example 2.1 K1 (Min) K2 (Max) K3 (Min) B2.1 F(5) K1 (Min) K2 (Max) K3 (Min) sum

Variant 1 130 40 1270 Variant 1 0.6437 0.0436 0.4281 1.1154
Variant 2 150 220 530 Variant 2 0.5888 0.2396 0.7613 1.5897
Variant 3 190 480 920 Variant 3 0.4792 0.5228 0.5857 1.5877
Variant 4 240 750 1480 Variant 4 0.3422 0.8169 0.3335 1.4926
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5.2.4. Results

For the three criteria, the following function profiles occur for the initial and transformed 
values (Figure 5). 

There are no significant differences of the function profiles for all results with the three 
formulas (7), (4) and (5). This is rather reasonable considering the following: Convex as well 
as concave function profiles can be identically transformed with formula (7). Formula (4) and 
(5) represent linear transformations which do not modify the initial function profile as men-
tioned above. Therefore, the criticism on the stability of the solution can not be debilitated.

For example 2 the modified sum of rows, which results from the transformed values, will 
also be examined (Table 10). 

If these values are graphically presented, significant differences are also detectable (Figure 6).

Figure 5. Results for initial and transformed values with the formulas (7), (4) and (5)
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Table 10. Sum of rows of the transformed values for example 2 with the formulas (7), (4) and (5)

B 2.1 formula (7) formula (4) formula (5)

Variant 1 1.0755 1.5413 1.1154
Variant 2 2.0060 1.8102 1.5897
Variant 3 1.3346 1.8355 1.5877
Variant 4 1.4381 1.8130 1.4926

The graphs of the sum of rows demonstrates a similarity for the results of the formulas 
(4) and (5). The maximal value of the sum of rows for formula (7) is represented by variant 
2 which is also the highest overall value. The maximal value of the sum of rows for formula 
(4) results from variant 3 and for formula (5) from variant 2.

The minimal values result from formula (7) for the variants 1, 3 and 4. This is due to the 
immanent logic of this formula – non optimal variants are more attenuated. 

The difference of the results for the variants 1, 3 and 4 with the formulas (4) and (5) 
may be reasoned by the different quotients. While only the sum of all values is included in 
formula (4), the square root for the sum of all squares is effective for formula (5) for which 
larger quotients and accordingly lower values occur. 

5.2.5. Solutions

For the values resulting from the formulas (7), (4) and (5) solutions will be calculated. Again, 
the solution of Laplace (formula 11) and the game-theory equilibrium solution (formula 12) 
are selected (Table 11).

The calculated optimal orders from the Laplace criterion show interesting results. While 
the optimal value from the formulas (7) and (5) is identical for this example, a different result 
is obtained from formula (4). Here, the influence of the extent of the quotient is evident. If 
the number of variants is increased, there will be also another solution for the results form 
formula (5). 

Figure 6. Sum of rows for transformed values with the formulas (7), (4) and (5)
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Table 11. Solution of Laplace

B2.1 F(7) K1 (Min) K2 (Max) K3 (Min) 1/n ∑

optimal order: V2, V4,V3, V1
Variant 1 1.0000 0.0028 0.0727 0.3585
Variant 2 0.9199 0.0861 1.0000 0.6667
Variant 3 0.7338 0.4096 0.1912 0.4449
Variant 4 0.3922 1.0000 0.0459 0.4794

B2.1 F(4) K1 (Min) K2 (Max) K3 (Min) 1/n ∑

optimal order: V3, V4,V2, V1
Variant 1 0.8169 0.0268 0.6976 0.5138
Variant 2 0.7887 0.1477 0.8738 0.6034
Variant 3 0.7324 0.3221 0.7810 0.6118
Variant 4 0.6620 0.5034 0.6476 0.6043

B2.1 F(5) K 1 (Min) K 2(Max) K 3 (Min) 1/n ∑

optimal order: V2, V3,V4, V1
Variant 1 0.6437 0.0436 0.4281 0.3718
Variant 2 0.5888 0.2396 0.7613 0.5299
Variant 3 0.4792 0.5228 0.5857 0.5292
Variant 4 0.3422 0.8169 0.3335 0.4975

Game-theory equilibrium solution:
B2.1 F(7) – Var2: 51.08% Var4: 48.92% 	 K2: 51.08% K1: 48.92% 
B2.1 F(4) – Var4: 100% 	 K2: 100%
B2.1 F(5) – Var3: 88.90% Var2: 11.10% 	 K1: 72.10% K2: 27.90%. 

The evaluation on the basis of the game-theory equilibrium differs from the orders cal-
culated based on the Laplace criterion. Thus, the difference between the variable mode of 
operation and the equality of all criteria becomes evident. 

The results from formula (7) confirm the Laplace solution, at which the variants 2 and 4 
are nearly equivalently engaged in the point of equilibrium. 

The calculated saddle point of variant 4 with the values of formula (4) differs significantly 
from the solution based on the Laplace criterion. The difference between the variable mode 
of operation and the equality of all criteria becomes here particularly evident. 

The results from formula (5) are not identical. While variant 2 represents the optimal 
solution for the equivalence of all criteria (Laplace criterion), the game-theory equilibrium 
reveals the best evaluation for variant 3 and variant 2 is considerably less important. This 
result may be also caused by the difference between the variable mode of operation and the 
equality of all criteria. By increasing the number of variants this solution will change. 
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5.2.6. Extended matrix

5.2.6.1. Square root, quadratic and cubic function (formula 7) (Table 12)

Table 12. Initial and transformed values with formula (7) for the extended example 2

Example 2.2 K1 (Min) K2 (Max) K3 (Min) B2.2 F(7) K1 (Min) K2 (Max) K3 (Min) sum

Variant 1 130 40 1270 Variant 1 1.0000 0.0028 0.0727 1.0755
Variant 2 150 220 530 Variant 2 0.9199 0.0861 1.0000 2.0060
Variant 3 190 480 920 Variant 3 0.7338 0.4900 0.1912 1.3346
Variant 4 240 750 1480 Variant 4 0.3922 1.0000 0.0459 1.4381
Variant 5 520 105 1610 Variant 5 0.0092 0.0196 0.0357 0.0645

5.2.6.2. Formation of quotients with a summand (formula 8) (Table 13)

Table 13. Initial and transformed values with formula (4) for the extended example 2

Example 2.2 K1 (Min) K2 (Max) K3 (Min) B2.2 F(4) K1 (Min) K2 (Max) K3 (Min) sum

Variant 1 130 40 1270 Variant 1 0.8943 0.0251 0.7814 1.7008
Variant 2 150 220 530 Variant 2 0.8705 0.1379 0.9088 1.9172
Variant 3 190 480 920 Variant 3 0.8455 0.3009 0.8417 1.9881
Variant 4 240 750 1480 Variant 4 0.8049 0.4702 0.7453 2.0204
Variant 5 520 105 1610 Variant 5 0.5773 0.0658 0.7229 1.3660

5.2.6.3. Square root as quotient (Formula 9) (Table 14)

Table 14. Initial and transformed values with formula (5) for the extended example 2

Example 2.2 K1 (Min) K2 (Max) K3 (Min) B2.2 F(5) K1 (Min) K2 (Max) K3 (Min) sum

Variant 1 130 40 1270 Variant 1 0.7953 0.0433 0.5370 1.3756
Variant 2 150 220 530 Variant 2 0.7639 0.2381 0.8068 1.8106
Variant 3 190 480 920 Variant 3 0.7009 0.5194 0.6646 1.8849
Variant 4 240 750 1480 Variant 4 0.6222 0.8116 0.4604 1.8942
Variant 5 520 105 1610 Variant 5 0.1813 0.1136 0.4130 0.7079

5.2.6.4. Results

For the three criteria, the following function profiles occur for the initial function and trans-
formed values (Figure 7).

For the extended example 2, the modified sum of rows resulting from the transformed 
values will be also examined (Table 15 and Figure 8).

For the extended example 2 a significant difference of the sum of rows in Table 15 and 
Figure 8 could be observed by adding another unfavourable variant. The sum of rows for the 
additional unfavourable variant 5 shows the lowest value in all cases. For the results with for-
mula (7) only a normal extension occurs. The maximum of the sum of rows does not change. 

For the values calculated with formula (4) an enlargement of the values as well as a 
change of the maximum of the sum of rows occur. The maximum of the sum of rows changes 
from variant 3 to variant 4.
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Table 15. Sum of rows of the transformed values for the extended example 2 with the formulas (7), 
(4) and (5)

B 2.2 formula (7) formula (4) formula (5)

Variant 1 1.0755 1.7008 1.3756
Variant 2 2.0060 1.9172 1.8106
Variant 3 1.3346 1.9881 1.8849
Variant 4 1.4381 2.0204 1.8942
Variant 5 0.0645 1.3660 0.7079

Figure 7. Results for the initial and transformed values with the formulas (7), (4) and (5)
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The same observation can be made for the values calculated with the formula (5). There 
is also an enlargement of the calculated values and a change of the maximum of the sum of 
rows from variant 2 to variant 4.

Such results have obviously implications in the application of the solution methods there-
after.

5.2.6.5. Solutions

For the extended example 2 solutions for the values resulting from the formulas (7), (4) 
and (5) will be calculated. Again, the solution of Laplace (formula 11) and the game-theory 
equilibrium solution (formula 12) is selected (Table 16).

Table 16. Solution of Laplace

B2.2 F(7) K1 (Min) K2 (Max) K3 (Min) 1/n ∑

optimal order: V2, V4,V3, V1, V5

Variant 1 1.0000 0.0028 0.0727 0.3585
Variant 2 0.9199 0.0861 1.0000 0.6667
Variant 3 0.7338 0.4900 0.1912 0.4449
Variant 4 0.3922 1.0000 0.0459 0.4794
Variant 5 0.0092 0.0196 0.0357 0.0215

B2.2 F(4) K1 (Min) K2 (Max) K3 (Min) 1/n ∑

optimal order: V4, V3,V2, V1, V5

Variant 1 0.8943 0.0251 0.7814 0.5669
Variant 2 0.8705 0.1379 0.9088 0.6391
Variant 3 0.8455 0.3009 0.8417 0.6627
Variant 4 0.8049 0.4702 0.7453 0.6735
Variant 5 0.5773 0.0658 0.7229 0.4553

Figure 8. Sum of rows for transformed values for the extended example 2  
with the formulas (7), (4) and (5)
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Formel (7) 1.076 2.006 1.335 1.438 0.065
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B2.2 F(5) K1 (Min) K2 (Max) K3 (Min) 1/n ∑

optimal order: V4, V3,V2, V1, V5

Variant 1 0.7953 0.0433 0.5370 0.4583
Variant 2 0.7639 0.2381 0.8068 0.6035
Variant 3 0.7009 0.5194 0.6646 0.6283
Variant 4 0.6222 0.8116 0.4604 0.6314
Variant 5 0.1813 0.1136 0.4130 0.2360

The calculated orders from the Laplace criterion again show the results of the graphs of 
the sum of rows. For application of formula (7), only an extension occurs. All calculated 
values so far are preserved. Thus the calculated order as yet is identical with the order of the 
extended matrix.

For the calculated results with the formulas (4) and (5), this is different. Through adding 
a poor variant the initially most favourable variant 3 (formula 4) and variant 2 (formula 5) 
are replaced by variant 4 – a fact that deserves particular attention. Furthermore, there is a 
considerably modified order for the results with the formula (5).

Game-theory equilibrium:
B 2.2 F(7) – Var2: 51.08% Var4: 48.92% K2: 51.08% 	 K1: 48.92% 
B2.2 F(4) – Var4: 100% 	 K2: 100%
B2.2 F(5) – Var3: 70.75% Var4: 29.25% K3: 58.86% 	 K2: 41.14%.

For the game-theory equilibrium, a consistent solution can be observed with the results 
from formula (7), comparable to the Laplace criterion. Even after extension of the matrix by 
an unfavourable variant, the solution remains stable.

For results from formula (4) and (5), the solution is altered by adding an unfavoura-
ble variant. This is due to the fact, that the quotient of these formulas is influenced by the 
number of variants and thus causes an enlargement of the calculated values. Therefore, the 
solution is not stable. For the game-theory solution with the values of formula (4), the same 
saddle point (variant 4 and criterion 2) is calculated again in this case. This result can be 
explained by the specific transformation formula. In particular it is notable, that a consid-
erable discrepancy between the calculated values for maximisation and minimisation exists. 
While for maximization the calculated values are predominantly lower than 0.5, values for 
minimization are generally higher than 0.5. With such an imbalance of minimization and 
maximization it is not possible to obtain logically justifiable solutions. It should be also noted, 
that for the values calculated with formula (4), the sum 1.0 always occurs for maximization 
and the sum for minimization always results from the number of variants subtracted by 1. 
In this particular case it has to be pointed out that the minimization has a fourfold impact 
compared to the maximization. Therefore, only the values of maximization are effective for 
the game-theory equilibrium. Even with further modifications of the variants the values of 
minimization will never contribute to the result. Due to this discrepancy of the values cal-
culated for maximization and minimization, there will always be a result of maximization 
for the solution of the saddle point. 

End of Table 16
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Discusions and conclusions

The investigations published so far have not included a differentiated analysis of the course of 
the function for the different criteria. For all criteria, the transformation (normalisation) has 
been performed with only a single formula independent of the actual course of the function. 
As an alternative, it was attempted to compensate an apparently unknown phenomenon by 
multiple calculations with different solution methods, which does not solve the actual problem. 

With this investigation it could be pointed out, that linear as well as concave and convex 
functions occur for the initial function profile. This finding has a considerable impact on 
the selection of the transformation formula. Therefore, only a transformation that does not 
modify the initial function profile should be selected for each criterion. If a linear function 
is transformed by a convex or concave function, a deformation of the original problem will 
happen. Thus, the solution is not derived for the original problem, but for a different situa-
tion. If a concave function profile is transformed with a convex function, the difference will 
be considerably large. Hence, a completely different situation occurs and the calculated result 
may be considered a result of gambling. 

It would be unrealistic to pretend that there is no need for any deformation. If a combined 
assessment of maximisation and minimisation is required for a specific problem and the 
values for minimisation exceed the twofold minimum, then there are two options. Either all 
values that exceed the twofold minimum are ignored or the initial function profile must be 
deformed. For the latter the problem of an equal consideration must be taken into account. 
For example, it does not make sense if the calculated values are differently decreased because 
this would imply the acceptance of an unintentional weighting between maximisation and 
minimisation without a reasonable rationale. 

Formula (7) represents a suggestion which incorporates convex as well as concave trans-
formations without the occurrence of an unintentional weighting between maximisation and 
minimisation. With the suggested transformation the suboptimal values are more intensely 
decreased which places emphasis on the optimal values. This concept supports the aim of 
the optimisation and yields always a stable solution.

Finally, it must be pointed out that all transformation formulas, for which the number 
of variants or the difference of the highest and lowest values are an element of the formula, 
may produce new and thereby also wrong solutions.

It needs to be stressed, that with all known methods for multi-criteria decisions a nu-
merical result is always obtained, regardless of the problem being a real or a fictitious one. 
If errors are introduced into the transformation (normalization) of the characteristic values 
however, then the result is flawed and the use of such solutions may lead to erroneous deci-
sions, which may in turn lead to serious consequences in technical applications. It is therefore 
recommended to always run an investigation on the actual course of the function for each 
criterion in order to depict the addressed situation as realistically as possible.
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