
INFLUENCE OF LIPSCHITZ BOUNDS ON THE SPEED OF  
GLOBAL OPTIMIZATION

Remigijus Paulavičius1, Julius Žilinskas2

1, 2Vilnius University, Institute of Mathematics and Informatics, Akademijos g. 4, LT-08663 Vilnius, Lithuania 
1Vilnius Pedagogical University, Studentų g. 39, LT-08106 Vilnius, Lithuania 

2Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania 
E-mails: 1remigijus.paulavicius@vpu.lt (corresponding author); 2julius.zilinskas@mii.vu.lt

Received 04 January 2011; accepted 10 November 2011

Abstract. Global optimization methods based on Lipschitz bounds have been analyzed and ap-
plied widely to solve various optimization problems. In this paper a bound for Lipschitz function is 
proposed, which is computed using function values at the vertices of a simplex and the radius of the 
circumscribed sphere. The efficiency of a branch and bound algorithm with proposed bound and 
combinations of bounds is evaluated experimentally while solving a number of multidimensional 
test problems for global optimization. The influence of different bounds on the performance of a 
branch and bound algorithm has been investigated.
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1. Introduction

Global optimization is used in such fields as economics, operations research, biology, engineer-
ing design and management as well as other numerous engineering and applied sciences. For 
example, prediction methods in computational finance forecast various kinds of quantities 
related to stock markets, like stock prices, stock volatility and ranking measures. Prediction 
problem of building a multi-stock artificial trader (Björkman, Holmström 1999) can be used 
instead of the classical time series approach. The behavior of the trader is controlled by a 
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parameter vector which is tuned for the best performance. Global optimization algorithm 
DIRECT (Jones et al. 1993) was applied to find optimal parameters. Extension of optimization 
to decision-making systems is a challenging topic of research (Sakalauskas, Zavadskas 2009).

One of the most investigated fields of global optimization is Lipschitz optimization 
(Strongin 1978; Horst et al. 1995; Strongin, Sergeyev 2000; Sergeyev, Kvasov 2008). In this 
paper we consider the problem of global optimization of a Lipschitz continuous objective 
function : → 

nf  over a given compact feasible region ⊆D 

n. A function : →D f , 
is said to be Lipschitz continuous if it satisfies the condition

 ( ) ( )− ≤ − ∀ ∈, , ,p q
f x f y L x y x y D  (1)

where ( ){ }∇ ∈= sup :p p
L f x x D  is a Lipschitz constant, ∇ ( )f x  is the gradient of the 

function, ⋅
q

 denotes the lq-norm and +1/ 1/ =1p q , ≤ ≤ ∞1 ,p q . Since minimization can 
be transformed into maximization by changing the sign of the objective function, we will 
consider only the maximization problem

 
∈

* = ( ).max
x

f f x
D

 (2)

Apart from the global optimum *f , one or all global optimizers * * *: ( ) =x f x f  should 
be found. In Lipschitz optimization only a point ∈optx D  such that ( )optf x  differs from 

*f  by no more than a specified accuracy ε can be found.
There are at least four approaches to obtain an estimate of Lipschitz constant (Sergeyev, 

Kvasov 2009): 1) it can be given a priori; 2) its adaptive global estimate over the whole domain 
can be used; 3) local Lipschitz constants can be estimated adaptively using the local tuning 
technique (Sergeyev 1995, 1998); 4) a set of possible estimates can be used (Jones et al. 1993).

The most studied case of problem (2) is the univariate one ( =1)n , for which numerous 
algorithms have been proposed, compared, and theoretically investigated. In the present 
paper, we are interested in the multivariate case ≥( 2)n .

In Lipschitz optimization the upper bound for ( )f x  over a sub-region ⊆I D  is evaluated 
by exploiting Lipschitz condition (1). It follows from (1) that for all ∈,x y I

 ≤ + −( ) ( ) .p q
f x f y L x y  

If ∈y I  is fixed, then the convex function

 + −( ) = ( )q
y p q

F x f y L x y  (3)

overestimates ( )f x over I . The superscript q indicates the norm used for the upper bound 
calculation. Let T  be a finite set of distinct points in I . Then, the Piyavskii-type upper bound 
over I , given the function values ∈( ),f y y T , and the Lipschitz constant L , is provided by

 
∈∈

ϕ ( ) = ( ).maxminq q
y

y Tx
F x

I
I  (4)

55Technological and Economic Development of Economy, 2012, 18(1): 54–66



In the univariate case, the function 
∈

( )min q
y

y T
F x  is piecewise linear, and ϕq  can be determined 

in a simple straightforward way (Piyavskii 1972). For (n > 2), however, problem (4) constitutes 
a difficult optimization problem.

Therefore, branch and bound algorithms use considerably weaker bounds. In general, 
weaker bounds belong to the following two simple families µ1  and µ2 . Let

 { }( ) = max : ,δ − ∈I Iq qx y x y  

denote the diameter of I . For example, if = { : }∈ ≤ ≤I 

n
i i ix a x b  is an n -rectangle, then

δ −( ) =q q
b aI , and if I  is an n -simplex, then the diameter δ ( )q I  is the length of its longest 

edge. Afterwards a simple upper bound can be derived from (3):

 
∈

µ + δ1 ( ) = ( ) ( ),minq
p q

y T
f y LI I  (5)

where ⊂T I  is a finite sample of points in I , where the function values of f  have been 
evaluated. If I  is a rectangle or a simplex, the set T  often coincides with the vertex set ( )V I .

A tighter but computationally more expensive than (5) bound is

 
∈ ∈

 
µ + − 

 
2

( )
( ) = min ( ) .maxq

p qy T z V
f y L y z

I
I  (6)

Methods with the ϕq  type bounds (4) can hardly be used to solve typical test problems with 
relatively large Lipschitz constants and (n > 2). Branch and bound algorithms can almost 
always provide reasonable approximate optimal solutions for (n = 3) (Horst et al. 1995), 
although the methods usually involve more function evaluations (and thus are less suitable 
in case of very expensive functions), but much less auxiliary computational time than the 
methods with the ϕq  type bounds.

Therefore, it is important to investigate possibilities of bounds tighter than (5) and (6), 
but computationally less expensive than (4). In this paper, we propose a bound based on the 
function values at the vertices and the circumradius of an n-circumsphere.

2. Branch and bound with simplicial partitions and Lipschitz bound

Branch and bound is a technique for implementation of covering global optimization methods 
as well as combinatorial optimization algorithms. An iteration of a classical branch and bound 
algorithm processes a node in the search tree representing a not yet explored subspace of the 
solution space. The iteration has three main components: selection of the node to process, 
branching of the search tree and bound calculation. Several selection strategies (Paulavičius 
et  al. 2010) may be used: best-first, depth-first, breadth-first, statistical (Žilinskas,  A., 
Žilinskas, J. 2010). Partitions may be hyper-rectangular, simplicial (Horst 1997; Gorodeckij 
1999), hyper-conic or hyper-spherical. Bounds may be computed using envelopes of func-
tions (Androulakis et al. 1995; Adjiman, Floudas 1996; Zlobec 2010), interval arithmetic 
(Moore 1966; Hansen, Walster 2003; Žilinskas 2005) as well as Lipschitz condition. Most of 
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Lipschitz global optimization branch and bound algorithms use hyper-rectangular partitions. 
Simplicial partitions are preferable when the values of an objective function at the vertices 
of partitions are used to compute bounds. Another advantage of simplicial partitions is that 
they may be used to vertex-triangulate feasible regions of non-rectangular shape defined by 
linear inequality constraints (Žilinskas 2008), what allows the reduction of search space of 
problems with symmetric objective functions (Žilinskas 2007).

For simplicial branch and bound, the feasible region should be initially covered by sim-
plices. The most preferable initial covering is face to face vertex triangulation – partitioning 
of the feasible region into finitely many n-dimensional simplices, whose vertices are also the 
vertices of the feasible region. We use a standard way of triangulation into n! simplices. All 
simplices share the diagonal of the feasible region and are of equal hyper-volume. It is also 
possible to over-cover the feasible region by one simplex (Žilinskas, A., Žilinskas, J. 2002). 
However, the objective function may be undefined outside the feasible region. Moreover, 
the hyper-volume of over-covering simplex is considerably larger than the feasible region. 
For example, one version of over-covering is to fit a hyper-rectangle into a simplex matching 
a vertex: one vertex of the hyper-rectangle and one vertex of the simplex are matched, the 
edges of the simplex from this vertex include edges of the hyper-rectangle from this vertex, 
and the opposite vertex of the hyper-rectangle is placed in the opposite face of the simplex. 
If a hyper-cube is over-covered using this strategy, the hyper-volume of the simplex is expo-
nentially larger than the hyper-volume of the hyper-cube (approximately π/ 2ne n  times).

There are some possibilities to partition a simplex into smaller ones (Žilinskas, A., 
Žilinskas, J. 2002). Experiments have shown that the most preferable partitioning is a subdivi-
sion of the simplex into two by a hyper-plane passing through the middle point of the longest 
edge and the vertices which do not belong to the longest edge. The lower and upper bounds 
for the maximum of the function over a simplex are estimated using the function values at 
the vertices. At the beginning of the algorithm the rectangular feasible region is covered by 
simplices and some initial values are initialized. Then the loop is executed until the candidate 
list is not empty. The simplex with the best upper bounding function value is chosen. If the 
difference between the upper bound and the global lower bound is larger than the predefined 
precision ε the simplex is subdivided into two new simplices which are inserted into candidate 
list. Convergence of such a branch and bound algorithm for maximizing a Lipschitz functions 
over n-simplices by using bisection at the midpoint of one of the longest edges and the upper 
bounds µ1 (5)q ,µ2(6)q  follows from exhaustiveness of the subdivision and continuity of the 
function f(x) (Horst et al. 1995).

2.1. Lipschitz bound over simplices based on the function values  
at the vertices and the radius of the circumscribed sphere

In this section a new Lipschitz bound over simplices is proposed. The bound is often stronger 
than usually used trivial bounds and still computationally cheap, especially for low-dimen-
sional problems ≤( 3)n  for which calculation of the radius of the circumscribed sphere is 
cheap. To find the radius, n + 2 determinants of (n + 1) ×(n + 1)-dimensionality matrices 
must be calculated.

57Technological and Economic Development of Economy, 2012, 18(1): 54–66



Proposition 1. Let : ,→ ⊆D D 

nf  be a Lipschitz continuous objective function, 
⊂I D  is an n-simplex, 2( )R I  denotes the radius of circumscribed n-sphere and ( )V I  denotes 

the set of vertices. Then
 

∈
ψ +2

2 2
( )

( ) = ( ) ( )max
v V

f v L R
I

I I  (7)

overestimates ∀ ∈( ),f x x I .
Proof. An n-simplex I  is covered by n-balls Ο +, =1, , 1i i n  such that the radius 2( )R I  

is the same for all n-balls and centers coincide with the vertices iv  of the simplex I  (two 
dimensional example is shown in Fig. 1): ∀ ∈ ∃x iI  such that ix∈Ο . Then ∀ ∈Οix

 
∈

≤ + ≤ + ψ2
2 2 2 2

( )
( ) ( ) ( ) ( ) ( ) = ( ).maxi

v V
f x f v L R f v L R

I
I I I  

R2(I)

O3
v3 = (v31,v32)

v1 = (v11,v12)
O1

O2
v2 = (v21,v22)

Fig. 1. Covering of a triangle (two-dimensional simplex) I by disks (2-balls) Ο +, =1, , 1i i n   
of the same radius 2( )R I

2.2. Calculation of the radius of the circumscribed n-sphere

In this section a general formula to calculate the radius 2R  of the circumscribed n-sphere 
is derived. A geometric construction for the radius of the circumscribed 2-sphere (cir-
cumscribed circle) is given by Pedoe (Pedoe 1995). The equation of the n-circumsphere of 
the n-simplex with the vertices + + +1 11 1 1 ( 1)1 ( 1)= ( , , ), , = ( , , )  n n n n nv v v v v v  expressed in 
determinant form is

 

+ + ++

∑

∑

∑

∑

2
1 2

=1

2
1 11 12 1

=1

2
2 21 22 2

=1

2
( 1)1 ( 1)2 ( 1)( 1)

=1

1

1

= 0
1

1







     



n

i n
i
n

i n
i
n

i n
i

n

n n n nn i
i

x x x x

v v v v

v v v v

v v v v

. (8)
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Expanding the determinant by the first row we get

 
   

+ +      
   
∑ ∑2

=1 =1
= 0,

n n

i i i
i i

a x b x c  (9)

where

 

+ + +
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Completing the square for (9) gives:

   
+ + + + − − − +  

   

22 22
1 1

1 = 0
2 2 4 4

 

n n
n

b bb b
a x a x c

a a a a
 

which is the n-circumsphere

 + + −  
+ + + +  

   

22 2 2
11

1 2
4

=
2 2 4





n n
n

b b b acb
x x

a a a
 

with the circumcenter

 ( )  
− − 
 

1
1 2, , , = , , ,

2 2
 

n
n

bb
c c c

a a
 

and the circumradius

 + + −2 2
1

2 2
4

= .
4

 nb b ac
R

a
 (10)

2.3. Combination of bounds with various norms

Experiments have shown (Paulavičius, Žilinskas 2006, 2007) that no single norm and cor-
responding Lipschitz constant is the best for all problems and therefore a combination of the 
infinite, Euclidean and first norms is used for calculation of the upper bound

 { }∞

∈
µ +1,2,

2
( )

( ) = ( ) ) ,min
v V

f v K
I

I  (11)

where

 ∞ ∞∈ ∈ ∈

 
− − − 

 
2 11 2( ) ( ) ( )

= min , , .max max max
x V x V x V

K L x v L x v L x v
I I I

 

The Piyavskii type (4) Lipschitz bound with the first norm ϕ1  was proposed in (Paulavičius, 
Žilinskas 2008):
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 { }∞
∈∈

 
ϕ + − 

 
1

1( )
( ) = ( ) .max min

v Vx
f v L x v

II
I  (12)

However, the first norm does not always give the best bounds (Paulavičius, Žilinskas 2008). 
The further investigation (Paulavičius, Žilinskas 2009) has shown that an aggregate bound 
(AB) composed of ∞µ2,

2  and ϕ1  bounds

{ } { } { }2,1
2 1( ) ( )

( ) = min ( ), ( ) min ( ) , ( ) ,max min min '

v V v Vx
AB f v L x v f v K∞

∞
∈ ∈∈

   ϕ µ = + − +  
   I II

I I I  (13)

where
 

∞∈ ∈

 − − 
 

1 2 2
= min ,max max'

x x
K L x v L x v

I I
 

yields better results. The aggregate bound (13) may be improved by including the bound 
based on the radius of the circumscribed sphere. Therefore, we propose and experimentally 
investigate an improved aggregate bound (IAB)

 { }ψ2( ) = min ( ), ( ) .IAB ABI I I  (14)

3. Experimental investigation

In this section the results of computational experiments are presented and discussed. Various 
test problems ≥( 2)n  for global optimization from (Hansen, Jaumard 1995; Jansson, Knüppel 
1992; Madsen, Žilinskas 2000) have been used in our experiments. The list of all used test 
problems and their global minima from the literature are shown in Table 1. For the (n = 2, 3) 
test problems we use the same precision ε as used by Hansen and Jaumard (Hansen, Jaumard 
1995). The proposed algorithm assumes that Lipschitz constants are given a priori. These 
constants have been evaluated in the same way, as in (Hansen, Jaumard 1995). A very fine 
grid search algorithm of 1000n points for (n = 2, 3) and 100n points for (n = 4, 5, 6) dimen-
sional test functions have been used and the obtained estimates should be close to the best 
Lipschitz constants. The values are given in (Paulavičius, Žilinskas 2006, 2007). The speed of 
global optimization has been estimated using the number of function evaluations criterion.

The results of the simplicial branch and bound algorithm with the proposed bound ψ2 (7) 
based on the Euclidean norm and with the bound µ2

2 (5) based on the same norm are shown 
in Table 2. For all test problems the number of function evaluations is smaller when the pro-
posed bound ψ2  is used and on the average it is by 26% smaller than when the bound µ2

2  
is used. The rate (ψ <µ2 2

2 ) shows how often the proposed bound ψ2  is better (more tight) 
than the bound µ2

2 . For the used test functions it is better on average in 70% of simplices. 
However, the bound ψ2  does not always give better bound comparing with µ2

2  (the rate 
is not equal to 1). If function values at the vertices V(I) of the simplex I differ significantly: 

( )
∈∈

− > δ −2 2 2
( )( )

( ) ( ) ( ) ( )max min
v Vv V

f v f v L R
II

I I  , then µ2
2  type bound is more tight comparing with 

the proposed ψ2 bound. If the difference between the maximal and minimal functions values is 
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smaller than ( )δ −2 2 2( ) ( )L RI I , then the proposed ψ2 type bound gives better results. There-
fore, for computationally expensive functions it might be worthwhile to append the bound 
ψ2  to the aggregate bound AB (13). Performance of simplicial branch and bound algorithm 
with the aggregate bound AB (13) is similar to that of the best branch-and-bound algorithm 
for Lipschitz optimization and it is often better (Paulavičius, Žilinskas 2009). The numbers of 
function evaluations on the average is by 23% smaller when the improved aggregate bound 
IAB (14) is used than when the aggregate bound AB (13) is used.

The value of objective function at the same point is required when computing bounds 
over neighbor sub-regions. If this value is evaluated for parent sub-region, it is not necessary 
to evaluate it again. However, in multidimensional case the same points may be involved in 
subdivision of different sub-regions. It is possible to maintain a list of all points where the 
objective function is evaluated and avoid evaluation of objective function at such points 
several times by verifying if the point is in the list before evaluation. In two-dimensional case 
after initial covering by simplices there are two simplices. When one of them is subdivided 
into two by a hyper-plane passing through the middle point of the longest edge the function 
value at this point should be evaluated. Sometime later in the optimization process subdivi-
sion of the other simplex may be performed, again requiring the function value at the same 
point. By verification of this point it is possible to avoid evaluation of the function again. Such 
vertex verification reduces the number of function evaluations essentially, but also increases 

Table 1. Test problems for Lipschitz optimization

No. Function n Domain f * ε

1 ( )π1 2 24 sin 4x x x 2   
20,1 2.51997258 0.355

2 − + − − + − −2
1 2 1 2 1 2sin( ) ( ) 1.5 2.5 1x x x x x x 2 − × −      1.5,4 3,3 1.91322295 0.691

3 ( )− +2 2 2
1 2 3 1 2 32 sin sin sinx x x x x x 3 −  

31,1 0.51637406 0.0506

4 ( )( )( )( )− + + − 2
1 1 2 2 31 2 1 2x x x x x 3 −  

32,2 35.9999997 4.51

5 ( )−∑ ∑
24

=1 =1
i

ji j x 4 −  
45,10 0 L2

6 ( ) ( ) ( ) ( )− + − − − − − −
2 2 4 4

1 2 3 4 2 3 1 410 5 2 10x x x x x x x x 4 −  
44,5 0 L2

7 ( ) ( )+− π − − + π∑ 242 2
1 1=13 1 1 3sin sini iix x x 5 −  

55,5 0 1.5L2

8 ( ) ( )+
 − − + − 
 

∑
2 24 2

1=1 100 1i i ii x x x 5 −  
55,5 0 1.5L2

9 ( ) ( )+− π − − + π∑ 252 2
1 1=13 1 1 3sin sini iix x x 6 −  

65,5 0 4L2

10 ( ) ( )+
 − − + − 
 

∑
2 25 2

1=1 100 1i i ii x x x 6 −  
66,6 0 4L2

62 R. Paulavičius, J. Žilinskas. Influence of Lipschitz bounds on the speed of global optimization



computational time and therefore it is more suitable in the case of computationally expensive 
functions. The numbers of function evaluations of the algorithm with improved aggregate 
bound and verification of vertices are shown in Table 2 in the column IAB . These results 
using improved aggregate bound IAB  significantly improve performance of the proposed 
Lipschitz optimization algorithm (Paulavičius, Žilinskas 2009), whose results were often better 
than that of the best branch and bound algorithm for Lipschitz optimization.

It is interesting to compare the results with other type of bounds. αBB method (Androulakis 
et al. 1995) assumes that objective function is twice continuously differentiable and uses this 
feature to construct convex underestimators. Since the assumption on Lipschitz continuity is 
weaker, in general Lipschitz bounds should be worse than that of αBB, however, the differ-
ence is not known. We investigate IAB and a piecewise application of the αBB underestimator 
(Gounaris, Floudas 2008) to see the difference. Table 3 presents obtained upper bounds for 
the maximum value of test problem No. 2 after the same number of evaluations of objective 
function as results given in (Gounaris, Floudas 2008). Their method subdivides the feasible 
region into N1 × N2 rectangles which requires (N1 + 1) × (N2 + 1) function evaluations. 
Therefore, we investigate the upper bounds estimated after 4 (N1 = N2 = 1), 9 (N1 = N2 = 2), 
25 (N1 = N2 = 3) and so on function evaluations. As expected, αBB overestimator provides 
better (more tight) upper bounds. In the beginning the difference is larger, but it becomes 
smaller when the numbers of partitions increase.

Table 3. Comparison of upper bounds

Algorithm
N1 = N2

1 2 4 8 16 32 64
αBB 15.7 7.35 3.24 1.97 1.93 1.921 1.914
IAB 46.00 30.21 15.69 7.42 3.76 2.428 2.041

Table 2. The numbers of function evaluations for simplicial branch and bound algorithm with various 
Lipschitz bounds

Problem 
number

µ2
2 ψ2 rate (ψ <µ2 2

2 ) AB IAB IAB

1 1356 856 0.93 967 716 412
2 3055 1734 0.98 1807 1495 830
3 19632 14368 0.75 16884 12032 3091
4 50812 20776 0.91 20487 17105 4684
5 1565127 965474 0.65 1176018 749518 52078
6 496904 426493 0.64 420417 333568 5769
7 7914387 5826460 0.57 1916941 1633849 84406
8 8284881 8079412 0.52 6064924 4590448 162989
9 6269636 1623674 0.57 821892 524940 9840

10 7419819 6818423 0.50 1868983 1685793 25398
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4. Conclusions

In this paper a new Lipschitz bound over simplices is proposed. It is based on the function 
values at the vertices and the radius of the circumscribed sphere of the simplex. The speed 
of simplicial branch and bound algorithm with the proposed Lipschitz bounds has been 
investigated and compared. Test problems of various dimensionalities (n = 2, 3, 4, 5, 6) from 
the literature have been used for experimental investigation of the algorithm.

The experiments showed that the proposed bound is often better than a usually used 
bound. For the used test functions the rate (ψ <µ2 2

2 ) showed that proposed bound ψ2  is 
better (more tight) than the bound µ2

2 on average in 70% of simplices. Therefore, the use of 
the proposed bound in simplicial branch and bound reduces the number of function evalu-
ations by 26% comparing to a usual bound. If the proposed bound is used in an aggregate 
bound with various norms performance improvement is 23% comparing to the aggregate 
bound without the proposed bound.

The proposed method appears to be inferior to the αBB method. This is to be expected be-
cause the latter method assumes that the objective function is twice continuously differentiable.
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