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Abstract. In many fields of human activities such as economics, sustainable development, construc-
tion, human resources management etc., dichotomous tests are employed to measure some observed
property, for example knowledge level in a specific field or applicant’s eligibility for a job position.
Fuzzy classification method for dichotomous test items is proposed in this paper. Depending on
the observed property, each test item may well differentiate all testees or only the testees who are
strong or weak at that property. Also, the test item may badly differentiate all testees and be inap-
propriate for that purpose. The method presented in the paper may be applied for small groups of
testees with known estimates of the investigated property, for example raw test scores. The proposed
method for dichotomous test item classification is based on the fuzzy set theory. Though the tests
were originally constructed for knowledge measurement, their mathematical models can be applied
for social indicators and wide range of other areas.

Keywords: mathematical modelling, fuzzy sets, dichotomous tests, social indicators, least squares
method.
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Introduction 

Knowledge testing problem is the object of investigation of Classical Test Theory (CTT) 
and Item Response Theory (IRT). CTT was originally the main framework for analyzing 
and developing standardized tests (Lord & Novick, 1968). The main idea of CTT – the ob-
served score of a testee is an estimate of his true knowledge score and some unobservable 
measurement error. Nevertheless, this approach has the shortcoming – it did not investigate 
the interrelation between the test takers ability level and test difficulty. Since the beginning 
of the 1970’s IRT in essense replaced CTT and became the main theoretical framework used 
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for knowledge level measurement (Rasch, 1960; Lord, 1980; Hambleton, Swaminathan, & 
Rogers, 1991). 

The following well-known logistic IRT models for binary response are the one (1PL), two 
(2PL) and three (3PL) parameter logistic IRT models. The 3PL IRT model can be defined 
using the notion of item characteristic function:

 
( ) ( ) ( )

11
1 i i

i i i a b
P c c

e q−
q = + −

+
,

where ( )iP q  is the probability that a given test-taker with ability q answer an item i correctly, 
ai is the item discrimination, bi is the item difficulty (location) and ci is the probability that 
test taker will guess an item. According to item response theory the value of test informa-
tion function ( )I q  is the reciprocal of the standard error of estimation ( )SE q , so the more 
information we have at a given ability level q, the less is the error of measurement. Therefore, 
it makes sense to elaborate such tests adapted for each group of test takers, which could 
provide more information. Kosareva and Krylovas (2011) proposed to reduce the standard 
error of measurement not only by increasing the number of examinees in calibration group 
or/and number of test items proposed to the examinees but also by expanding the set of item 
characteristic functions ( )iP q .

Various economic indices, social indicators and similar values defined by some agree-

ments can be considered as sums 
1

n

i
i=

n∑  of discrete valuations ni. Moreover, the valuations 

have positive correlation with S. The easiest way to evaluate them is to make n-item ques-
tionnaire, where ni is scoring of the answer to the i-th question. A test is called dichotomous 
when { }0,1in ∈  and the answer may only be right or wrong. A test is called polytomous 
when { }0,1, , 1i imn ∈ … −  and the answer is measured on mi scores scale.

In the papers (Krylovas & Kosareva, 2008; Kosareva & Krylovas, 2011) mathematical 
models for both dichotomous and polytomous tests were proposed. The spotlight of these 
works is contruction of test item characteristic functions that have required properties. 
Though the tests were originally constructed for knowledge measurement, their mathemati-
cal models can be applied for various areas, such as economic problems, sustainable develop-
ment, construction, human resources management, etc.

In the paper (Krylovas, Kosareva, & Navickienė, 2013) such IRT models are used to 
construct social indicators in a case study to evaluate economic development level of world 
countries. In (Krylovas & Kosareva, 2011) this methodology was applied to examine the 
Environmental Performance Index.

Item response theory (IRT) models are often applied in educational and psychological 
testing for evaluating the latent ability of examinees and the parameters of the test items that 
measure the latent ability. The paper of Toribio and Albert (2011) compares the effectiveness 
of several discrepancy measures, used within the posterior predictive model check proce-
dure, in detecting misfitted test items. This method was applied to real data coming from a 
mathematics placement exam.

Although IRT is a traditional technique of educational and psychological measurement, 
it can be successfully used as an econometric model in the measurement of economic and 
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social constructs (Raileanu, 2008). Szeles and Fusco (2013) investigated the use of IRT mod-
els in the field of deprivation measurement.

Finn, Ben–Porath, and Tellegen (2015) examined the optimal number of response op-
tions for psychological questionnaires; they compared the dichotomous (true/false) response 
format test with a polytomous 4–choice format. The differences between correlations with 
external criteria were very rarely statistically significant. 

Item response theory logistic models, with a particular focus on the one-parameter lo-
gistic model, or Rasch model, and their properties and assumptions, discussed in Noventa, 
Stefanutti, and Vidotto (2014) for both infinite and finite populations. An estimation of the 
finite population’s size, at which the results of an infinite population can be applied, is given.

In the comprehensive study of De Champlain, Boulais, and Dallas (2016), different meth-
ods of calibrating multiple choice test item and clinical decision making components for 
the Medical Council of Canada’s Qualifying Examination Part I based on test item response 
theory were compared. As a result, the dichotomous calibrations provided better fit of the 
test item response matrix than more complex polytomous calibrations.

Andreis and Ferrari (2014) analyzed multidimensional item response theory models for 
dichotomous data for evaluating customer satisfaction. Markov Chain Monte Carlo tech-
niques were elaborated for estimation.

A new class of mixture IRT models was developed (Jin & Wang, 2014) to account for 
performance decline during testing behavior in dichotomous and polytomous test items, by 
adding a decrement parameter to each latent class.

Posterior predictive model checking for multidimensionality in IRT proposed by Levy, 
Mislevy, and Sinharay (2009). Procedures described for estimating single-administration 
classification consistency and accuracy indices for complex assessments using test item re-
sponse theory comprising dichotomous and polytomous test items proposed by Lee (2010).

Weissman (2013) proposed a method of marginal maximum likelihood (MML) via the 
expectation–maximization (EM) algorithm, which utilized to estimate the test item param-
eters in IRT.

Wong (2015) proposed an approach to derive the asymptotic standard errors of item 
response theory true score equating involving polytomous test items, for equivalent and 
nonequivalent groups of examinees. Tests modeled using the generalized partial credit model 
or the graded response model were analyzed in this article.

The article of Kohli, Koran, and Henn (2015) is devoted to classical test theory (CTT) and 
IRT frameworks considered for the purpose of estimating person and test item parameters. 
Results of a small Monte Carlo study show the frameworks of IRT and CTT with underly-
ing normal variable assumption to be quite comparable, with neither framework showing an 
advantage over the other.

The number of articles describe the software application for IRT problem solution. In the 
study of Huang (2015), various multilevel higher order test item response theory (ML–HIRT) 
models for simultaneously measuring growth in the second – and first–order latent traits of 
dichotomous and polytomous test items are proposed. A series of simulations conducted 
using the WinBUGS software with Markov chain Monte Carlo (MCMC) methods reveal 
that the parameters could be recovered satisfactorily and that latent trait estimation was reli-
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able across measurement times. The article of Ames and Samonte (2015) intends to provide 
an accessible overview of Bayesian methods in the context of test item response theory to 
serve as a useful guide in estimating and interpreting test IRT models. A description of the 
estimation procedure used by SAS PROC MCMC is provided. The article of Paek and Han 
(2013) reviews a new test item response theory (IRT) model estimation program, IRTPRO 
2.1, for Windows. Tay and Drasgow (2012) investigated the effectiveness of the mean adjusted 
chi(2)/df statistic and developed a new approach for assessing the goodness of fit of a test 
item response theory model. The study by Chen and Duh (2008) developed a personalized 
intelligent tutoring system based on the proposed fuzzy test item response theory (FIRT), 
which could be capable of recommending courseware with suitable difficulty levels for learn-
ers according to learner’s uncertain/fuzzy feedback responses. To maximize the effectiveness 
of a decision an integrated approach for determining the weights of students’ personal goals 
using multiple–criteria methods are proposed in Dadelo, Turskis, Zavadskas, Kačerauskas, 
and Dadelienė (2016). The entropy and the expert judgment methods were combined for 
determining the criteria weights.

In the article (Krylovas & Kosareva, 2008) authors proposed to describe dichotomous 
test items with nondecreasing functions ( ) : 0,1 0,1k p →       , when p is knowledge or other 
property level measured by the test. Methodologically it is quite difficult to validate this as-
sumption because this concept is complex and comprising many aspects. It is often treated 
as an imagined construct and researchers are limited to its measurement procedures. When 
measuring knowledge it is much easier to get the relative estimate provided by, for example, 
testee’s raw test scores. 

Using these relative knowledge assessments we can calculate an estimate of a test item 
solvability (percentage of correct responses to this test item). This article proposes to sepa-
rate all test takers into three fuzzy subsets W, A, S (weak, average and strong students) and 
estimate solvability for each subset by a fuzzy number: ,  ,  W A SI I I  (see, for example, Zim-
mermann, 2001). These numbers (in this article triangular fuzzy numbers , ,

W A Sr r rT T T  are 
compared to each other, and on that basis classification of test items is performed.

All phenomena in the physical universe have a degree of uncertainty. Under real con-
ditions, vague or imprecise information creates difficulties in assigning a crisp value of a 
subjective judgment. Lofti Zadeh (1965) introduced fuzzy sets theory. Fuzzy sets theory 
provides a mathematical framework for the precise and rigorous study of vague conceptual 
phenomena. Applications of fuzzy sets can be found in engineering, communications, com-
puter science, expert systems, decision theory, operations research, supplier evaluation and 
selection, energy management (e.g. Ghorabaee, Amiri, Zavadskas, & Antucheviciene, 2017; 
Mardani et al., 2017; Liu, Li, & Antuchevičienė, 2016). Human knowledge by its nature is 
both lexically imprecise and noncategorical. The knowledge representation by fuzzy set is a 
kind of intuitive behavior of human advanced thinking in essence. In our knowledge, there 
are only few scientific papers developing applications of fuzzy sets in IRT. The synergy of 
IRT and fuzzy set theory is applied in the new approach for generating fuzzy numbers to as-
sess the competitiveness of the tourism industries in Asian countries (Huang & Peng, 2012). 
The applicability of the basic ideas of fuzzy set theory in the context of medical assessment 
questionnaires, which are commonly used, for instance, to support the diagnosis of psycho-
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logical disorders, was analysed by Vetterlein and Zamansky (2016). The investigation of Lee, 
Wang, Lin, Yang, and Lin (2016) proposes an online self-learning platform for self-learners 
to improve their English learning for listening in southern Taiwan. Authors applied a genetic 
fuzzy markup language (GFML) to propose an item response theory agent for inferring pos-
sibility of correctly answering a specific item. A genetic learning mechanism is also adopted 
to improve the experimental results.

The main purposes of IRT are calibration of test items and evaluation of test takers ac-
cording to some latent property. The proposed methodology is useful in the first stage of 
the assessment when a) there is no need to evaluate the test item parameters with sufficient 
accuracy but we rather want to classify test items for using them in the future (is the particu-
lar test item reasonable for weak, average or strong testees?) b) we are just going to classify 
the test takers rather than accurately assess their knowledge (is the testee weak, average or 
strong on that property?) The intention is to determine the group of testees for which the 
particular test item is eligible.

Let us also notice that fuzzy sets theory can be very suitable to evaluate a not very strictly 
described phenomena or in case of few statistical data. The proposed methodology allows 
comparing dichotomous items, which evaluate certain social phenomena, as well as select-
ing appropriate questions and constructing evaluation tests and indicators. This may be the 
advantage of the proposed methodology compared to the classical statistical procedures but 
a comprehensive comparison of the methodologies requires further research.

This article is organized as follows. In Section 1, comparison relationships of triangular 
fuzzy numbers and classification of the dichotomous test item differentiation property are de-
fined. In Section 2, triangular fuzzy number construction method is described. In Section 3, 
fuzzy subsets W, A, S are determined by the trapezoidal membership functions. In Section 4, 
the complete classification procedure of the particular test item by its differentiation property 
is described. In Section 5, a practical case study from one particular advanced mathematics 
test is presented. Section 6 is devoted to conclusions and discussion on future research.

1. Order relations of the fuzzy triangular numbers

If S is a fuzzy set, then we will define the solvability of the test item by the fuzzy triangular 
number ( ), ,Tr L T R ( )0 100L T R≤ ≤ ≤ ≤ . In general ( ), ,Tr L T R  is a fuzzy number of the 
set 0,100x∈    which has the triangular membership function (Zadeh, 1965):

 ( ) ( ( )

,    ,

,   ,                              1

0,  .

x L for x L T
T L
R xx for x T R
R T

otherwise

−
∈   − −µ = ∈  −


   

(1)

It is clear that ( )0 1x≤ µ ≤ . In case it is known which students from the fuzzy set an-
swered the test item correctly, the algorithm for constructing fuzzy triangles (the numbers 
L, T, R) will be discussed in Section 2.
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In the special case when S is a crisp set ( ) ,L T R= =  the solvability of the test item ( )k S  
is defined as the percentage of correctly answered testees’ number ( )t S :

 
( ) ( ) ( )100 % ,

t S
k S

S
= ⋅   (2)

where S is the set of all testees and S  is the number of elements of S.
Suppose that ( )

1 1 1 1, ,rT L T R  and ( )
2 2 2 2, ,rT L T R  are two triangular fuzzy numbers. We 

will denote

 1 2
 r rT T , when 1 2 1 2 1 2 &   &  L L T T R R≤ ≤ ≤ . (3)

Note that the relation    (Zimmermann 2001) is reflexive ( ) :   r r rT T T∀  , antisym-
metric (if 

1 2
 r rT T  and 

2 1
 r rT T , then 

1 2
 r rT T= ) and transitive (if 

1 2
 r rT T  and 

2 3
 r rT T

 
, 

then 
1 3

 r rT T ). It means that the realtion    is a non–strict order relation (Anderson, 
2004). The relation    is not total, because there exist triangular numbers for which neither 

1 2
 ,r rT T  nor 

2 1
 r rT T  is valid. Note that

 1 2
 r rT T , when 1 2R L< .   (4)

Relation   is also transitive and antisymmetric, but irreflexive (∀Tr: Tr ⊀ Tr), so this is 
a strict order relation. 

We consider three subsets of the tested set: weak students W, average – A and strong – 
S. For each subset we will define the fuzzy triangular number of the test item solvability 

, ,
W A Sr r rT T T . In the Table 1 we suggested classification for the test items’ differentiation property.

Table 1. Classification for the test items’ differentiation property

The test item differentiates all students well, when:  
;

W A Sr r rT T T 

The test item differentiates strong students well, when:  
;

W A Sr r rT T T

The test item differentiates weak students well, when:  
;

W A Sr r rT T T 

The test item differentiates students badly, when:  
;

W A Sr r rT T T 

The test item is inappropriate in all other cases.

2. Procedure of making the triangular fuzzy numbers 

Suppose, that ( ){ }: 0 1AA a S a= ∈ ≤ µ ≤  is a fuzzy set (the fuzzy subset of the testees’ set S) 
and ( )A aµ  – its membership function. Also suppose that A is a normal set, i.e. ( )sup 1

a S
a

∈
µ =

 
. 

The a – cuts (a level sets) of the set A are called (crisp) sets ( ){ }: AA a S aa = ∈ µ ≥ a . From 
the fuzzy sets theory the following formula is known (Zimmermann, 2001):

 
0

A Aa
a≥

= a


 ,   (5)

where ( ){ }: 0 1AA a A aa aa = ∈ ≤ µ ≤ . For example, if ( ) ( ) ( ) ( ) ( ){ }1,0.5 , 2,0.6 , 3,0.7 , 4,1.0 , 5,0.8A =
( ) ( ) ( ) ( ) ( ){ }1,0.5 , 2,0.6 , 3,0.7 , 4,1.0 , 5,0.8A = , then { }0.5 1,2,3, 4,5A S= = , { }0.6 2,3, 4,5 ,A =  { }0.7 3, 4,5A = , { }0.8 4,5A = , { }1.0 4A = ,
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( ) ( ) ( ) ( ) ( ){ }
0

1,0.5 , 2,0.5 , 3,0.5 , 4,0.5 , 5,0.5A Aa
a≥

= a = ∪


( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }2,0.6 , 3,0.6 , 4,0.6 , 5,0.6 3,0.7 , 4,0.7 , 5,0.7∪ ∪

( ) ( ){ } ( ){ } ( ) { }( )4,0.8 , 5,0.8 4,1.0 { 1,0.5 , 2, max 0.5,0.6 ,∪ =

{ } { }( )(3, max 0.5,0.6,0.7 , 4, max 0.5,0.6,0.7,0.8,1.0 , { }( )5, max 0.5,0.6,0.7,0.8 } .A=

We’ll take the nonempty cuts 
1 2
, , ...,

n
A A Aa a a  of the set A. There is a finite number of 

such cuts, because S is a finite set. For each cut 
i

Aa  we calculate the values

 

( )100 % ,i
i

i

t
p

A
a

a
a

= ⋅  (6)

where 
i

ta – number of the testees from the set 
i

Aa  who correctly answered the test item, 

i
Aa  – number of elements of the set 

i
Aa  (we apply formula (2)). We get number T  for the 

triangular fuzzy number ( ), ,Tr L T R  when 1.01.0 :i T pa = = . Note that the set A is normal, 
thus 1.0A ≠ ∅  (is a nonempty set). 1.0A  is the subset of all the testees from the set A who 
definitely belong to this set.

The values L and R are calculated by the least squares method (e.g. Bretscher, 1995). By
1 2 , , , n−
− − −a a … a  such 1ia <  values will be denoted for which 

i
p T−
a < , i.e. a-cuts numbers 

for which the percentage of the correctly answered testees is lower than in the set A1.0. 
Correspondingly denote 1 2 , , ,

n+
+ + +a a … a , when 

i
p T+
a > , i.e. a-cuts numbers for which 

this percentage is higher than in 1.0 ; 1A n n n− ++ = − . 
i

p−a  and 
i

p+a  are obtained from em-
pirical data. Theoretical values  

i
pa assessed from formula (1). If ,i L Ta ∈  , we obtain 

( )
i ip T L La = − ⋅a + , if ,i T Ra ∈   , then we have ( )

i ip R R Ta = − − ⋅a . Define the objec-
tive functions for the parameters L and R as sum of squares of differences between theoretical 
and empirical data:

 ( ) ( )( ) ( ) ( )( )22

1 1

,   .
i i

n n

i i
i i

f L p T L L g R p R R T
− +

− − + +
a a

= =

= − − ⋅a − = − + − ⋅a∑ ∑
The functions ( ) ( ), f L g R  are then the sums of squares of the values id±  shown in Fig-

ure 1. We mimimize values of the functions ( ) f L  and ( ) g R

 ( ) ( )argmin ;   argmin     
L R

L f L R g R= =

by calculating functions’ ( )f L  and ( ) g R  derivatives with respect to L and R respectively 
and solving the equations ( ) 0f L′ =  and ( ) 0g R′ = :

 

( ) ( )
( )

( ) ( )
( )

11
2 2

1 1

T 1T 1
,   .                 

1 1

i i

nn
i ii i ii

n n
i ii i

pp
L R

+−

+−

− +

+ +− −
aa ==

− +
= =

− ⋅a ⋅ − a− ⋅a ⋅ − a
= =

−a −a

∑∑
∑ ∑

 (7)

Example. Suppose that the fuzzy set of testees is:
( ) ( ) ( ) ( ) ( ) ( ){ },1.0 , ,0.5 , ,1.0 , ,0.3 , ,0.1 , ,0.3A a b c d e f= . Suppose that only a and b have 

answered the test item correctly. Then the set A has four different a-cuts. The corresponding 
pa  values from formula (6) are:
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{ }1.0 1.0
1, ,  100 50;
2

A a c p= = ⋅ =

{ }0.5 0.5
2, , ,  100 67;
3

A a b c p= = ⋅ =

{ }0.3 0.3
2, , , , ,  100 40;
5

A a b c d f p= = ⋅ =

{ }0.1 0.1
2, , , , , ,  100 33.
6

A a b c d e f p= = ⋅ =

Thus 1 1 2 2 1 12,  0.1,  33,  0.3,  40,  1,  0.5,  67n p p n p− − − − − + + += a = = a = = = a = = . We find the 
parameters of the fuzzy triangular number ( ), ,Tr L T R :

50,T =

( ) ( ) ( ) ( )
( ) ( )2 2

33 50 0.1 1.0 0.1 40 50 0.3 1.0 0.3
32.85,

1.0 0.1 1.0 0.3
L

− ⋅ ⋅ − + − ⋅ ⋅ −
= =

− + −

( ) ( )
( )2

67 50 0.5 1.0 0.5
84,

1.0 0.5
R

− ⋅ ⋅ −
= =

−

Finally, we obtain triangular fuzzy number describing this test item: ( )32.85, 50, 84 .

Figure  1. The values L are obtained by the least squares method minimizing the sum ( )2
1

n

i
i

d
−

−

=
∑   

by L, where ( )
ii id p p−

−
a= − a

 
and ( ) ( )i ip T L L− −a = − ⋅a +

 
. Similarly, the values R are obtained

Items solvability values for the different cuts
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3. Procedure of finding fuzzy subsets of the testees set 

The fuzzy subsets W, A, S (weak, average and strong students) of the testees set are defined 
by the trapezoidal membership functions

 

( ) ( )
( )

a,b,c,d

,  when  ,

,  when ,t

  1  ,        when ,
0,      otherwise,

t a t a b
b a
d t t c d
d c

t b c

− ∈   − − ∈ µ =   − ∈


where a b c d≤ ≤ ≤ . Suppose that knowledge (or other considered property) of all tested 
students is rated by some scores 1 2, , , nb b b… . Denote the lowest and the highest bi values as 
min and max. Let us take four numbers

 min max< a < β < γ < δ <   (8)

and let us define the membership functions of the subsets W, A, S as:

 ( ) ( ) ( ) ( ) ( ) ( )2 3 41 , , , , , ,, , , ,  ,  .W A S
t t t max maxmin min t t t t
β γ δa

µ µ µ
 

(9)

Then for parameters ti the following inequalities hold

 1 2 3 4;  t t t ta ≤ ≤ ≤ β γ ≤ ≤ ≤ δ   (10)

and the meaning of the parameters , , ,a β γ δ  is the following: when ib ≤ a  then the student 
for sure is weak, when ibβ ≤ ≤ γ  – average, when ib ≥ δ  – strong. Membership functions of 
the subsets W, A, S are depicted in Figure 2.

We construct subsets , , W A S  many times by re-selecting different values for the param-
eters it  which fulfill (10) restrictions. The number of possible 1 2 3 4, , , t t t t  combinations is 
finite. From the obtained fuzzy triangular numbers ( ), ,i i iTr L T R  we will make optimistic 
triangles (by taking averages of , ,i i iL T R  when all ti values have been reselected):

 
1 1 1

1 1 1 ,   ,   ,
N N N

opt i opt i opt i
i i i

L L T T R R
N N N

= = =

= = =∑ ∑ ∑
 

 (11)

here N is the number of all fuzzy triangles. For the pessimistic triangles, we have wider in-
tervals, when we take min , maxL R  and average of T values, when all ti values have been 

Figure 2. Membership functions of the weak, average and strong students 

t min t1a b g dt2 t3 t4 max

m (min, min, a, t )1
W

m (t , b, g, t )1 3
A

m (t , d, max, max)4
S

1
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reselected:
 

1

1min ,  ,  max .
N

pes i pes i pes ii i
i

L L T T R R
N

=

= = =∑   (12)

Thus, while classifying the test items we pay attention not only to the average (optimis-
tic), but also to the pessimistic fuzzy assessments. Note that the optimistic case always gives 
shorter intervals ,L R   , while pessimistic case – wider intervals. 

4. Procedure of establishing test items differentiation property 

Next, we present procedure for classification of test items’ differentiation property according 
to definitions proposed in Section 1. Note that the test is created from dichotomous items. 
Let us analyse one particular test item, our purpose is establishing its differentiation property.

1. Input: a) total test scores for each student, b) responses to this particular test item for 
each student (+ or –).

2. For the test item establish parameters , , ,a β γ δ , which must satisfy the conditions (8).
3. Select value for parameter t1 satisfying the first condition in (10).
4. Calculate the membership function ( )

1)( , , ,
W
min min t taµ  for the subset W of weak stu-

dents; calculate 1.0A  and 1.0T p=  by formula (6). 
5. Construct all different a-cuts and calculate corresponding pa  values from the formula (6).
6. Calculate L and R values from formulas (7). Fix fuzzy triangle (L, T, R).
7. Choose another value for the parameter t1 satisfying the first condition in (10). If such 

value exists, go to step 4, otherwise go to step 8.
8. Calculate optimistic and pessimistic fuzzy triangles for this test item for the subset of 

weak students W from all (L, T, R) values obtained in step 5 by formulas (11)–(12). 
9. Repeat steps 3–8 for the subsets of average (A) and strong (S) students1 and obtain 

optimistic and pessimistic fuzzy triangles for these subsets.
10. Output: draw optimistic and pessimistic fuzzy triangles for this test item for the W, A, 

S subsets, classify the test item’s differentiation property.
Example. Suppose that we obtained total scores of 20 items test for 5 testees. Furthemore, 

we know that 3 of them responded correctly to the particular test item (+) and 2 answered 
incorrectly (–): ( ) ( ) ( ) ( ) ( )1 2 3 4 52, , 4, , 3, , 3, , 5,s s s s s+ + − − + 2. Let us construct optimistic and 
pessimistic fuzzy triangles describing this test item. From the test results, we see that all test-
ees are probably weak students. The membership function of the subset of weak students W is 

( ) ( )1, , ,
W
min min t t

a
µ , where min 2,  3= a = . By changing a and t1 values ( )13 5t≤ a ≤ ≤  we get 6 

different trapezoids (fuzzy set’s membership functions): ( ) ( )1 2,2,3,3
W W tµ = µ , ( ) ( )2 2,2,3,4

W W tµ = µ
 
, 

( ) ( )3 2,2,3,5
W W tµ = µ , ( ) ( )4 2,2,4,4

W W tµ = µ , ( ) ( )5 2,2,4,5
W W tµ = µ , ( ) ( )1 2,2,5,5

W W tµ = µ . For each trap-
ezoid, construct a fuzzy triangle describing the test item.

1 For the subset of average students, procedure reselects values for the parameters t2 and t3, for the subset of strong 
students – values for the parameter t4.

2 si(j, z)where j is the total score and z is the indicator for the answer to this particular test item of the student i.
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1. 1 3ta = = . ( ) ( ) ( ){ }1 1 3 4,1.0 , ,1.0 ,  ,1.0A s s s= . Fuzzy set of weak students is a crisp set 

in this case, so 1 1 1
1 100 33
3

L T R= = = ⋅ = .

2. 13, 4ta = = . Fuzzy set of testees is ( ) ( ) ( ) ( ){ }2 1 2 3 4,1.0 , ,0.0 ,   ,1.0 ,  ,1.0A s s s s=   

2 2
1 100 33
3

L T= = ⋅ = . The set A2 has 2 different a-cuts and corresponding pa  values  

{ }0.0 1 2 3 4, , ,A s s s s=  and { }1.0 1 3 4, , .A s s s=  1 0.0
20.0,  100 50.
4

p+ +a = = ⋅ =  

( ) ( )
( )

2 2

50 33 0 1 0
50

1 0
R

− ⋅ ⋅ −
= =

−
.

3. 13, 5ta = = . ( ) ( ) ( ) ( ) ( ){ }3 1 2 3 4 5,1.0 , ,0.5 ,   ,1.0 ,  ,1.0 ,  ,0.0 .A s s s s s= 3 3 33L T= =  .  The 
set 3A  has 3 a-cuts and corresponding pa  values { }0.0 1 2 3 4 5, , , ,A s s s s s= , 

{ }0.5 1 2 3 4, , ,A s s s s=  and { }1.0 1 3 4, , .A s s s=  1 0.0 2 0.50.0,  60,  0.5,  50p p+ + + +a = = a = = . 
( ) ( ) ( ) ( )

( ) ( )
3 2 2

50 33 0.5 1 0.5 60 33 0.0 1 0.0
61.4.

1 0.5 1 0.0
R

− ⋅ ⋅ − + − ⋅ ⋅ −
= =

− + −
 

4. 14, 4ta = = . A4 is also a crisp set, ( ) ( ) ( ) ( ){ }4 1 2 3 4,1.0 , ,1.0 ,   ,1.0 ,  ,1.0 .A s s s s=  

    
4 4 4

2 100 50
4

L T R= = = ⋅ = .

5. 14, 5ta = = . ( ) ( ) ( ) ( ) ( ){ }5 1 2 3 4 5,1.0 , ,1.0 ,   ,1.0 ,  ,1.0 ,  ,0.0 .A s s s s s=  The set A5 
has 2 different a-cuts and corresponding pa  values { }0.0 1 2 3 4 5, , , ,A s s s s s=  and 

{ }1.0 1 2 3 4, ,  , .A s s s s=  5 5
2 100 50
4

L T= = ⋅ = . 
( )
( )

1 0.0 5 2

60 33 0
0.0,  60. 60

1 0
p R+ + − ⋅

a = = = =
−  

.

6. 15, 5ta = = . 6A  is a crisp set, ( ) ( ) ( ) ( ) ( ){ }6 1 2 3 4 5,1.0 , ,1.0 ,   ,1.0 ,  ,1.0 ,  ,1.0 .A s s s s s=  

6 6 6
3 100 60
5

L T R= = = ⋅ = .

So, we have 6 fuzzy triangles:

( ) ( ) ( ) ( ) ( ) ( )33,  33,  33 ; 33,  33,  50 ;  33,  33,  61.4 ; 50,  50,  50 ;  50,  50,  60 ;  60,  60,  60 .
Construct optimistic and pessimistic triangles according to formulas (11)–(12): 

( ) ( ),  ,  43.17,  43.17,  52.4opt opt optL T R = , ( ) ( ),  ,  33,  43.17,  61.4pes pes pesL T R = .

5. Analysis of the test items of one particular test

In this section, illustrative examples of advanced mathematics test items for technical uni-
versity students are presented. The test was given to 106 students from Vilnius Gediminas 
Technical University faculty of Civil Engineering. The test includes items on differentiation 
rules, limits and continuity, application to graphing, etc. Students’ knowledge was evaluated 
by the results of the test consisting of 20 test items, each valued by one score. We present the 
fragment of obtained results in the Table 2.

In the first column, there are students’ numbers, in the first row – test items’ numbers. 
Test items considered in the article are shaded. In the last column, there are total numbers of 
correctly answered test items for each student – scores bi. Full information on the considered 
test items is presented in the Appendix A. The results of each group given separately. There 
were 4 groups with 29, 26, 28 and 23 students correspondingly in each group.
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Table 2. A part of the obtained results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 + + + – + – – – – – – – + + – – – – – – 6

2 + + + – – + + + + – + – + + + – – – – + 12

3 + + – + + + + + + – + + + + – – – – – – 12

4 + + + + + + + + – + – + + – – – – + – + 13

Students’ results are shown in the histogram (Figure 3). Parameters (8) were as follows: 
min 1, max 20, 9, 12, 14,  17= = a = β = γ = δ = . So, we have 24 weak students for which we 
are sure ( )1 9ib≤ ≤ ; 30 – average ( )12 14ib≤ ≤ ; 19 – strong ( )17 20ib≤ ≤ . For the rest of 
the students we cannot confidently state that they are strong, average or weak. There are 33 = 
106 – (24+30+19) such students. We varied with assigning them to one of the three subsets, 
changing parameters ti in (10), constructing trapezoids (9), which numbers are correspond-
ingly 10, 100 and 10.

Let’s examine item No. 6. Subset W of weak students can be constructed with 10 differ-
ent values of t1. Accordingly we obtain 10 fuzzy triangles ( ) ( )1 1 1 10 10 10, , , , , ,L T R L T R… . The 
values of ( ), , opt opt optL T R  for the optimistic case are calculated by formulas (11) and for the 
pessimistic case by formulas (12), where N = 10.

The example of the test item 6 is given in the Table 3.

Table 3. The example of test item 6

6 14
0

lim ln
x

x x
→

=
1) 14;
3) ∞;
5) limit does not exist;

2) 0;
4) ln14;
6) 1.

The solvability of the test item is 74(%) (i.e. 74% of all students correctly answered to that 
test item), and for each group the solvability is correspondingly 76, 65, 75 and 78. The fuzzy 
triangular numbers for weak, average and strong students , ,

W A Sr r rT T T  for separate groups 
and for all students are shown in the Figures 4–8. 

Figure 3. Histogram shows number of students who gave correct answers to 1, 2, …, 20 test items
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Notice that only for one (2nd) group test item 6 badly differentiates students in the pes-
simistic case as pessimistic triangles intersect (relations 

W A Sr r rT T T  ). For all other groups 
separately and for all groups together the test item well differentiates weak students both in 
optimistic and pessimistic cases (relations 

W A Sr r rT T T  ).
The other test items will be analyzed for all groups together. The example of the test item 

10 proposed in the Table 4.

Table 4. The example of test item 10

10 Find ,y′  if 7(sin ) .xy x=

1) 6(sin ) (sin lnsin cos );xx x x x x x+

2) 7 16(sin ) (7sin lnsin cos );xx x x x x x− +

3) 6 14(sin ) (sin lnsin cos );xx x x x x x− +

4) 7 16(sin ) (7sin lnsin cos );xx x x x x x− −

5) 66(sin ) (6sin lnsin cos );xx x x x x x+

6) 7 1 5(sin ) (7sin cos );xx x x x x− + .

Figure 4. Fuzzy triangles – test item 6, group 1 
(blue triangles – pessimistic, red – optimistic cases)

Figure 5. Fuzzy triangles – test item 6, group 2 
(blue triangles – pessimistic, red – optimistic cases)

Figure 6. Fuzzy triangles – test item 6, group 3 
(blue triangles – pessimistic, red – optimistic cases)

Figure 7. Fuzzy triangles – test item 6, group 4 
(blue triangles – pessimistic, red – optimistic cases)
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The solvability of the test item 10 is 57(%). From the Figure 9 we can see, that the test 
item 10, as the test item 6, well differentiates weak students, and in the optimistic case – all 
students 

( )W A Sr r rT T T  .

Test items 14 and 15 combined in one block and given as one in the Table 5.

Table 5. The example of test items 14 and 15

Given the curve 3 22 3 2 4y x x x= + − −  at the point 1x = −  its:

14

tangent line is:

1) 1 2
3 3

y x= − − ;

4) 2 2y x= − ;

2) y x= − ;

5) 2y x= − − ;

3) 2 3y x= − − ;

6) y x= .

15

normal line is:
1) 2y x= − ;
4) 2 2y x= + ;

2) 2y x= − − ;
5) 1 1

2 2
y x= − ;

3) 3 1y x= − ;
6) 1y x= + .

The solvability of the test items 14 and 15 correspondingly is 53 and 30(%). From the 
Figures  10, 11 we can see, that the test item 14 well differentiates strong students in the 
optimistic case and the test item 15 – all students in both pessimistic and optimistic cases.

The next block of two test items 18 and 19 is given in the Table 6.
The solvability of the test items: 70 and 53(%). Test item 18 well differentiates weak stu-

dents and in the optimistic case – all students (Figure 12), and the item 19 – all students in 
all cases (Figure 13).

Table 6. The example of test items 18 and 19

The asymptote of the function 
28 7

15 27
x xy
x

− +
=

−
 as x →∞  is a line y lx d= +

18 l =
1) 27

7
− ; 2) 7

27
− ; 3) 7

27
; 4) 27

7
;

5) 15
8

− ; 6) 8
15

− ; 7) 15
8

; 8) 8
15

.

19 d =
1) 75

37
− ; 2) 248

209
; 3) 75

37
; 4) 209

248
;

5) 248
209

− ; 6) 37
75

; 7) 37
75

− ; 8) 209
248

− .

The example of the last test item 20 given in the Table 7. This item has the solvability 
32(%) and well differentiates all students (Figure 14).
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Figure 8. Fuzzy triangles – test item 6, all groups 
(blue triangles – pessimistic, red – optimistic cases)

Figure 9. Fuzzy triangles – test item 10, all groups 
(blue triangles – pessimistic, red – optimistic cases)

Figure 10. Fuzzy triangles – test item 14, all groups 
(blue triangles – pessimistic, red – optimistic cases)

Figure 11. Fuzzy triangles – test item 15, all groups 
(blue triangles – pessimistic, red – optimistic cases)

Figure 12. Fuzzy triangles – test item 18, all groups 
(blue triangles – pessimistic, red – optimistic cases)

Figure 13. Fuzzy triangles – test item 19, all groups 
(blue triangles – pessimistic, red – optimistic cases)
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Table 7. The example of test item 20

20

2

2

5 14lim
tg(17 34)z

z z
z→

+ −
=

−

1) 9
17

;     2) 25
17

;     3) 9
17

− ;     4) 25
17

− ;     5) 90
17

− ;    6) 0;    7) ∞.
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Conclusions and future research

The purpose of the classical approach is obtaining test item’s parameter estimates and testees’ 
assessments using a calibration procedure, marginal maximum likelihood and other meth-
ods. The purpose of this article is to classify test items in order to find out for which group 
of students they are most suitable. Therefore, the test constructed from that items will be 
optimal for respective group of students. The proposed methodology is useful for establishing 
the test item differentiation property. Considered method does not require strict evaluation 
of testees’ knowledge. It is enough to have only relative achievement scores, for example 
raw test scores. This methodology allows us to get a stable test item classification for not big 
(20–30 students) groups of testees, however for deriving statistically reliable conclusions we 
need to do more detailed research, for example, carry out Monte Carlo type experiments. 
This will be our future research object. It is worth mentioning that in this survey all test items 
are considered independent from one another, though test items blocks (for example 14–15, 
18–19) essentially make one unit and it would be correct to study them together (Krylovas & 
Kosareva, 2011), but such survey aspects are non trivial and have not been investigated  
enough.

The advantage of the applying this particular approach is reduction of the measurement 
error. According to item response theory the value of test information function is the recip-
rocal of the standard error of estimation, so the more information we have at a given ability 
level, the less is the error of measurement. Tests based on perfectly fitted items provide more 
information. Therefore, it makes sense to elaborate such tests adapted for each group of test 
takers. 
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APPENDIX A

Table 8. Test results for the group 1
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Table 9. Test results for the group 2
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Table 10. Test results for the group 3
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Table 11. Test results for the group 4
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