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Abstract. Many problems in economy may be formulated as global optimization problems. Most 
numerically promising methods for solution of multivariate unconstrained Lipschitz optimization 
problems of dimension greater than 2 use rectangular or simplicial branch-and-bound techniques 
with computationally cheap, but rather crude lower bounds. The proposed branch-and-bound al-
gorithm with simplicial partitions for global optimization uses a combination of 2 types of Lipschitz 
bounds. One is an improved Lipschitz bound with the first norm. The other is a combination of 
simple bounds with different norms. The efficiency of the proposed global optimization algorithm 
is evaluated experimentally and compared with the results of other well-known algorithms. The 
proposed algorithm often outperforms the comparable branch-and-bound algorithms.

Keywords: branch-and-bound algorithm, Lipschitz optimization, global optimization, Lipschitz 
bound.
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1. Introduction

It is often necessary to optimize an objective function for economic problems. For example, 
estimates of the parameter values of the models of markets in disequilibrium may be found 
by maximizing likelihood functions. The models of markets in disequilibrium are used to 
model markets, characterized by excess supplies or demands (Maddala 1983), which means 
that supply and demand in these models may be not equal. In Model 1 of markets in disequi-
librium from (Maddala and Nelson 1974), the actual quantity transacted during some period 
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is observed and it is not known whether the market was in equilibrium, in excess demand, 
or in excess supply during this period. The model consists of the equations:

D X ut D Dt D Dt= + ′ +α β ,

S X ut S St S St= + ′ +α β ,

Q D St t t= min( , ) ,
where Dt, St, and Qt are the quantities demanded, supplied, and transacted during the period 
t, respectively, αD is a demand constant parameter, αS – a supply constant parameter, XDt – a 
vector of observed variables that influence demand during the period t, XSt – a vector of ob-
served variables that influence supply during the period t, βD – a vector of demand parameters 
(the length of βD is the same as that of XDt), βS – a vector of supply parameters (the length of 
βS is the same as that of XSt), uDt and uSt are random residuals.

It is assumed that uDt and uSt are independently and normally distributed with zero mean 
and variances σD

2 and σS
2, respectively. The density of Qt is derived in (Maddala and Nelson 

1974). The estimates of the model parameter values αD, βD, αS, βS, σD
2, and σS

2 may be found 
by maximizing the likelihood function

L Gt
t

= ∏ ,

where

G f F f Ft Dt St St Dt= ⋅ + ⋅ ,

or the log likelihood function
L Gt

t
= ( )∑ log .

Maddala and Nelson (1974) have tried to estimate parameters of the model with data 
from housing starts (Fair 1971) by local search techniques and concluded that local searches 
converged to different values, suggesting the existence of multiple maxima. Dorsey and 
Mayer (1995) have tried to optimize the problem by adaptive random search, simulated 
annealing, and genetic algorithms, but none of them converged to the best solution found 
so far. Jerrell and Campione (2001) have tried to optimize the problem by random search 
techniques (genetic algorithm, evolution strategy, and simulated annealing) and have found 
that random search methods do not terminate at the same point more than once. The pos-
sibility of estimating bounds for this econometric likelihood function by balanced random 
interval arithmetic is experimentally investigated in (Žilinskas and Bogle 2006). It can be 
concluded that the problem is a difficult global optimization problem. In this paper, an im-
proved general algorithm for multidimensional Lipschitz global optimization is proposed 
and experimentally investigated.

2. Lipschitz optimization

Consider the problem of global maximization or minimization of a Lipschitz continuous 
objective function f n: ℜ → ℜ over a given compact subset D n⊆ ℜ . Since minimization 
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can be transformed into maximization by changing the sign of the objective function, we 
will consider only the maximization problem

 f f x
x D

* max ( )=
∈

. (1)

Apart from the global optimum f *, one or all global optimizers x f x f*: * *( ) =  should 
be found. In this paper Lipschitz optimization is considered. A function f D D n: ,→ ℜ ⊆ ℜ  
is said to be Lipschitz, if it satisfies the condition

 f x f y L x y x y D( ) ( ) , ,− ≤ − ∀ ∈ , (2)

where L > 0 is a constant called the Lipschitz constant and ⋅  denotes the norm. The Eu-
clidean norm is most often used in the Lipschitz optimization, but other norms can also be 
considered.

The most studied case of problem (1) is the unconstrained univariate one (n = 1), for 
which numerous algorithms have been proposed, compared, and theoretically investigated. 
An excellent comprehensive survey is contained in (Hansen and Jaumard 1995). In the present 
paper, we are mainly interested in the multivariate case (n ≥ 2).

In the Lipschitz optimization the upper bound of the optimal value f * is evaluated by 
exploiting Lipschitz condition. It follows from (2) that, for all x y D, ∈

 f x f y L x y( ) ≤ ( ) + − . 

If y D∈  is fixed, then the concave function

 F x y f y L x y,( ) = ( ) + −  (3)

overestimates f x( ) over D. Let T be a finite set of distinct points in D. Then, the sharpest 
upper bound over D, given the function values f y y T( ) ∈, , and the Lipschitz constant L, 
is provided by

 max min ,
x D y T

F x y
∈ ∈

( ) . (4)

In the univariate case, the function F is piecewise linear, and (4) can be determined in a 
simple straightforward way (Hansen and Jaumard 1995). But (4) is a difficult optimization 
problem, when the considered search space is multidimensional (n ≥ 2).

Apart from some methods such, as a cyclic coordinate-wise optimization (Piyavskii 1972) 
and space-filling Peano curve techniques (Strongin 1992), that reduce the multivariate to the 
univariate case for a rectangular feasible set, convergent deterministic methods for solving 
the multivariate unconstrained problem fall into 2 main classes.

The first class contains direct extensions of Piyavskii’s method (Piyavskii 1972) to the 
multivariate case and various modifications with different norms or close approximations 
(Mladineo 1986, 1992; Meewella and Mayne 1988; Mayne and Polak 1984; Horst and Tuy 
1987; Wood 1991). Note that when the Euclidean norm is used in the multivariate case, the 
upper bounding functions are envelopes of circular cones with parallel symmetry axes. A 
problem of finding the maximum of such a bounding function becomes a difficult global 
optimization problem involving a system of quadratic and linear equations. Most of these 
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approaches are quite ingenious from a theoretical viewpoint, but the inherent difficulty of 
sub-problems has limited practical applicability to dimension n = 2, in general unconstrained 
problems. For an excellent survey and numerical tests, see (Hansen and Jaumard 1995). Most 
of these algorithms can be improved by interpreting them as branch-and-bound methods 
(Hansen and Jaumard 1995; Horst and Tuy 1988, 1993).

The second class contains many simplicial and rectangular branch-and-bound techniques, 
but, in general, considerably weaker bounds (Galperin 1985; Horst 1988; Pinter 1986a, 1988; 
Tuy and Horst 1988). They differ in the ways how branching is performed and bounds are 
computed. Simplicial partitions are preferable when the values of an objective function at 
the vertices of partitions are used to compute bounds (Žilinskas, A. and Žilinskas, J. 2002; 
Žilinskas 2008). Another advantage of simplicial partitions is that they may be used to 
vertex-triangulate feasible regions of a non-rectangular shape defined by linear inequality 
constraints (Žilinskas 2008), what allows reduction of search space of problems with sym-
metric objective functions (Žilinskas 2007). In general, bounds belong to the following 2 
simple families µ1 P( ) and µ2 P( ).

Let

 δ(P) ґ P x y x y P( ) = − ∈{ }max : ,  

denote the diameter of P. For example, if P x a x bn= ∈ℜ ≤ ≤{ }:  is an n-rectangle, then  
δ(P) δ P b a( ) = − , and if P is an n-simplex, then the diameter δ(P) is the length of its longest 
edge. Afterwards a simpler upper bound can be derived from (3):

 µ δ1 P f y L P
y T

( ) = ( ) + ( )
∈

min ,δ(P) (5)

where T P⊂  is a finite sample of points in P, where the function values of f have been evalu-
ated. If P is a rectangle or a simplex, the set T often coincides with the vertex set V(P). A more 
tight but computationally more expensive than (5) bound is

 µ2 P f y L y z
y T z V P

( ) = ( ) + −





∈ ∈ ( )

min max .  (6)

Methods from both classes have been tested on certain problems. Methods with Piyavskii’s 
bound (4), computed exactly or within a tight tolerance, can hardly be used to solve typical 
test problems with relatively large Lipschitz constants and n > 2. The best algorithms of the 
second class can almost always provide reasonable approximate optimal solutions for n = 3. 
A number of interesting practical problems can be solved by the methods of the second class 
up to n = 5 (Hendrix and Pinter 1991; Wood 1991; Pinter 1986b). For n = 2 the methods 
of the second class usually involve more function evaluations (and thus are less suitable in 
case of very expensive functions), but much less computational time than the methods of 
the first class.

In this work, we propose an improved combination of bounds of both classes. It has been 
suggested in (Žilinskas 2000) to estimate the bounds for the optimum over the simplex us-
ing function values at one or more vertices. The lower bound for the optimum is the largest 
value of the function at the vertex:
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 LB I f v
v V I

( ) max ( )=
∈ ( )

, 

where ν is a vertex of the simplex I and V(I) – a vertex set. In (Paulavičius and Žilinskas 2006, 
2007) the combination of bounds, based on the extreme (infinite and first) and Euclidean 
norms over the multidimensional simplex I, was proposed:

 UB I f v K
v V I

( ) min ( )= +{ }
∈ ( )

, (7)

where

 K L x v L x v L x v
x I x I x I

= − − −
∈ ∞ ∈

∞
∈

min{ max , max , max }1 2 2 1 . 

An improved bound based on the first norm was proposed in (Paulavičius and Žilinskas 
2008b), where a method from the first class is used:

 F I f x L x x
x I x I v v

v

( ) max min ( )= + −{ }



∈ ∈ ∞ 1

. (8)

In this case, the upper bounding function is the envelope of n-dimensional pyramids 
(Fig. 1) and its maximum point is found by solving a system of linear equations. In the case 
of the Euclidean norm, the upper bounding function is the envelope of n-dimensional cones 
(Fig. 2) and its maximum point is found by solving a system of quadratic and linear equations. 
Therefore, the bound based on the first norm is less computationally expensive.

3. Branch-and-bound with a combination 
of various bounds for Lipschitz optimization

A branch-and-bound technique may be used for implementing the covering global optimi-
zation methods (Žilinskas 2008; Paulavičius and Žilinskas 2009) as well as combinatorial 
optimization algorithms (Žilinskas, A. and Žilinskas, J. 2009). Branch-and-bound algorithms 
divide a feasible region into sub-regions and detect sub-regions that cannot contain the 
global optimizer, by evaluating bounds for the optimum over the considered sub-regions. 
Performance of branch-and-bound algorithms depends on tightness of bounds (Žilinskas, A. 
and Žilinskas, J. 2006). Bounds may be estimated using the interval arithmetic (Žilinskas 
2005, 2006) or its modifications (Žilinskas and Bogle 2003, 2004, 2007, 2009) as well as the 
Lipschitz condition. The optimization stops when global optimizers are bracketed in small 
sub-regions guaranteeing the required accuracy.

A general n-dimensional simplex-based branch-and-bound algorithm for Lipschitz op-
timization has been proposed in (Žilinskas 2000). We use a modification of the algorithm 
with various bounds. The rules of selection, covering, branching, and bounding have been 
corroborated by the results of experimental investigations. Simplicial partitions are used 
because they are preferable, when the values of an objective function at the vertices of parti-
tions are used to compute bounds.

The feasible region should be initially covered by simplices for simplex-based branch-
and-bound. The experiments in (Žilinskas 2000) have shown that the most preferable initial 
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covering is face-to-face vertex triangulation – partitioning of the feasible region into finitely 
many n-dimensional simplices, whose vertices are also the vertices of the feasible region. 
The general (any dimensional) algorithm for combinatorial vertex triangulation of a hyper-
rectangle is given in (Žilinskas 2008). The algorithm constructs initial simplicial partitioning 
from the bounds of variables that define the hyper-rectangular feasible region. The approach 
is deterministic, the number of simplices is known in advance, it is equal to n!. All simplices 
are of equal hyper-volume.

There are several ways to divide a simplex into sub-simplices. The experiments in (Žilinskas 
2000) have shown that the most preferable partitioning is subdivision of a simplex into 2 by 

ν4(0, 1) ν3(1, 1)
x2

x1

I2

I1

ν1(0, 0) ν2(1, 0)

Fig. 1. Projection of intersection lines (a); visualization of upper bounding functions with  
the first norm (b)
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ν4(0, 1) ν3(1, 1)
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Fig. 2. Projection of intersection curves (a); visualization of upper bounding functions with  
Euclidean norm (b)
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a hyper-plane passing through the middle point of the longest edge and the vertices which 
do not belong to the longest edge.

The branch-and-bound process is illustrated using a simple example in Figs 3 and 4. In 
this example n = 1, D = [–2,2], f(x) is a Lipschitz function. As the example is one dimen-
sional, initial covering is trivial: the feasible region is the initial simplex. Then it is divided 
into 2 through the middle point (first step) and both are subdivided into 2 (second step) 
again. At this step of the search there are 4 simplices I I1 4, ,  (Fig. 3). Two different upper 
bounds are shown (UBi(7) and Fi(8)) for each simplex. All the norms are equal in the case 
n = 1, therefore the bound is

 UB I f x L x x
x I v x I v

v

( ) min ( ) max= + −{ }∈ ∈
. 

For all simplices I UB LBi i: > , but for I4 the improved bound F LB4 < . Therefore I4 can 
be discarded from the further search, if the improved bound is used. Non-discarded sim-
plices are subdivided further in the third step (Fig. 4). There are 6 simplices in the case of 
improved bounds and 8 simplices in the case of bound (7). Again, 2 different upper bounds 
are shown (UBi (7) and Fi (8)) for each simplex UB LBi <  for i = 4, 5, 6, 7 and F LBj <  for 
j = 3, 4, 5, 6. Two simplices remained in the case of the improved bound and 5 in the case 
of (7). Therefore, using the improved bound, we can faster detect sub-regions that cannot 
contain the global optimizer.

However, the bounds based on the first norm are not always best (Paulavičius and Žilinskas 
2008b). In some cases, combinations of bounds (7) may give better results. Therefore the 
combination of (7) and (8) (Paulavičius and Žilinskas 2008a) is used in this work:

 µ( ) min , min ( ) min ' .
( )

I UB I F I f v K
v V I

= ( ) ( ){ } = +{ }
∈

, (9)

Fig. 3. Second step of branch-and-bound with simplicial partitions with n = 1
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Fig. 4. Third step of branch-and-bound with simplicial partitions as n = 1
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 K L x x L x x f x L x x
x I v x I v x I x I v v

v

' max , max ,max min ( )= − − + −{
∈ ∞ ∈ ∈ ∈ ∞1 2 2 1}}













. 

The branch-and-bound algorithm with a combination of bounds is shown in Algorithm 1.

Algorithm 1. Branch-and-bound algorithm with combination of bounds
1:  An n-dimensional hyper-rectangle D is face-to-face vertex triangulated into a set of 

n-dimensional simplices I I D I k nk k= ⊆ ∪ ={ }| , , , ! 1
2: LB D( ) = −∞
3:  while (I is not empty: I ≠ ∅) do
4:  Choose and exclude I Ik ∈  from the set of non-solved simplices I.

5: LB D LB D f v
v V I

( ) = ( ) ( )









∈ ( )
max ,  max

6:  UB I UB I F Ik k k( ) = ( ) ( ){ }min ,
7:  if UB I LB Dk( ) − ( ) >( )ε  then
8:  Subdivide Ik into 2 simplices: I Ik k1 2,  
9:  I I I Ik k= ∪{ }1 2,  

10:  end if
11:  end while

4. Results of experiments

The purpose of this section is to compare the proposed branch-and-bound algorithm for 
global optimization with other well-known algorithms for Lipschitz optimization. Various 
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test problems for global optimization from (Hansen, Jaumard 1995; Jansson and Knüppel 
1992; Madsen and Žilinskas 2000) have been used in our experiments. Test functions with 
n = 2 and n = 3 are numbered according to (Hansen and Jaumard 1995) and (Madsen and 
Žilinskas 2000). The names of functions from (Jansson and Knüppel 1992) are used for the 
case of higher dimensionality n ≥( )4 . The speed of global optimization has been estimated 
using the criterion of the number of function evaluations.

4.1. Computational comparison of various bounds

In (Paulavičius and Žilinskas 2006), we have shown that, for dimension n = 2, a combination 
of bounds based on 2 extreme (infinite and first) norms gives by 22% smaller number of 
function evaluations than the bound based on the Euclidean norm, and, for dimension n = 
3, combination (7) gives 39% smaller number of function evaluations than in the case the 
Euclidean norm is used alone. In (Paulavičius and Žilinskas 2007), we have shown that, for 
n = 4, the number of function evaluations is smaller by 13% on the average and, for n = 5, 6, 
the number of function evaluations is smaller by 37% on the average, if combination (7) is 
used. In (Paulavičius and Žilinskas 2008b) it has been shown that the improved upper bound 
F (8) gives better results for Lipschitz optimization than that used as usual. Depending on 
the dimensionality of test problems, the number of function evaluations is from 4% to 30% 
smaller than with a simpler bound.

The further investigation has shown (Table 1) that a combination of the improved upper 
bound based on the first norm F (8) and simple bounds based on different norms UB (7) 
yield better results. The number of function evaluations is up to 20 times smaller when the 
proposed combination (9) is used than using the upper bound (8) and up to 1.6 times smaller 
than using a combination of simple bounds based on different norms (7). On average the 
numbers of function evaluations are smaller by 14%, if (9) is used as compared to (7), and 
by 36% smaller compared to (8).

4.2. Computational comparison of two- and 
three-dimensional test functions with other algorithms

In this section, the results of the proposed algorithm are compared with a representative series 
of algorithms for a multivariate Lipschitz optimization described in (Hansen and Jaumard 
1995). Two classes of algorithms are considered:

(I) Algorithms using a single upper-bounding function, i.e. variants of Piyavskii’s algo-
rithm (Piyavskii 1972):

– Mladineo (MLA86) (Mladineo 1986);
– Jaumard, Herrmann and Ribault (JHR) (Hansen and Jaumard 1995);
– Wood (WOOD) (Wood 1991).
(II)  Branch-and-bound algorithms:
– With the combination µ  (9) proposed by us.
– Galperin (GAL85, GAL88) (Galperin 1985, 1988);
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Table 1. The numbers of function evaluations for algorithm with various bounds

The name of test problem n ε µ (9) F(8) UB (7)

1. Hansen and Jaumard 1995 2 0.355 553 1085 556

2. Hansen and Jaumard 1995 2 0.0446 93 181 158

3. Hansen and Jaumard 1995 2 11.9 3689 5259 4168

4. Hansen and Jaumard 1995 2 0.0141 9 30 9

5. Hansen and Jaumard 1995 2 0.1 40 59 62

6. Hansen and Jaumard 1995 2 44.9 1014 1552 1038

7. Hansen and Jaumard 1995 2 542.0 9172 15 180 10 683

8. Hansen and Jaumard 1995 2 3.66 249 287 314

9. Hansen and Jaumard 1995 2 62900 19 977 33 871 20 672

10. Hansen and Jaumard 1995 2 0.691 1056 1209 1285

11. Hansen and Jaumard 1995 2 0.335 2742 3290 3085

12. Hansen and Jaumard 1995 2 0.804 11 784 13 555 14 929

13. Hansen and Jaumard 1995 2 6.92 11 531 21 672 11 724

20. Hansen and Jaumard 1995 3 2.12 805 663 902 342 901 737

21. Hansen and Jaumard 1995 3 0.369 1095 12 235 1097

23. Hansen and Jaumard 1995 3 8.33 536 845 >3 000 000 536 846

24. Hansen and Jaumard 1995 3 0.672 336 241 354 488 353 191

25. Hansen and Jaumard 1995 3 0.0506 4924 10 477 5107

26. Hansen and Jaumard 1995 3 4.51 6165 6387 6589

Rosenbrock (Madsen and Žilinskas 2000) 3 2500.0 122 382 170 363 124 615

Levy No. 15 (Jansson and Knüppel 1992) 4 0.5L2 >3 000 000 >3 000 000 >3 000 000

Rosenbrock (Madsen and Žilinskas 2000) 4 0.5L2 453 502 473 706 467 706

Shekel 5 (Jansson and Knüppel 1992) 4 0.5L2 2 048 605 2 155 904 2 355 895

Shekel 7 (Jansson and Knüppel 1992) 4 0.5L2 2 047 985 2 145 884 2 345 221

Shekel 10 (Jansson and Knüppel 1992) 4 0.5L2 2 048 843 2 155 204 2 355 195

Schwefel 1.2 (Jansson and Knüppel 1992) 4 0.5L2 1 644 240 >3 000 000 1 734 839

Powell (Jansson and Knüppel 1992) 4 0.5L2 209 498 573 025 213 055

Levy No. 9 (Jansson and Knüppel 1992) 4 0.5L2 522 863 530 065 547 180

Levy No. 16 (Jansson and Knüppel 1992) 5 1.5L2 137 163 >3 000 000 137 169

Rosenbrock (Madsen and Žilinskas 2000) 5 1.5L2 553 373 572 647 558 423

Levy No. 10 (Jansson and Knüppel 1992) 5 1.5L2 710 156 7 125 470 721 940

Schwefel 3.7 (Jansson and Knüppel 1992) 5 1.5L2 32 32 32

Levy No. 10 (Jansson and Knüppel 1992) 6 3L2 103 780 110 648 137 159

Rosenbrock (Madsen and Žilinskas 2000) 6 3L2 351 443 383 435 558 438
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– Pinter (PINTER) (Pinter 1986c);
– Meewella and Mayne (MM) (Meewella and Mayne 1988);
– Gourdin, Hansen and Joumard (GHJ) (Gourdin et al. 1994).
The comparison of algorithms is based on the number of function evaluation criteria. The 

numbers of function evaluations are presented in Tables 2, 3, 4, and 5. The efficiency (Table 
5) is defined as the number of function evaluations, used by our algorithm, divided by the 
number of function evaluations, used by other algorithms. µ  (9) represents the experimen-
tal computational performance of the proposed algorithm, while the performance of the 
other algorithms is taken from (Hansen and Jaumard 1995). It is mentioned in (Hansen and 
Jaumard 1995) that the results for all algorithms may be obtained only when the required 
precision is not too restrictive. Even so, some problems cannot be solved by some algorithms 
in reasonable computational time and/or memory size. In the experiments we apply the 
precision used in (Hansen and Jaumard 1995). The numbers of function evaluations are 
smallest, when the algorithms of Mladineo and of Jaumard, Herrmann and Ribault are used. 
However, these algorithms belong to the first class and require a longer computational time. 
The branch-and-bound algorithms require larger numbers of function evaluations, but much 
shorter computational time. The performance of the proposed algorithm is similar to that of 
the best branch-and-bound algorithm (GHJ) and often it is even better.

5. Conclusions

In this paper, an improved general algorithm for multidimensional Lipschitz global optimiza-
tion is proposed and tested. Test problems of various dimensionalities (n = 2, 3, 4, 5, 6) from 
the literature have been used for experimental investigation of the algorithm. The proposed 
branch-and-bound algorithm with a combination of Lipschitz bounds requires less function 
evaluations than the algorithms with simpler bounds. The numbers of function evaluations 
are 36% smaller than that using the improved upper bound based on the first norm alone 
and 14% smaller than using a combination of simple bounds.

The results of the proposed algorithm are compared with the performance of other algo-
rithms for Lipschitz optimization. The performance of the proposed algorithm is similar to that 
of the best branch-and-bound algorithm for Lipschitz optimization and it is often better.

Investigation and application of Lipschitz global optimization would be desirable to 
estimate parameter values of the models of markets in disequilibrium and therefore it is a 
direction of further research.
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Table 2. The numbers of function evaluations for n = 2

Test 
problem ε MLA86 JHR WOOD µ (9) GAL85 GAL88 PINTER MM GHJ

1 0.355 320 323 5528 553 3553 1713 3807 1749 643

2 0.044 6 80 80 2861 93 1036 577 1762 744 167

3 11.9 2066 2066 70 955 3689 24 214 16 089 28 417 10 839 3531

4 0.0141 6 6 157 9 106 73 1527 94 45

5 0.1 41 41 209 40 430 217 907 424 73

6 44.9 548 548 14 740 1014 7729 2929 7772 2684 969

7 542.0 - 5088 183 759 9172 43 123 34 705 62 917 22 799 7969

8 3.66 177 177 1403 249 2113 1289 2272 964 301

9 62 900 – 8838 309 763 19 977 57 814 49 873 88 932 53 549 13 953

10 0.691 673 673 18 613 1056 8508 5628 9022 3814 1123

11 0.335 1613 1613 53 348 2742 18 235 12 737 20 312 9224 2677

12 0.804 – 8414 470 200 11 784 63 088 56 177 105 572 45 389 12 643

13 6.92 – 9617 – 11 531 65 536 59 049 109 227 35 949 15 695

Table 3. The numbers of function evaluations for n = 2 with higher precision ε

Test problem ε MLA86 JHR µ (9) GAL85 GAL88 PINTER GHJ

1 0.035 5 913 915 1456 8713 4513 12 412 1711

2 0.004 46 342 342 465 3628 2065 8207 621

3 1.19 – 28 047 50 539 261 322 192 785 358 937 45 557

4 0.001 41 10 10 9 151 105 2452 69

5 0.01 81 81 69 781 417 1972 163

6 4.49 – 2099 4219 26 215 11 449 29 387 3555

7 54.20 – 168 325 312 967 1 153 060 1 047 617 >400 000 293 337

8 0.366 1335 1335 1574 13117 8617 16937 2271

9 6290.0 – – 932 331 2 598 898 2 661 929 >400 000 526 253

10 0.069 1 – 6787 10 448 66 423 47 236 85 052 11 185

11 0.033 5 – 24 192 42 246 224 908 170 289 313 217 41 743

12 0.080 4 – – 274 156 2 090 938 1 706 705 >400 000 378 759

13 0.692 – – 323 158 2 678 542 1 620 545 >400 000 388 325

Table 4. The numbers of function evaluations for n = 3

Test problem ε MLA86 JHR µ (9) GAL85 GAL88 GHJ

20 2.12 >460 >41 700 805 663 5 383 113 3 886 897 215 061
21 0.369 >290 9363 1095 635 909 347 075 24 249
23 8.33 >290 >12 000 536 845 1 562 0627 – 1 297 205
24 0.672 >280 >14 400 336 241 1 248 1708 – 268 279
25 0.0506 >690 1309 4924 46 411 23 765 3219
26 4.51 446 445 6165 35 463 18 669 7177
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Table 5. Efficiency for n = 2, 3 test problems

Test problem MLA86 JHR WOOD µ (9) GAL85 GAL88 PINTER MM GHJ

1. 1.73 1.71 0.10 1.00 0.16 0.32 0.15 0.32 0.86
2. 1.16 1.16 0.03 1.00 0.09 0.16 0.05 0.13 0.56
3. 1.79 1.79 0.05 1.00 0.15 0.23 0.13 0.34 1.04
4. 1.50 1.50 0.06 1.00 0.08 0.12 0.01 0.10 0.20
5. 0.98 0.98 0.19 1.00 0.09 0.18 0.04 0.09 0.55
6. 1.85 1.85 0.07 1.00 0.13 0.35 0.13 0.38 1.05
7. – 1.80 0.05 1.00 0.21 0.26 0.15 0.40 1.15
8. 1.41 1.41 0.18 1.00 0.12 0.19 0.11 0.26 0.83
9. – 2.26 0.06 1.00 0.35 0.40 0.22 0.37 1.43

10. 1.57 1.57 0.06 1.00 0.12 0.19 0.12 0.28 0.94
11. 1.70 1.70 0.05 1.00 0.15 0.22 0.13 0.30 1.02
12. – 1.40 0.03 1.00 0.19 0.21 0.11 0.26 0.93
13. – 1.20 – 1.00 0.18 0.20 0.11 0.32 0.73
20 – – 1.00 0.15 0.21 3.75
21 – 0.12 1.00 0.00 0.00 0.05
23 – – 1.00 0.03 – 0.41
24 – – 1.00 0.03 – 1.25
25 – 3.76 1.00 0.11 0.21 1.53
26 13.82 13.85 1.00 0.17 0.33 0.86
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GLOBALUSIS OPTIMIZAVIMAS ŠAKŲ IR RĖŽIŲ ALGORITMU 
SU LIPŠICO RĖŽIŲ JUNGINIU SIMPLEKSE

R. Paulavičius, J. Žilinskas

Santrauka

Daug įvairių ekonomikos uždavinių yra formuluojami kaip globaliojo optimizavimo uždaviniai. Didžioji 
dalis Lipšico globaliojo optimizavimo metodų, tinkamų spręsti didesnės dimensijos, t. y. n > 2, uždavi-
nius, naudoja stačiakampį arba simpleksinį šakų ir rėžių metodus bei paprastesnius rėžius. Šiame darbe 
pasiūlytas simpleksinis šakų ir rėžių algoritmas, naudojantis dviejų tipų viršutinių rėžių junginį. Pirmasis 
yra pagerintas rėžis su pirmąja norma, kitas – trijų paprastesnių rėžių su skirtingomis normomis jungi-
nys. Gautieji eksperimentiniai pasiūlyto algoritmo rezultatai yra palyginti su kitų gerai žinomų Lipšico 
optimizavimo algoritmų rezultatais.

Reikšminiai žodžiai: šakų ir rėžių algoritmas, globalusis optimizavimas, Lipšico optimizavimas, Lipšico 
rėžis.
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