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Abstract. In multiple attribute group decision making, the weights of decision makers are very cru-
cial to ranking results and have gained more and more attentions. A new approach to determining 
experts’ weights is proposed based on the TOPSIS (Technique for Order Preference by Similarity 
to an Ideal Solution) method in intuitionistic fuzzy setting. The weights determined by our method 
have two advantages: the evaluation value has a large weight if it is close to the positive ideal evalu-
ation value and far from negative ideal evaluation values at the same time, otherwise it is assigned 
a small weight; experts have different weights for different attributes, which are more appropriate 
for real decision making problems since each expert has his/her own knowledge and expertise. The 
multiple attribute intuitionistic fuzzy group decision making algorithm has been proposed which 
is suitable for different situations about the attribute weight information, including the attribute 
weights are known exactly, partly known and unknown completely. A supplier selection problem 
and the evaluation of murals in a metro line are finally used to illustrate the feasibility, efficiency 
and practical advantages of the developed approaches.
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Introduction 

In the decision making process, experts usually can not provide exact evaluation values 
since the decision making problem has become rather complicated and much professional 
knowledge is needed. Hence some extent of hesitation has been expressed during the evalu-
ating process. Many useful tools have been developed to model uncertain information 
including fuzzy set (Zadeh 1965; Merigó, Gil-Lafuente 2011), intuitionistic fuzzy set (IFS) 
(Atanassov 1986), intuitionistic fuzzy soft set (Maji et al. 2001; Jiang et al. 2013), linguistic 
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arguments (Herrera et  al. 1995; Merigó, Gil-Lafuente 2013), etc. As a generalization of 
fuzzy set, IFS is more appropriate for modelling uncertainty and hesitation and has been 
studied and applied extensively, many decision making methods in intuitionistic fuzzy set-
ting (Atanassov et al. 2005; Chen, Yang 2011a; Chen, Tan 1994; Hong, Choi 2000; Li et al. 
2009; Liu, Wang 2007; Su et al. 2011; Szmidt et al. 2014; Wei, Merigó 2012; Yang, Chen 
2012; Xu 2007; Xu, Liao 2015) have been developed. In order to better model uncertainty 
existing in the decision making process, the alternatives are evaluated by intuitionistic fuzzy 
values in this paper.

With the development of science and technology, it is less and less possible for a single 
decision maker to consider all aspects of a decision problem. Hence, in order to make 
scientific and reasonable decisions, multiple decision makers are involved in the decision 
making process, the corresponding problem is a multiple attribute group decision making 
(MAGDM) problem. For simplicity, experts’ weights are often assigned in advance (Chen, 
Niou 2011; Chuu 2009; Hajiagha et al. 2013; Liu 2011, 2012; Pang, Liang 2012; Ran, Wei 
2015; Xu 2010; Xu et al. 2012; Wei 2011) or equal weights (Chen et al. 2012; Chen, Yang 
2011b; Lin et al. 2008; Su et al. 2013; Wang et al. 2012; Wei 2011; Wu, Chen 2007) are tak-
en in group decision making, whose shortcomings are obvious. For the complex decision 
making problem, decision makers usually come from different fields. Since each expert has 
his/her characteristics, special knowledge, skills and expertise, he/she may be familiar with 
some attributes but not so familiar with others. For those unfamiliar attributes, decision 
maker may give unduly high or low evaluation values. If each expert uses the same weight 
for all the attributes, unreasonable decision results can be deduced and incorrect alternative 
might be selected. Therefore, how to determine reasonable weights for experts becomes an 
important and interesting research topic, which has attracted extensively attentions (Brock 
1980; Keeney, Kirkwood 1975; Kim et al. 1999; Li 2007; Olcer, Odabasi 2005; Ramanathan, 
Ganesh 1994; Yue 2011, 2012; Wei 2011). Olcer and Odabasi (2005) transformed experts’ 
opinions into a group consensus opinion by using the homogeneous method, in which 
experts are assigned different weights for different alternatives. But if the number of experts 
is very large, the method needs a lot of computations and poor accuracy may result in. The 
interpersonal comparisons are used in Keeney and Kirkwood (1975) to obtain values for 
the scaling constants in the weighted additive social choice function. An approach based 
on Nash bargaining (Brock 1980) is used to estimate the weights of group members. An 
interactive procedure is proposed by Kim et al. (1999) for solving a MAGDM problem with 
incomplete information, in which each group member’s utility information is compared 
with that of a group and is then aggregated into a group one. If there are many attributes 
and alternatives, too many interactions have to be considered. The linguistic weighting 
vector has been given by Wei (2010) to represent importance. An eigenvector method is 
used by Ramanathan and Ganesh (1994) to determine the weights of group members by 
using their own subjective opinions. Yue (2011) has developed a new method to determine 
experts’ weights by using the TOPSIS method, in which weights are calculated by using the 
distance of evaluation values to the positive ideal solution, the left negative ideal solution 
and the right negative ideal solution, respectively. In Yue (2012), the weights of decision 
makers are determined by using both the positive ideal decision and negative ideal deci-
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sion. Though many MAGDM methods have been proposed in intuitionistic fuzzy setting, 
experts have the same weights for all the attributes in most of studies or have been assigned 
different weights for different attributes. In the latter case, the characteristics of experts 
should be examined, but then the computation amount is too large and this might result 
in poor accuracy, especially for the situation that the number of alternatives and attributes 
is extremely large.

TOPSIS is proposed by Hwang and Yoon (1981), which has been studied and applied 
widely (Boran et al. 2009; Chen, Yang 2011a; Dymova et al. 2015; Liu et al. 2013; Louren-
zutti, Krohling 2014; Park et al. 2011; Patil, Kant 2014; Tan 2011; Taylan et al. 2014; Ye 2010; 
Zhang, Yu 2012). In TOPSIS, a good alternative is the one that is nearest to the positive ide-
al alternative, and at the same time, is farthest from the negative ideal alternative. Chen and 
Yang (2011a) use the constrained fuzzy analytic hierarchy process to determine attribute 
weights and rank the alternatives by using the fuzzy TOPSIS. Park et al. (2011) extend 
TOPSIS to solve MAGDM problems with interval-valued intuitionistic fuzzy information, 
in which the attribute weights are partly known. Zhang and Yu (2012) set up an optimiza-
tion model to determine attribute weights by using the fuzzy cross-entropy and use TOPSIS 
to rank the alternatives. Tan (2011) develops an interval-valued intuitionistic fuzzy group 
decision making method based on TOPSIS by using Choquet integral-based Hamming 
distance. In this study, we develop a new multiple group decision making method with 
intuitionistic fuzzy information by using the idea of TOPSIS. In order to aggregate differ-
ent evaluation values into a reasonably collective one, we first define the average value of 
different evaluation values as the positive ideal solution, the maximum and minimum of 
evaluation values as the negative ideal solutions, then the distances of each evaluation value 
to the positive and negative ideal solutions, respectively, can be determined, the closeness 
coefficients are finally calculated by using the TOPSIS method, and the weights of evalua-
tion values can be obtained by normalizing closeness coefficients. The weights determined 
by our new method have the following advantages: the evaluation value has a big weight 
if it is close to the positive ideal evaluation value and is far from negative ideal evaluation 
values; otherwise, the evaluation value is assigned a small weight. The influence of unduly 
high or low evaluation values on the ranking result is thus reduced. According to different 
situations about the attribute weight information, that is, the attributes are known exactly, 
partly known or unknown completely, we design the corresponding decision making algo-
rithm. If attribute weights are known exactly, the TOPSIS method is used to rank alterna-
tives after aggregating different experts’ evaluation values into a collective one by using the 
new method; if attribute weights are known partly, a linear programming model is set up to 
determine the attribute weights; if attribute weights are unknown completely, they are then 
determined by using the TOPSIS method. Finally, the new algorithm is applied to a supplier 
selection problem and a case study to illustrate their efficiency and practical advantages.

In order to do so, the rest of this paper is organized as follows. Some concepts about 
IFS are introduced in the next section. In Section 2, the new method to determine experts’ 
weights by utilizing the TOPSIS method is developed, then different attribute weight in-
formation situations are considered, and the corresponding algorithm is presented. Two 
numerical examples are presented to illustrate our new algorithm in Section 3. The con-
clusions are given in the last section.
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1. Basic concepts 

As a preparation for introducing our new method, some relevant concepts are illustrated 
in this section. 

Definition 1 (Atanassov 1986). Let X be a fixed set, an IFS A in X is defined as: 

 µ ν ∈A A = {< , ( ), ( ) > },A x x x x X   (1)

where the functions µ →A ( ): [0,1],x X ν →A ( ): [0,1]x X  are the degrees of membership 
and nonmembership of an element ∈x X , respectively, they satisfy ≤ µ ν ≤A A0 ( )+ ( ) 1x x , 
∀ ∈x X . π = −µ −νA A( ) 1 ( ) ( )A x x x is called the intuitionistic fuzzy index of ∈x A . It rep-
resents the degree of indeterminacy or hesitation of ∈x A . For each ∈x X , ≤ π0 ( )A x ≤1.

Each fuzzy set can be represented as the following intuitionistic fuzzy set:

 
µ −µ ∈A A = {< , ( ), 1 ( ) > }.A x x x x X   (2)

For an IFS A, the pair µ νA A( ( ), ( ))x x is called an intuitionistic fuzzy value (IFV). For 
notational convenience, we denote in what follows an IFV by α = µ ν( , ) , where µ∈[0,1] , 
ν∈[0,1] , µ + ν ≤1.  W is the set of all the IFVs.

Let α = µ ν1 1 1( , ) ,α = µ ν2 2 2( , )  and α = µ ν( , ) be three IFVs, then the operational laws 
of IFVs (Xu 2007) can be defined as follows:

1) α +α = µ +µ −µ µ ν ν1 2 1 2 1 2 1 2( , ) ,
2) λ λλα = − −µ ν λ >(1 (1 ) , ), 0.

Let α = µ ν( , ) be an IFV, then the score function (Chen, Tan 1994) of a is defined as
α = µ −ν( )s , where α ∈ −( ) [ 1,1]s . The bigger the score of α( )s  is, the larger the IFV of a 

is. The accuracy function (Hong, Choi 2000) of an IFV α = µ ν( , ) is defined as α = µ + ν( )h  , 
where α ∈( ) [0,1]h . The larger the α( )h is, the higher accuracy degree of a is.

Based on the score function and the accuracy function, the following method is pro-
posed by Xu (2007) to compare two IFVs.

Definition 2. Let α = µ ν1 1 1( , )  and α = µ ν2 2 2( , )  be two IFVs. 
If α < α1 2( ) ( )s s , then a1 is smaller than a2, denoted by a1 < a2;
If α = α1 2( ) ( )s s , and
1) if α < α1 2( ) ( )h h , then a1 is smaller than a2, denoted by a1 > a2;
2) if α = α1 2( ) ( )h h , then a1 and a2 represent the same information, denoted by a1 = a2.

Definition 3 (Xu 2010). Let α = µ ν1 1 1( , )  and α = µ ν2 2 2( , )  be two IFVs, then:

 
( )α α = µ −µ + ν −ν1 2 1 2 1 2

1( , )
2

d   (3)

is defined as the distance between a1 and a2.
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2. New MAGDM algorithm in intuitionistic fuzzy setting 

In the decision making process, several experts, who may come from different departments, 
are involved in order to get scientific decisions. Assume that there is a multiple attribute 
group decision problem as follows. Let 1 2{ , ,..., }tE E E be the set of experts, 1 2{ , ,..., }mA A A be 
the set of alternatives and 1 2{ , ,..., }nB B B  be the set of attributes. The expert Ek evaluates the 
alternative Ai with respect to the attribute Bj to get the evaluation value α = µ ν( ) ( ) ( )( , )k k k

ij ij ij
=( 1,2,..., )k t , then the decision matrix ( )kD is formed as:

 

×

 α α α
 
 α α α

= α =  
 
 α α α 

( ) ( ) ( )
11 12 1
( ) ( ) ( )

( ) 21 22 2( )

( ) ( ) ( )
1 2

( )

k k k
n

k k k
k nk

m nij

k k k
mnm m

D





   



.  (4)

During the decision making process, different decision matrices should be first aggre-
gated into a collective one. 

With the development of science and technology, the decision problem becomes more 
and more complicated. There are too many alternatives to be selected and many decision 
makers are involved to select the optimal alternative. At the same time, decision makers 
have their own knowledge and expertise and can not master all the knowledge needed 
in the decision making, they may be familiar with some attributes but not familiar with 
others, hence they might give unduly high or low evaluation values. If experts are assigned 
the same weight for all the attributes, unreasonable results can result in. Meanwhile, each 
expert has his/her characteristics for the specific knowledge and expertise. If the expert is 
familiar with or is a specialist in the attribute, he/she can give a reasonable evaluation value, 
hence a big weight should be assigned to the attribute. If the decision maker is not familiar 
with the attribute, a small weight should be assigned. Then different experts should have 
different weights for different attributes. If each expert’s characteristics are investigated in 
order to assign reasonable weights for the attributes, the resulting computation amount is 
too large and can lead to poor accuracy. TOPSIS is an extensively used method in the real 
decision making. In TOPSIS, the alternatives are ranked by the size of closeness coefficients 
calculated by using the positive ideal solution and negative ideal solutions. In order to avoid 
the influence of unduly high or low evaluation values on ranking results, the evaluation 
values which are close to the positive ideal evaluation value and far from negative ideal 
evaluation values at the same time should have large weights, and the evaluation values 
should have small weights in other cases. Therefore, the average evaluation value can be 
seen as an intuitionistic fuzzy positive ideal evaluation value like that in Yue (2011). In this 
way, the intuitionistic fuzzy positive ideal matrix can be defined as:

 

+ + +

+ + +
+ +

×

+ + +

 α α α
 
α α α = α =  

 
 α α α 

11 12 1

21 22 2

1 2

( )

n

n
ij m n

m m mn

D





   



,  (5)



446 W. Yang et al. New group decision making method in intuitionistic fuzzy setting ...

where ( )+
=α = α∑ ( )

1 /t k
ij ijk t , = = =1,2,..., , 1,2,..., , 1,2,..., ,i m j n k t are intuitionsitic fuzzy posi-

tive ideal solutions (IFPISs). The intuitionistic fuzzy negative ideal matrices can be divided 
into the following two parts −

dD and −
uD :

 

−
×

 α α α
 
α α α = α =  

 
 α α α 

11 12 1

21 22 2

1 2

( )

d d d
n

d d d
nd

d m nij

d d d
m m mn

D





   



;  (6)

 

−
×

 α α α
 
α α α = α =  

 
 α α α 

11 12 1

21 22 2

1 2

( )

u u u
n

u u u
nu

d m nij

u u u
m m mn

D





   



,  (7)

where +
≤ ≤

α = α α ≤ α( ) ( )
1
min{ }k kd

ijij ij ijk t
and +

≤ ≤
α = α α ≥ α( ) ( )

1
max{ }k ku

ijij ij ijk t
are the intuitionsitic fuzzy-

negative ideal solutions (IFNISs).
The distances between α = µ ν( ) ( ) ( )( , )k k k

ij ij ij  and + + +α = µ ν( , )ij ij ij , α = µ ν( , )d d d
ij ij ij , α = µ( ,u u

ij ij

ν )u
ij  can be defined, respectively, as follows:

 
( )+ + += µ −µ + ν −ν( ) ( )1 ,

2
k k

ij ij ijij ijd ; (8)

 
( )= µ −µ + ν −ν( ) ( )1 ,

2
k kd d d

ij ij ij ij ijd ;  (9)

 
( )= µ −µ + ν −ν( ) ( )1 .

2
k ku u u

ij ij ij ij ijd
 

 (10)

The closeness coefficient of α( )k
ij is determined by:

 
+

+
= = = =

+ +
( ) , 1,2,..., , 1,2,..., , 1,2,..., ,

u d
ij ijk

ij u d
ijij ij

d d
c i m j n k t

d d d
  (11)

and the weight of the decision maker Ek for the alternative Ai with respect to the attribute 
Bj can be determined as:

 =

= = = =
∑

( )
( )

( )
1

, 1,2,..., , 1,2,..., , 1,2,..., ,
k

ijk
ij t k

ijk

c
w i m j n k t

c
  (12)

where =≥ =∑( ) ( )
10, 1.tk k

ij ijkw w  The new weights have the characteristic that it is large if 
the evaluation value is close to the IFPIS, and it is small if the evaluation value is close to 
the IFNISs.

After obtaining the above new weights, we can aggregate the intuitionistic fuzzy eval-
uation values α =( )( 1,2,..., )k

ij k t  given by different decision makers =( 1,2,..., )kE k t  into a 
collective one, aij, by making use of the intuitionistic fuzzy weighted averaging (IFWA) 
operator:

 
α = α + α + + α(1) (1) (2) (2) ( ) ( )t t

ij ij ij ij ij ij ijw w w .  (13)
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Therefore, we can obtain the intuitionistic fuzzy collective decision matrix D as:

 

×

α α α 
 α α α = α =  
  α α α 

11 12 1

21 22 2

1 2

( ) .

n

n
ij m n

m m mn

D





   



  (14)

With the above preparation, we can now present our new MAGDM algorithm accord-
ing to different situations about the attribute weight information. If the attribute weight 
vector is known exactly, the TOPSIS approach in intuitionistic fuzzy setting can be used 
to rank alternatives directly. The attribute weights should be determined firstly if they are 
known partly or unknown completely. In the decision making process, there are situations 
that the attribute weight information is not known exactly, but only part of which can be 
obtained. Generally, the partly known attribute weight information can be expressed as 
some subset of the following relations: 

1) A weak ranking : ≥ ≠{ }, ;i jw w i j
2) A strict ranking : − ≥ ε > ≠{ ( 0)}, ;i j iw w i j
3) A ranking with multiples : ≥ α ≤ α ≤ ≠{ }, 0 1, ;i i j iw w i j
4) An interval form : β ≤ ≤β + ε ≤ β ≤β + ε ≤{ },0 1;j j j j j j jw
5) A ranking of differences : − ≥ −{ }i j k lw w w w , for ≠ ≠ ≠ .i j k l

We denote the attribute weight information set as H. According to information theory, 
the attribute whose evaluation values are close to the positive ideal evaluation value and 
far from the negative ideal evaluation values at the same time should have a large weight, 
otherwise it should have a small weight. Basing on this principle, we calculate the closeness 
coefficient cij of each collective evaluation value aij according to its distances to the positive 
ideal value +α = (1,0)j  and the negative ideal value −α = (0,1)j  as follows:

 

−

−

α α
= = =

α α + α α+

( , )
, 1,2,..., , 1,2,..., .

( , ) ( , )
ij j

ij
ij j ij j

d
c i m j n

d d
  (15)

Then the weighted closeness coefficient is calculated as:

 =
= =∑

1
, 1,2,..., .

n

i ij j
j

c c w i m   (16)

A reasonable weight vector = 1 2( , ,..., )nW w w w  should make the closeness coefficient 
as large as possible, thus we set up the following multiple objective programming model:

= = =

∈
≥ =

+ + + =

∑ ∑ ∑1 2
1 1 1

1 2

(M-1) max { , ,..., ,}

s.t. ,
0, 1,2,..., ,

1.

n n n

j j j j mj j
j j j

j

n

c w c w c w

W H
w j n
w w w
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Since all the objectives are equal important, the above multiple objective programming 
model can be transformed into the following single objective programming model by using 
the equally weighted summation method (French et al. 1983):

= =

∈
≥ =

+ + + =

∑∑
1 1

1 2

(M-2) max

s.t. ,
0, 1,2,..., ,

1.

m n

ij j
i j

j

n

c w

W H
w j n
w w w

In the above model, only the attribute weights =( 1,2,..., )jw j n  are unknown, hence 
it is a linear programming problem, which can be solved by many algorithms such as the 
interior point algorithm, the simplex method, etc. 

In some cases, the attribute weight information is unknown completely. Then we can 
determine attribute weights according to the principle that the attribute whose collective 
evaluation values are close to the intuitionistic fuzzy positive ideal value and far from the 
intuitionsitic fuzzy negative ideal values at the same time should have a large weight. In 
order to do this, the attribute weights can be determined as:

 

=

= = =

= = =
∑

∑ ∑ ∑
1

1 1 1

, 1, , ,
m

j iji
j n n m

j ijj j i

c c
w j n

c c
   (17)

where cij is determined by Eq. (15) and =≥ =∑ 10, 1.n
j jjw w

In the following, we give the new algorithm based on the new attribute weight 
assignment method and TOPSIS method. The concrete steps are as follows:

Algorithm 

Step 1. Decision makers evaluate alternatives with respect to the attributes to obtain the 
decision matrices ×= α( )( ) ( )kk

m nijD ,  where α( )k
ij is an IFV.

Step 2. Determine the positive ideal decision matrix + +
×= α( )ij m nD and negative ideal de-

cision matrices ×= α( )d d
m nijD , ×= α( )u u

m nijD by using Eqs (5), (6) and (7), respectively.
Step 3. Calculate the closeness coefficient of each evaluation value according to Eqs (8), 
(9), (10) and (11), respectively, and evaluation values’ weights by using Eq. (12). Then the 
collective decision matrix ×= α( )ij m nD  can be determined by using the IFWA operator as 
Eq. (13).
Step 4. If the attribute weight vector is known exactly, go to Step 5 directly. Model (M-2) 
can be used to determine attribute weights if they are known partly. For the case of com-
pletely unknown weight information, Eq. (17) can be used to calculate the attribute weight 
vector.
Step 5. Calculate the weighted decision matrix as ×′ ′= α( )ij m nD , where ′α = αij j ijw and 

= 1 2( , ,..., )nW w w w  is the attribute weight vector.
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Step 6. Let +α = =(1,0) ( 1,2,..., )j j n  be n largest IFVs, then the intuitionistic fuzzy positive 
ideal evaluation value +A  is defined as: 

 
+ + + += α α α1 2( , ,..., ),nA .  (18)

Let −α = =(0,1) ( 1,2,..., )j j n  be n smallest IFVs, then the intuitionistic fuzzy negative 
ideal evaluation value A– is defined as: 

 
− − − −= α α α1 2( , ,..., ).nA   (19)

Calculate the distance of each alternative’s collective evaluation value to A+ and A–, 
respectively, by the following equations:

 

+ +

=

′= α α =∑
1

( , ), 1,2,..., ,
n

i ij j
j

d d i m ; (20)

 

− −

=

′= α α =∑
1

( , ), 1,2,..., .
n

i ij j
j

d d i m   (21)

Step 7. Calculate each alternative’s closeness coefficient as follows:

 

−

− +
= =

+
, 1,2,..., .i

i
i i

d
c i m

d d
  (22)

Step 8. Rank the alternatives’ closeness coefficients by the value of ( )=1,2,...,ic i m  in de-
scending order and rank the alternatives accordingly.

Now, we have essentially developed three algorithms according to different situations 
about the attribute weight information: the attribute weight information is known com-
pletely, partly known and unknown completely. In the process of aggregating different 
decision matrices, the weights are determined from the evaluation values, and different 
experts have different weights for different attributes and alternatives, which is more rea-
sonable in practical decision process, especially for the large-scale decision making problem 
where many decision makers are involved to select the optimal alternative among many 
candidates according to many attributes. For the real decision making problem, the deci-
sion maker can select the corresponding algorithm according to concrete situation of the 
problem’s attribute information. In order to illustrate the efficiency and practical advantages 
of the proposed algorithm, we apply it to two decision making problems in the next section.

3. Numerical illustration

Two examples are used to demonstrate the practicality and efficiency of our new method.
Example 1. This example is adapted from Ngwenyama and Bryson (1999). 

The Midwest American Manufacturing Corporation has steered a committee including 
the Chief Executive Officer, the Chief Information Officer, and the Chief Operating Officer 
to evaluate and rank eight information technology improvement projects iA =( 1,2,...,8)i  
proposed by area managers: A1 – quality management information, A2 – inventory control, 
A3 – customer order tracking, A4 – material purchasing management, A5 – fleet manage-
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ment, A6  – design change management, A7  – employee skills tracking and A8 –budget 
analysis. The committee concerns each project’s potential contribution to the firm’s stra-
tegic goal of gaining the competitive advantage in the industry. Four decision makers 

=( 1,2,...,4)id i  are selected by the committee to evaluate the alternatives with respect to 
the following six attributes: B1  – productivity, B2  – technological innovation capability, 
B3 – marketing capability, B4 – differentiation, B5 – management, and B6 – risk avoidance.

If the attribute weight vector is known exactly as = (0.2,0.12,0.1,0.1,0.35,0.13)W , the 
new Algorithm can be used to rank the alternatives. The concrete steps are as follows:
Step 1. Decision makers evaluate alternatives with respect to the attributes to get decision 
matrices = α = µ ν =( ) ( ) ( )( ) ( ) ( , ), 1,2,3,4,k k kk

ij ij ijD k  which are shown in Tables 1–4.
Step 2. Determine the intuitionistic fuzzy positive ideal decision matrix D+ as Table 5 and 
the intuitionistic fuzzy negative ideal decision matrices Du and Dd as those in Table 6 and 
Table 7, respectively.
Step 3. For each decision maker =, 1,...,4,kd k  calculate the distances of each evaluation 
value α( )k

ij  to the positive ideal evaluation value +αij and negative ideal evaluation values 
αu

ij ,αd
ij . Then calculate the relative closeness coefficient by Eq. (11) and the weight ( )k

ijw
of the evaluation value by Eq. (12). Aggregate evaluation values α α(1) (2), ,ij ij α(3) ,ij  α(4)

ij given 
by four decision makers into a collective one aij by using the IFWA operator. The resulting 
decision matrix is formed as Table 8.

Table 1. Intuitionistic fuzzy decision matrix D(1)

B1 B2 B3 B4 B5 B6 
A1 (0.4,0.5) (0.6,0.2) (0.8,0.1) (0.3,0.4) (0.5,0.3) (0.2,0.5)
A2 (0.5,0.3) (0.3,0.5) (0.4,0.4) (0.7,0.2) (0.6,0.4) (0.8,0.2)
A3 (0.5,0.2) (0.4,0.5) (0.3,0.6) (0.6,0.3) (0.5,0.5) (0.6,0.1)
A4 (0.7,0.1) (0.3,0.3) (0.6,0.2) (0.4,0.3) (0.3,0.6) (0.5,0.4)
A5 (0.3,0.4) (0.6,0.2) (0.5,0.4) (0.8,0.2) (0.4,0.3) (0.5,0.2)
A6 (0.5,0.4) (0.7,0.3) (0.2,0.6) (0.5,0.3) (0.6,0.2) (0.3,0.5)
A7 (0.2,0.6) (0.5,0.4) (0.6,0.3) (0.5,0.2) (0.3,0.4) (0.7,0.3)
A8 (0.5,0.5) (0.3,0.4) (0.5,0.3) (0.6,0.2) (0.9,0.1) (0.2,0.4)

Table 2. Intuitionistic fuzzy decision matrix D(2)

B1 B2 B3 B4 B5 B6 
A1 (0.5,0.5) (0.7,0.2) (0.6,0.3) (0.4,0.4) (0.5,0.4) (0.3,0.5)
A2 (0.3,0.2) (0.3,0.4) (0.5,0.4) (0.7,0.3) (0.6,0.3) (0.8,0.1)
A3 (0.5,0.3) (0.4,0.4) (0.3,0.5) (0.6,0.2) (0.5,0.4) (0.6,0.2)
A4 (0.8,0.2) (0.5,0.3) (0.6,0.3) (0.4,0.2) (0.2,0.5) (0.3,0.6)
A5 (0.2,0.4) (0.6,0.3) (0.4,0.5) (0.7,0.2) (0.5,0.2) (0.4,0.3)
A6 (0.4,0.5) (0.8,0.2) (0.3,0.5) (0.4,0.3) (0.6,0.1) (0.5,0.4)
A7 (0.3,0.5) (0.5,0.2) (0.6,0.1) (0.3,0.5) (0.3,0.5) (0.6,0.3)
A8 (0.5,0.3) (0.2,0.5) (0.5,0.4) (0.8,0.2) (0.8,0.2) (0.3,0.4)
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Table 3. Intuitionistic fuzzy decision matrix D(3)

B1 B2 B3 B4 B5 B6 
A1 (0.5,0.4) (0.7,0.3) (0.7,0.2) (0.3,0.3) (0.4,0.5) (0.3,0.5)
A2 (0.3,0.4) (0.2,0.6) (0.6,0.3) (0.8,0.2) (0.5,0.3) (0.7,0.2)
A3 (0.4,0.3) (0.5,0.4) (0.2,0.5) (0.6,0.1) (0.5,0.2) (0.5,0.3)
A4 (0.7,0.2) (0.4,0.4) (0.7,0.3) (0.3,0.5) (0.3,0.4) (0.4,0.5)
A5 (0.3,0.5) (0.7,0.3) (0.3,0.4) (0.8,0.1) (0.4,0.2) (0.5,0.2)
A6 (0.4,0.4) (0.9,0.1) (0.3,0.6) (0.5,0.2) (0.6,0.3) (0.4,0.6)
A7 (0.3,0.5) (0.6,0.3) (0.7,0.2) (0.4,0.3) (0.2,0.5) (0.8,0.1)
A8 (0.5,0.4) (0.2,0.6) (0.6,0.3) (0.7,0.2) (0.8,0.1) (0.2,0.5)

Table 4. Intuitionistic fuzzy decision matrix D(4) 
B1 B2 B3 B4 B5 B6 

A1 (0.6,0.3) (0.7,0.1) (0.7,0.3) (0.3,0.5) (0.6,0.3) (0.3,0.6)
A2 (0.7,0.2) (0.4,0.4) (0.5,0.3) (0.8,0.1) (0.6,0.2) (0.7,0.3)
A3 (0.6,0.3) (0.4,0.3) (0.3,0.4) (0.7,0.3) (0.5,0.2) (0.6,0.3)
A4 (0.7,0.3) (0.5,0.4) (0.7,0.2) (0.5,0.2) (0.2,0.4) (0.3,0.5)
A5 (0.4,0.5) (0.7,0.2) (0.3,0.5) (0.6,0.3) (0.5,0.3) (0.4,0.2)
A6 (0.6,0.4) (0.8,0.1) (0.2,0.5) (0.5,0.4) (0.7,0.2) (0.4,0.6)
A7 (0.2,0.5) (0.6,0.2) (0.7,0.3) (0.6,0.4) (0.2,0.4) (0.6,0.2)
A8 (0.6,0.2) (0.3,0.5) (0.6,0.2) (0.8,0.2) (0.7,0.2) (0.3,0.6)

Table 5. Intuitionistic fuzzy positive ideal decision matrix D+

B1 B2 B3 B4 B5 B6 
A1 (0.5051,0.4162) (0.6776,0.1861) (0.7087,0.2060) (0.3265,0.3936) (0.5051,0.3663) (0.2762,0.5233)

A2 (0.3565,0.2632) (0.3036,0.4681) (0.5051,0.3464) (0.7551,0.1861) (0.6064,0.2913) (0.7551,0.1861)

A3 (0.5051,0.2711) (0.4267,0.3936) (0.2762,0.4949) (0.6278,0.2060) (0.5000,0.2991) (0.5771,0.2060)

A4 (0.7289,0.1861) (0.4308,0.3464) (0.6536,0.2449) (0.4042,0.2783) (0.2517,0.4681) (0.3808,0.4949)

A5 (0.3036,0.4472) (0.6536,0.2449) (0.3808,0.4472) (0.7368,0.1861) (0.4523,0.2449) (0.4523,0.2213)

A6 (0.4820,0.4229) (0.8139,0.1565) (0.2517,0.5477) (0.4767,0.2613) (0.6278,0.1861) (0.4042,0.5180)

A7 (0.2517,0.4949) (0.5528,0.2632) (0.6536,0.2060) (0.4820,0.3130) (0.2517,0.4472) (0.6870,0.2060)

A8 (0.5271,0.3310) (0.2517,0.4949) (0.5528,0.2913) (0.6870,0.2213) (0.7940,0.1565) (0.2517,0.4681)

Table 6. Intuitionistic fuzzy negative ideal decision matrix Du

B1 B2 B3 B4 B5 B6 
A1 (0.6,0.3) (0.7,0.1) (0.8,0.1) (0.4,0.4) (0.6,0.3) (0.3,0.5)
A2 (0.5,0.3) (0.4,0.4) (0.6,0.3) (0.8,0.1) (0.6,0.2) (0.8,0.1)
A3 (0.6,0.3) (0.5,0.4) (0.3,0.4) (0.6,0.1) (0.5,0.2) (0.6,0.1)
A4 (0.8,0.2) (0.5,0.3) (0.7,0.2) (0.5,0.2) (0.3,0.4) (0.5,0.4)
A5 (0.4,0.5) (0.7,0.2) (0.5,0.4) (0.8,0.1) (0.5,0.2) (0.5,0.2)
A6 (0.6,0.4) (0.9,0.1) (0.3,0.5) (0.5,0.2) (0.9,0.1) (0.5,0.4)
A7 (0.3,0.4) (0.6,0.2) (0.7,0.2) (0.5,0.2) (0.3,0.4) (0.8,0.1)
A8 (0.6,0.2) (0.3,0.4) (0.6,0.2) (0.8,0.2) (0.9,0.1) (0.3,0.4)
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Table 7. Intuitionistic fuzzy negative ideal decision matrix Dd

B1 B2 B3 B4 B5 B6 
A1 (0.4,0.5) (0.6,0.2) (0.6,0.3) (0.3,0.5) (0.4,0.5) (0.2,0.5)
A2 (0.3,0.4) (0.2,0.6) (0.4,0.4) (0.7,0.3) (0.5,0.3) (0.7,0.3)
A3 (0.4,0.3) (0.4,0.5) (0.2,0.5) (0.6,0.3) (0.5,0.5) (0.5,0.3)
A4 (0.7,0.3) (0.3,0.3) (0.6,0.3) (0.3,0.5) (0.2,0.5) (0.3,0.6)
A5 (0.2,0.4) (0.6,0.3) (0.3,0.5) (0.6,0.3) (0.4,0.3) (0.4,0.3)
A6 (0.4,0.5) (0.7,0.3) (0.2,0.6) (0.4,0.3) (0.6,0.3) (0.3,0.5)
A7 (0.2,0.6) (0.5,0.4) (0.6,0.3) (0.4,0.4) (0.2,0.5) (0.6,0.3)
A8 (0.5,0.5) (0.2,0.6) (0.5,0.4) (0.6,0.3) (0.7,0.2) (0.2,0.5)

Table 8. Intuitionistic fuzzy collective decision matrix D

B1 B2 B3 B4 B5 B6 
A1 (0.5036,0.4193) (0.3791,0.1902) (0.7077,0.2084) (0.3257,0.3883) (0.5072,0.3620) (0.2818,0.5269)

A2 (0.3538,0.2587) (0.3057,0.4639) (0.5053,0.3457) (0.7564,0.1856) (0.6067,0.2895) (0.7564,0.1856)

A3 (0.5049,0.2669) (0.4260,0.3883) (0.2773,0.4996) (0.6282,0.2090) (0.5000,0.2908) (0.5804,0.2044)

A4 (0.7282,0.1801) (0.4366,0.3542) (0.6542,0.2441) (0.4079,0.2694) (0.2515,0.4716) (0.3776,0.4966)

A5 (0.3032,0.4470) (0.6542,0.2441) (0.3791,0.4499) (0.7416,0.1840) (0.4527,0.2441) (0.4549,0.2181)

A6 (0.4824,0.4202) (0.8165,0.1515) (0.2519,0.5473) (0.4779,0.2958) (0.6281,0.1858) (0.3994,0.5310)

A7 (0.2521,0.4949) (0.5559,0.2595) (0.6553,0.1982) (0.4824,0.3115) (0.2519,0.4468) (0.6822,0.2106)

A8 (0.5239,0.3321) (0.2521,0.4949) (0.5536,,0.2911) (0.6880,0.2184) (0.7962,0.1556) (0.2515,0.4716)

Table 9. Intuitionistic fuzzy weighted decision matrix D′

B1 B2 B3 B4 B5 B6 
A1 (0.1307,0.8404) (0.1275,0.8194) (0.1157,0.8549) (0.0386,0.9097) (0.2194,0.7007) (0.0421,0.9201)

A2 (0.0836,0.7630) (0.0428,0.9120) (0.0680,0.8992) (0.1317,0.8450) (0.2786,0.6480) (0.1677,0.8034)

A3 (0.1312,0.7678) (0.0644,0.8927) (0.0319,0.9330) (0.0942,0.8551) (0.2154,0.6490) (0.1068,0.8135)

A4 (0.2293,0.7098) (0.0665,0.8829) (0.1007,0.8685) (0.0511,0.8711) (0.0964,0.7687) (0.0598,0.9130)

A5 (0.0697,0.8513) (0.1196,0.8443) (0.0465,0.9232) (0.1266,0.8443) (0.1902,0.6105) (0.0759,0.8204)

A6 (0.1234,0.8408) (0.1841,0.7973) (0.0286,0.9415) (0.0629,0.8853) (0.2926,0.5548) (0.0641,0.9210)

A7 (0.0564,0.8688) (0.0928,0.8506) (0.1010,0.8506) (0.0637,0.8899) (0.0966,0.7543) (0.1384,0.8167)

A8 (0.1380,0.8021) (0.0343,0.9190) (0.0775,0.8839) (0.1099,0.8589) (0.4269,0.5214) (0.0370,0.9069)

Steps 4 and 5. With the known attribute weight vector = (0.2,0.12,0.1,0.1,W 0.35, 0.13) , 
the weighted decision matrix ×′ ′= α 8 6( )ijD is calculated and the results are shown in Ta-
ble 9, where ′α = αij j ijw .
Step 6. Calculate the distances of alternatives’ evaluation values to the intuitionistic fuzzy 
positive ideal evaluation value A+ and the intuitionistic fuzzy negative ideal evaluation 
value A–, which give us:

+ + + + + + += = = = = = =1 2 3 4 5 6 75.1856, 5.0491, 5.1336, 5.2080, 5.1327, 5.0925,d d d d d d d
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5.2408, + =8 5.0344,d − =1 0.8144,d − =2 0.9509,d − =3 0.8664,d − =4 0.7920,d − =5 0.8673,d
− −=6 70.0975,d d −= =80.7592, 0.9656.d

Step 7. The relative closeness coefficients are then determined as:
= = = = = = =1 2 3 4 5 6 70.1357, 0.1585, 0.1444, 0.1320, 0.1445, 0.1512, 0.1265,c c c c c c c  
=8 0.1609.c

Step 8. Rank alternatives’ relative coefficients to get:
> > > > > > >8 2 6 5 3 1 4 7 .c c c c c c c c

The alternatives can thus be ranked accordingly as:
> > > > > > >8 2 6 5 3 1 4 7 ,A A A A A A A A

the optimal alternative is A8.
In the above example, the weights of different decision makers are different for dif-

ferent evaluation values. For example, the weights of α =(1)
11 (0.4,0.5),  α =(2)

11 (0.5,0.5),  
α = α =(3) (4)

11 11(0.5,0.4), (0.6,0.3)  can be computed as =(1)
11 0.2190,w  =(2)

11 0.2638,w  =(3)
11w  

0.3062,  and =(4)
11 0.2110w , respectively, and the weights of α =(1)

31 (0.5,0.2),  α =(2)
31 (0.5,0.3),  

α =(3)
31 (0.4,0.3) and α =(4)

31 (0.6,0.3)  can be computed as =(1)
31 0.2886,w  =(2)

31 0.2936,w  
=(3)

31w 0.2057  and =(4)
31 0.2121w , respectively. The positive ideal evaluation value of 

α α α α(1) (2) (3) (4)
11 11 11 11, , , is +α = (0.5000,0.4250)  and the corresponding negative ideal evalu-

ation values are α =11 (0.6,0.3)u , α =11 (0.4,0.5)d . Since the evaluation value α(3)
11 is the one 

closest to α(1)
11  and farthest from α11

u  and α11
d , α(3)

11 has a large weight. The evaluation value 
α(4)

11 is the one farthest from +α11 and closest to α11
u , hence it has a small weight. While for 

evaluation values α α α α(1) (2) (3) (4)
31 31 31 31, , , , the positive ideal evaluation value and negative ideal 

evaluation values are +α = α =31 31(0.5000,0.2750), (0.6,0.3)u  and α =31 (0.4,0.3),d  respectively. 
The evaluation value α(2)

31 is the one closest to +α31 and farthest from α31
u  and α31

d , hence 
it has a large weight and evaluation values α(3)

31 and α(4)
31 are the ones farthest from +α31

and closest to α31
d , hence they have small weights. From the above results, we can see that 

different evaluation values are assigned different weights. As pointed out in Section 2, the 
weights determined by the proposed method can reduce the influence of unduly high or 
low evaluation values on the ranking result.

In order to illustrate the advantages of the proposed method, we compare it with the 
method that the weights of experts are determined beforehand, in which all the weights 
of experts are the same for all the attributes. For example, the weights of experts are tak-
en as (0.20,0.25,0.15,0.40) . Then the collective decision matrix D  can be determined as 
in Table 10. The attribute weight vector is known as = (0.2,0.12,0.1,0.1,0.35,0.13).W  By 
using the TOPSIS method, the alternatives’ relative closeness coefficients are calculated as 

=1 0.1390,c =2 0.1617,c =3 0.1449,c =4 0.1318,c =5 0.1423,c =6 0.1529,c =7c 0.1258,
=8c  0.1603.  The ranking of =( 1,2,...,8)ic i  is then > > > > >2 8 6 3 5 1c c c c c c  > >4 7 ,c c

and the ranking of the alternatives can be determined accordingly as > > > >2 8 6 3A A A A
> >5 1A A >4 7 .A A  Now, the optimal alternative is A2, which is different from the opti-

mal alternative determined by our Algorithm. Here the weights of decision makers are the 
same for all the attributes. But in the real decision making process, decision problems have 
become very complicated and more knowledge is needed. Usually, experts may be familiar 
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with some attributes but not familiar with other attributes, hence they may give reasona-
ble evaluation values for some attributes and probably unreasonable evaluation values for 
other attributes. Compared with existing methods, the proposed algorithm can reduce the 
influence of unduly high or low evaluation values on the ranking results.

Table 10. Intuitionistic fuzzy weighted decision matrix D

B1 B2 B3 B4 B5 B6 
A1 (0.5257,0.3642) (0.6822.0.1611) (0.7027,0.2266) (0.3265,0.4189) (0.5300,0.3480) (0.2811,0.5378)

A2 (0.3456,0.2407) (0.3285,0.4445) (0.4985,0.3415) (0.7600,0.1677) (0.6151,0.2702) (0.7500,0.1978)

A3 (0.5300,0.2733) (0.4162,0.3728) (0.2858,0.4743) (0.6435,0.2299) (0.5000,0.2857) (0.5864,0.2176)

A4 (0.7289,0.2048) (0.4504,0.3514) (0.6585,0.2352) (0.4292,0.2489) (0.2365,0.4587) (0.3605,0.50005)

A5 (0.3195,0.4522) (0.6585,0.2352) (0.3703,0.4624) (0.7079,0.2120) (0.4671,0.2551) (0.4371,0.2213)

A6 (0.5081,0.4229) (0.8045,0.1481) (0.2416,0.5329) (0.4767,0.3167) (0.6435,0.1787) (0.6597,0.2163)

A7 (0.2416,0.4904) (0.5577,0.2441) (0.6585,0.2145) (0.5081,0.3335) (0.2467,0.4373) (0.6597,0.2163)

A8 (0.5427,0.2950) (0.2616,0.4914) (0.5577,0.2714) (0.7097,0.2213) (0.7824,0.1845) (0.2665,0.4864)

If the attribute weight information is partly known as H :

 

= ≤ ≤ ≤ ≤ ≤ ≤
≤ ≤ ≤ ≤ ≤ ≤ ≤

1 2 3

4 5 1 2 4

{0.10 0.20,0.20 0.30,0.15 0.25,
0.10 0.25,0.12 0.28,0.10 0.20, 2 }.

H w w w
w w w w w

The attribute weights should be determined firstly and the following model is set up:

 

1 2 3 4 5 6

1 2 3 4

5 1 2 4 1 2 6

(M-3) max 4.4092 4.4810 4.5911 5.2113 4.7638 4.4595
           s.t. 0.10 0.20,0.20 0.30,0.15 0.25,0.10 0.25,

0.12 0.28,0.10 0.20, 2 , ... 1.

w w w w w w
w w w w
w w w w w w w

+ + + + +
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
≤ ≤ ≤ ≤ ≤ + + + =

By solving the above linear programming problem, the attribute weight vector can be de-
termined as (0.10,0.28,0.15,0.25,0.12,0.10) . The weighted matrix ′′D can be calculated as that 
in Table 11. Calculate the distances of each alternative’s weighted evaluation value to +A and  
−A to get + =1 5.1158,d + =2 5.0604,d + =3 5.1474,d + =4 5.1726,d + =6 5.0587,d − =2 0.9396,d
− =3 0.8526,d − =4 0.8274,d − =5 0.9679,d − =6 0.9413,d − =7 0.8806d  and − =8 0.8798.d  

Then by using the TOPSIS method, the relative closeness coefficients can be deter-
mined as =1 0.1474,c =2 0.9396,c =3 0.8526,c =4 0.1379,c =5 0.1613,c =6 0.1569,c =7c
0.1468 and =8 0.1466.c  Rank the relative closeness coefficients to give > > > >5 6 2 1c c c c  
> > >7 8 3 4c c c c . The ranking of the alternatives can be determined accordingly as 
> > > > > > >5 6 2 1 7 8 3 4 .A A A A A A A A The optimal alternative is A5.
For the case that the attribute weight vector is unknown completely, the weights can 

be determined as = (0.1562,0.1694,0.1627,0.1847,0.1689,0.1581)W  by using Eq. (17). The 
weighted decision matrix ′′′D  can be calculated as that in Table 12. Calculate the distances 
of the alternatives’ overall evaluation values to A+ and A– to get + =1 5.1472,d + =2 5.0417,d  

3 4 5 6 7 8 15.1232, 5.1561, 5.0748, 5.1121, 5.1304, 5.0833, 0.8528,d d d d d d d+ + + + + + −= = = = = = =

2 3 4 5 6 7 80.9853, 0.8768, 0.8439, 0.9252, 0.8879, 0.8696, 0.9167.d d d d d d d− − − − − − −= = = = = = =
Then the relative closeness coefficients are determined by using the TOPSIS method to 
obtain 1 20.1421, 0.1642,c c= =  3 40.1461, 0.1407,c c= = =5 0.1542,c  6 70.1480,c c= =
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80.1449, 0.1528c = . Since the ranking of relative closeness coefficients is > >2 8c c  >5 6c c  >
> > > >3 7 4 1c c c c , the ranking of alternatives can thus be determined as > >2 8A A  >5 6A A  >
> > > >3 7 4 1A A A A . The optimal alternative is A2.

From the above results, we can see that the proposed new algorithm can be used to 
solve real decision making problems. By making use of the TOPSIS method to determine 
weights of evaluation values given by different decision makers, the influence of unduly 
high or low evaluation values on the ranking results can be reduced and more reasona-
ble and scientific decisions can be made. The algorithm has been proposed considering 
different situations about attribute weight information. The overall computation amount of 
the new algorithm is small. Though a relatively simple MAGDM problem is presented to 
illustrate the feasibility and efficiency of the proposed algorithm, the new algorithm is very 
well suitable for solving large-scale and complicated decision making problems.

In order to further illustrate the practical advantages of the proposed method, we apply 
it to a real decision problem, the evaluation of the murals in Xi’an Metro Line 2, Xi’an, 
China.

Example 2. Due to the economic development and urbanization, the transportation 
demand increases rapidly in Xi’an. Like that in other metropolis, the subway has become 
an inevitable choice for Xi’an since it is comfortable, timely, and can avoid road congestion, 
parking difficulty, etc. Xi’an Metro Line 2 has been operating for one year. Due to the 

Table 11. Intuitionistic fuzzy weighted decision matrix D′′

B1 B2 B3 B4 B5 B6 
A1 (0.0676,0.9167) (0.2726,0.6283) (0.1685,0.7904) (0.0938,0.7894) (0.0814,0.8852) (0.0326,0.9379)

A2 (0.0427,0.8735) (0.0971,0.8065) (0.1002,0.8527) (0.2974,0.6564) (0.1059,0.8618) (0.1317,0.8450)

A3 (0.0679,0.8763) (0.1440,0.7673) (0.0475,0.9012) (0.2191,0.6762) (0.0798,0.8623) (0.0832,0.8532)

A4 (0.1221,0.8425) (0.1484,0.7478) (0.1472,0.8094) (0.1228,0.7204) (0.0342,0.9138) (0.0463,0.9324)

A5 (0.0355,0.9226) (0.2572,0.6738) (0.0690,0.8871) (0.2870,0.6550) (0.0698,0.8443) (0.0589,0.8588)

A6 (0.0637,0.9170) (0.3780,0.5895) (0.0426,0.9136) (0.1499,0.7375) (0.1119,0.8171) (0.0497,0.9387)

A7 (0.0286,0.9321) (0.2033,0.6854) (0.1476,0.7845) (0.1518,0.7471) (0.0342,0.0978) (0.1083,0.8557)

A8 (0.0715,0.8956) (0.0781,0.8212) (0.1139,0.8310) (0.2526,0.6836) (0.1737,0.7999) (0.0286,0.9276)

Table 12. Intuitionistic fuzzy weighted decision matrix D′′′

B1 B2 B3 B4 B5 B6 
A1 (0.1036,0.8730) (0.1751,0.7549) (0.1814,0.7748) (0.0702,0.8397) (0.1126,0.8423) (0.0510,0.9037)

A2 (0.0659,0.8096) (0.0599,0.8780) (0.1082,0.8413) (0.2296,0.7326) (0.1458,0.8111) (0.2001,0.7663)

A3 (0.1040,0.8135) (0.0898,0.8519) (0.0515,0.8932) (0.1670,0.7489) (0.1105,0.8118) (0.1283,0.7780)

A4 (0.1841,0.7651) (0.0926,0.8388) (0.1587,0.7950) (0.0923,0.7848) (0.0477,0.8808) (0.0722,0.8953)

A5 (0.0549,0.8818) (0.1646,0.7875) (0.0746,0.8781) (0.2212,0.7315) (0.0968,0.7881) (0.0915,0.7861)

A6 (0.0977,0.8733) (0.2497,0.7263) (0.0461,0.9066) (0.1131,0.7985) (0.1538,0.7526) (0.0774,0.9048)

A7 (0.0444,0.8959) (0.1285,0.7957) (0.1591,0.7685) (0.1146,0.8065) (0.0478,0.8728) (0.1657,0.7817)

A8 (0.1095,0.8418) (0.0480,0.8876) (0.1230,0.8181) (0.1936,0.7550) (0.2355,0.7304) (0.0448,0.8880)
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specific underground traffic space, the subway space is suffering from the lack of natural 
light and fresh air, noise, humidity, lose of direction, and so on. As an important part of the 
direction indicator system, the mural is very useful for showing directions and beautifying 
the metro environment, it can also regulate the visual and spatial environment, and 
cultivate passengers’ aesthetic feeling. Moreover, the murals can demonstrate the typical 
characteristics of Xi’an as a famously historical and cultural city. For the above reasons, 
we use the proposed algorithm to evaluate the murals in Xi’an Metro Line 2. The results 
can provide insightful guidance for other subways in Xi’an. We select the following four 
paintings to evaluate: A1 – Yu Shou, A2 – Da Qin Qiang, A3 – Ying Bin Tu, A4 – Qin Ling 
Si Bao. We consider the following attributes: B1 – affinity, B2 – diversity, B3 –artistry, B4 – 
acceptability, B5 – orientation. Three experts from different fields are invited to evaluate 
the paintings. 

The attribute weight vector is known exactly as W = (0.15,0.20,0.35,0.10,0.20), then the 
proposed algorithm is used to rank the murals.
Step 1. The experts evaluate the four murals in the Xi’an Metro Line 2 by intuitionistic 
fuzzy values and the results are shown in Tables 13–15.
Step 2. Determine the intuitionistic fuzzy positive ideal decision matrix and the intuition-
istic fuzzy negative ideal decision matrices by using the Eqs (5)–(7).
Step 3. Calculate the evaluation values’ weights by using Eqs (8)–(12) and calculate the 
collective matrix by using the IFWA operator as Eq. (13), the result is given in Table 16.

Table 13. Intuitionistic fuzzy decision matrix E(1)

B1 B2 B3 B4 B5 
A1 (0.6,0.2) (0.8,0.1) (0.3,0.4) (0.6,0.2) (0.4,0.5)
A2 (0.3,0.5) (0.4,0.4) (0.7,0.2) (0.4,0.1) (0.5,0.3)
A3 (0.4,0.5) (0.3,0.6) (0.6,0.3) (0.7,0.3) (0.5,0.2)
A4 (0.3,0.3) (0.6,0.2) (0.4,0.3) (0.4,0.2) (0.7,0.1)

Table 14. Intuitionistic fuzzy decision matrix E(2)

B1 B2 B3 B4 B5 
A1 (0.5,0.3) (0.8,0.2) (0.3,0.4) (0.7,0.2) (0.5,0.5)
A2 (0.4,0.5) (0.5,0.4) (0.7,0.3) (0.5,0.2) (0.5,0.2)
A3 (0.4,0.4) (0.3,0.5) (0.6,0.2) (0.6,0.3) (0.6,0.2)
A4 (0.3,0.2) (0.6,0.3) (0.4,0.4) (0.4,0.3) (0.7,0.2)

Table 15. Intuitionistic fuzzy decision matrix E(3)

B1 B2 B3 B4 B5 
A1 (0.4,0.2) (0.7,0.3) (0.4,0.3) (0.6,0.1) (0.4,0.4)
A2 (0.5,0.5) (0.4,0.3) (0.8,0.2) (0.5,0.3) (0.5,0.3)
A3 (0.2,0.3) (0.4,0.6) (0.5,0.3) (0.7,0.2) (0.6,0.2)
A4 (0.3,0.4) (0.5,0.4) (0.3,0.4) (0.4,0.1) (0.8,0.1)
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Table 16. Intuitionistic fuzzy decision matrix E

B1 B2 B3 B4 B5 
A1 (0.5073,0.2354) (0.7759,0.1777) (0.3309,0.3677) (0.6220,0.1452) (0.4214,0.4522)
A2 (0.4060,0.5000) (0.4213,0.3512) (0.7375,0.2268) (0.4604,0.1635) (0.5000,0.2658)
A3 (0.3507,0.4008) (0.3287,0.5569) (0.5700,0.2649) (0.6718,0.2625) (0.5723,0.2000)
A4 (0.3000,0.2876) (0.5738,0.2853) (0.3692,0.3632) (0.4000,0.1800) (0.7377,0.1237)

Steps 4 and 5. Calculate the weighted decision matrix by ′α = αij j ijw .
Step 6. The distances of collective evaluation values to the intuitionistic fuzzy positive ideal 
evaluation value A+ and the intuitionistic fuzzy negative ideal evaluation value A– can be 
determined as follows:

+ =1 4.1344,d  
+ =2 4.0994,d  

+ =3 4.1866,d  
+ =4 4.1104,d  

− =1 0.8656,d  
− =2 0.9006,d

− −= =3 40.8134, 0.8896.d d
Step 7. Calculate the relative closeness coefficients by using Eq. (22) and the results are as 
follows:

= = = =1 2 3 40.1731, 0.1801, 0.1627, 0.1779.c c c c
Rank the relative closeness coefficients to get > > >2 4 1 3.c c c c The alternatives can be 

ranked accordingly > > >2 4 1 3 ,A A A A  thus the optimal alternative is A2.
Da Qin Qiang has been selected as the best painting since it has high artistry and can 

show the cultural characteristics of Xi’an. This explains the reasonability of the evaluation 
result and the practicality of our algorithm. The ranking results can provide references since 
several other subways are under construction in Xi’an. 

Conclusions

In this paper, a new algorithm based on the TOPSIS method in intuitionistic fuzzy set-
ting is introduced. The weights of evaluation values given by different decision makers are 
determined by utilizing the TOPSIS technique, which has the advantages that the evalua-
tion value close to the mean one has a large weight and the evaluation value far from the 
mean one has a small weight. The new weights can reduce the influence of unduly high or 
low evaluation values on the ranking result. Different situations about the attribute weight 
information are considered. If the attribute weights are known incompletely, a linear pro-
gramming model is set up to determine attribute weights by maximizing the weighted rela-
tive closeness coefficients. For the situation with completely unknown attribute weights, the 
weights can be determined according to the principle that the attribute whose evaluation 
value is close to the positive ideal evaluation and far from negative ideal evaluation values 
has a large weight. The corresponding algorithm has been designed considering different 
attribute weight situations. Two real examples are finally given to illustrate the efficiency 
and practical advantages of the new algorithm. As the results in Tables 8–11 show, the col-
lective evaluation values obtained by the proposed algorithm are different from the weights 
determined beforehand, and different decision makers’ different weights determined by 
TOPSIS can avoid the influence of unreasonable evaluation values to the ranking result. 
Hence the results are more reasonable than those obtained by existing methods.
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The proposed method and algorithm can be generalized to the interval-valued intu-
itionistic fuzzy setting. As for the future study, our new algorithm could be further en-
hanced by considering other aspects of uncertainty existing in decision problems. It is also 
interesting to apply our algorithm to solve other complex MAGDM problems.
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