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Abstract. In this paper a mathematical model for obtaining probability distribution of the knowledge 
testing results is proposed. Differences and similarities of this model and Item Response Theory 
(IRT) logistic model are discussed. Probability distributions of 10 items test results for low, mid-
dle and high ability populations selecting characteristic functions of the various difficulty items 
combinations are obtained. Entropy function values for these items combinations are counted. 
These results enable to formulate recomendations for test items selection for various testing groups 
according to their attainment level. Method of selection of a suitable item characteristic function 
based on the Kolmogorov compatibility test, is proposed. This method is illustrated by applying it 
to a discreet mathematics test item.

Keywords: testing, logistic model, item characteristic function, generating function, entropy, prob-
ability distribution.

Reference to this paper should be made as follows: Krylovas, A.; Kosareva, N. 2008. Mathematical 
modelling of forecasting the results of knowledge testing, Technological and Economic Development 
of Economy 14(3): 388–401.

1. Introduction

The theoretical and practical aspects of measuring the knowledge and other person’s features 
are not only objects of common and discipline didactics (Bitinas 2002), but also objects of 
mathematical modelling. Mathematical background of the Classical Test Theory (Anastasi, 
Urbina 1997) is based on normal probability distribution. The assumption is made so, that 
any measured feature – tested person’s knowledge level, IQ coefficient or acquired skills ap-
plication efficiency, etc – is normally distributed. This enables to analyse  deviations of this 
measured feature from some standard values (Hopkins 1998). However, when the number 
of tested people is not large, when not suitable formalized knowledge is measured, when not 
standardised, but teacher’s created tests are applied, the suggestion about normal distribu-
tion is invalid.
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In such cases the probabilistic test theory, also known as Item Response Theory (IRT), is 
invoked (Kiseliova, Kiseliovas 2004). The main task of this theory (Hambleton, Swaminathan, 
Rogers 1991) is, according to the testing outcome, to evaluate some persons’ measured abil-
ity – latent trait of the model. This latent parameter could be an attainment level in a specific 
branch of science or internal person‘s feature, for example, anxiety, self-sufficiency, the ability 
to concentrate, etc. IRT enables to apply tests, which are corresponding to the abilities of tested 
people of different groups and different individuals and to gauge estimates of tested features 
on the same scale. We can choose individual assignments for the tested people: for stronger 
persons – more difficult, for weaker persons – easier.

One of essential features of IRT is that Item Characteristic Curve (ICC) parameters are 
invariable and they are independent of the probability distribution of investigative popula-
tion parameters (Lord 1980; Reeve 2002). This feature is called Invariance of Parameters of 
item characteristic function. Estimations of item parameters can be derived from any tested 
population; in all cases the obtained item parameters estimations will be the same. Another 
any less important feature of IRT, opposite to Classical Test Theory, is that the estimation of 
measured latent parameter is independent of the difficuly of the selected assignment (Wright 
1968; Slinde, Linn 1979). Thus, the basis of IRT is the assumption, that probability of cor-
rect response to the test item depends on the difficulty of test item and person‘s measured 
feature – construct. The author of this theory is a Danish mathematician and statistician 
George Rasch (Rasch 1960).

Let us suppose, that θ  is tested feature and b is item difficulty. In Rasch model probability 
of a correct response to the test item P bθ,( )  is expressed by formula

 P b
ebθ θ,( ) =

+ −
1

1
. (1)

This model is called one-parameter logistic (1PL) model and function P bθ,( )  – item 
characteristic function. In Fig. 1 function P bθ,( )  graphs are presented with different 

Fig. 1. Graph of function P(θ,b) for b =2; 3
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parameter b values (b = 2 and b = 3). When parameter b increases, function P bθ,( )  graph 
is scrolling to the right preserving its shape. The tested person with a high ability is more 
likely to give the correct response to the test item than a person with a low ability, so item 
characteristic function (1) is not decreasing by the parameter θ . Notice, that latent model 
parameter θ  and test difficulty b are reflected on abscissa axis. Test difficulty b is the point 
on abscissa axis, where item characteristic function gains the value of 0.5.

A. Birnbaum‘s two-parameter logistic (2PL) model and three-parameter logistic (3PL) 
model (Birnbaum 1968) are Rasch model generalization when supplementary parameters 
are introduced. These parameters are item discrimination (in 2PL model) and probability of 
guessing a correct response (in 3PL model). In 2PL model probability of a correct response 
to the test item P a bθ, ,( )  is calculated by formula

 P a b
ea b

θ
θ

, ,( ) =
+ −( )

1

1
. (2)

Here θ  is measured feature, b – item difficulty, a – item discrimination parameter. The 
less the value of the parameter a, the more sloping item characteristic function (2) is and the 
less item discrimination. In the Fig. 2 function P a bθ, ,( )  graphs are presented with the same 
value of item difficulty parameter (b = 3) and different parameter a values (a = 0.5; a = 1; 
a = 2). Item characteristic function (2) for any values of parameters a and b is not decreas-
ing according to parameter θ , because with a higher attainment level of tested person, the 
probability of correct response to the item does not decrease.

The alternative models were also analysed in Item Response Theory. One of them is normal 
ogive model, when, instead of the logistic function (2), the distribution function of normal 
random value is used (Uebersax 1999):

 P a b bθ θ
σ

, ,( ) = −





Φ . (3)
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Fig. 2. Graph of function P(θ, a, b) for b = 3, a = 0.5, 1, 2
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Here mean of normal distribution b is corresponding to item‘s difficulty, and standard 
deviation θ  is a reciprocal value of item‘s discrimination: θ = 1

a
.

However, it is not convenient to use item characteristic function (3), therefore usually 
logistic functions (1) or (2) are chosen. Rapid development of Item Response Theory is as-
sociated with coming of powerful personal computers, which permit to automatise routine 
calculating procedures (Baker 2001, 1992). Programs BICAL (Wright, Mead 1976), LOGIST 
(Wingersky et al. 1982), BILOG (Mislevy, Bock 1986), performing selection of test items of 
various difficulty, evaluation of item parameters, evaluation of tested person‘s latent param-
eter, were created.

The newest articles on IRT are concerned with computerized adaptive tests, i.e. individu-
alized tests that are optimal to each individual (Eggen, Verschoor 2006); latent class analysis 
(LCA) – a statistical method used to identify a set of discrete, mutually exclusive latent classes 
of individuals, based on their responses to a set of observed categorical variables (Lanza et al. 
2007); new technologies such as heuristic search and machine learning approaches, including 
neural networks to automatically identify the most-informative subset of test items, when 
the item bank is very large (El-Alfy, Abdel-Aal 2008); tests of model misfit to validate the 
use of a particular model in IRT (Wells, Bolt 2008); evaluation of the standard error of the 
estimated latent variable score (Hoshino, Shigemasu 2008).

Distinctly from Classical Test Theory (CTT) and from probabilistic test theory (IRT), 
in this paper we are not aiming to evaluate the investigated feature of tested persons. We 
will analyse the possibility to maximize the amount of information, obtained during knowl-
egde testing. This aim is achieved when distribution of obtained test points is not normal, 
but, contrarily, is not even close to it. Maximum amount of information is obtained, when 
possible test points 0, 1, ..., n are achieved with the same probability p

n
=

+
1

1
. This test is 

oriented towards the effective norms-referenced knowledge assessment, when comparative 
attainment of tested people is measured (Girdzijauskas 1999), i.e. when weaker testees have 
to be distinguished from stronger ones. Traditional assessment, called criterion-referenced, 
when the student‘s assimilated part of program is measured, this value in the article will be 
denoted p ∈[ ]0 1; .

The first problem to be solved in this paper is to construct the effective knowledge test. 
The other our set task was to increase the test reliability by choosing separate test items. The 
third problem – having particular test item to select suitable item characteristic function, i.e. 
to determine, to which group of items – easy, middle or hard (there may be more groups of 
this kind) – this item is referred.

We propose a mathematical model, which does not have requirements for function shape, 
to forecast the results of knowledge testing. But we restrict ourselves to the segments of linear 
functions, which are near to the logistic functions. The main difference between these func-
tions is when function values are near 0 or 1. Segments of linear functions are more easily 
applied in practice because of the simplicity of their analytical expression.
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2. Mathematical model

Let us suppose, that p ∈[ ]0 1;  is the attainment level of testee, i.e. some criterion-referenced 
knowledge estimation. Norms-referenced knowledge assessment of testees will be performed 
with n items test, denoting that k pj ( )  is the probability that testee, whose knowledge level is 
p, will give the correct response to j-th test item. Let us select any of the set of non-decreas-
ing functions k pj ( ) [ ] → [ ]: ; ;0 1 0 1 , which could be test items characteristic functions and 
construct n items collection (test) T:

 T k p k p k pn= ( ) ( ) ( ){ }1 2, ,..., . (4)

Let us denote that K(p) is the number of correct responses to the test items by the testee, 
whose attainment level is p. K(p) is a discreet random variable obtaining values m = 0,1,..., 
n with probabilities

 P K p m t p m nm( ) =( ) = ( ) =, , ,...,0 1 . (5)

Supposing that function f(p), described as

 f p
f p p

p
( ) =

( ) ≥ ∈[ ]
∉[ ]






0 0 0 1

0 0 1
, ;

, ;
         f x dx0

0

1
1∫ ( ) = , 

is probability density function of testees population knowledge level, distribution of number 
of correct responses to the test items in the whole population K could be found by the for-
mula

 P K m p t p f p dpm m=( ) = = ( ) ( )∫
0

1

0 , (6)

here m = 0,1, ..., n.
Willing to find probabilities t pm ( )  (4), we will use the essential suggestion of Item Re-

sponse Theory – local independence assumption, i.e. we will consider that when knowledge 
level value p is fixed, responces to the different test items are independent random values. 
Suppose, that a student, whose knowledge level is p, is answering n test items. Then the 
number of correct responses K(p) is the sum of independent random variables with Bernoulli 
distribution. Therefore, random variable K(p) generating function (Kruopis 1993) is equal 
to product:

 ψn j

n

j j n
np x k p k p x t p t p x t p x, ...( ) = − ( ) + ( )( ) = ( ) + ( ) + + ( )

=
Π

1 0 11 . (7)

Random variable generating function has an important feature: the coefficients, near vari-
ous x degrees in the generating function polynomial (7), are equal to probabilities of obtaining 
correspondent values by this random variable. From (6) and (7) we can find the distribution 
of test results K in the whole population, i.e. the probabilities pm, m = 0,1, ..., n.

The amount of information, given by the test T, is expressed by entropy (Stakenas 
1996):
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 E k k k f p n
pn m

m

n

m
1 2 0

0
1 1, ,..., ,( ) =

=
∑ . (8)

Entropy function achieves its maximum value, when p p p
nn0 1

1
1

= = = =
+

... , i.e. when 

the number of testees giving the correct responses to the 0, 1, ..., n test items will be approxi-
mately equal. For example, when test is made of one item, entropy functions value will be 
maximal, when approximately the same number of testees will give correct and incorrect 
responses to the item.

Differently from IRT, where logistic functions (1), (2) are used, we will describe item 
characteristic functions as the segments of linear functions:

 k p

p
p

p

pj , ,

,

,

,α β

α
α

β α
β

α β( ) =

<
−
−

>










≤ ≤

0

1

. (9)

In the Fig. 3 graphs of functions kE (p, 0, 0.5), kM (p, 0, 1), kH (p, 0.5, 1) are presented. 
These functions are called respectively characteristic functions of easy, middle and hard item 
and enable us to describe fuzzy sets of items (Zadeh 1965; Ustinovichius et al. 2006). These  
characteristic functions are the analogues of 2PL model functions P a bθ, ,( )  (2), because 
parameters α  and β  describe not only the difficulty of test item α β+

2
, but also discrimina-

tion 1
β α−

. The particular values of parameters α  and β  are found performing experiments. 
The procedure of finding model parameters is called item calibration.

Let us describe density function of testees population knowledge level f p0 ( ) as the seg-
ments of linear functions:

Fig. 3. Different difficulty items characteristic functions kE (p, 0, 0.5), kM (p, 0, 1), kH (p, 0.5, 1)
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In general case this function has the form of trapezium; in some cases it may have the 
form of triangle. Parameters a, b, c, d for each specific population are found by performing 
experiments. For example, in the Fig. 4 knowledge level density functions for 3 popula-
tions – having low, middle and high abilities, are represented.

3. Selection of the best test

Let us describe testees populations of 3 types – having low f0 (p, 0, 0.33, 0.33, 0.67), mid-
dle f0 (p, 0.25, 0.5, 0.5, 0.75) and high f0 (p, 0.33, 0.67, 0.67, 1) abilities. To investigate this 
model the program which counts probability distribution of test results and entropy function 
values for low, middle and high abilities populations with various item characteristic func-
tions of easy kE (p, 0, 0.5), middle kM (p, 0, 1), and hard kH (p, 0.5, 1) items combinations 
was created. The calculations were performed with 10 items test, according to formulas (7) 
and (8). In Fig. 5 the normalized entropy function‘s graphs for various 10 items combinations 
with 3 testees populations are presented. For example, the mark 235 on the axis of abscissas 
expresses that test is constructed from 2 easy, 3 middle and 5 hard items. Items are ranged on 

Fig. 4. Knowledge level density function of low ability (f0 (p, 0, 0.25, 0.45, 0.7)), middle ability 
(f0 (p, 0, 0.25, 0.75, 1)) and high ability (f0 (p, 0.4, 0.6, 0.8, 1)), population
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the axis of abscissas according to increasing difficulty of the test: from 10 easy items (X00) 
to 10 hard items (00X).

Entropy function value for the population of low abilities was the biggest (96 % of maxi-
mum value), when test was constructed of 9 easy and 1 middle items (910) and of 8 easy and 
2 middle items (820). For the population of high abilities, the same entropy value was reached 
when test was constructed of 9 hard and 1 middle items (019) and 8 hard and 2 middle items 
(028). For the population of middle abilities, the highest entropy value (from 73 % to 80 % of 
maximum value) was obtained with many item characteristic functions combinations – 442, 
334, 262, 253, 235, .... .

This program allow us to forecast the distribution of the number of correct responses to the 
test items for populations of low, middle and high abilities and differently selected test items 
collections. The examples of such forecasts for 100 testees of middle abilities are presented in 
Table 1.

Table 1. Distribution of correct responses for the population of 100 people of middle attainment for 
test of 10 different difficulty items

Test difficulty
Distribution of correct responses to 10 items test 

0 1 2 3 4 5 6 7 8 9 10

820 0 0 0 1 2 3 6 10 22 35 21
442 0 0 2 5 11 21 27 21 10 3 0
037 12 29 28 15 8 5 2 1 0 0 0

Fig. 5. Entropy functions for 10 items tests for the populations of low, middle and high attainment level
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4. Maximising the amount of information obtained from the test

Let us suppose, that test T is constructed of 1 item, the item characteriscic function is k(p), 
testees population knowledge level density function is f p0 ( ) . The question is – for which 
values of item characteristic function entropy function value (and also information amount 
obtained from test) will be the biggest? We shall compare the results when function k(p) is 
segments of linear functions (9) and when it is a logistic function, described by equations 
(1) and (2).

Let us suppose, k(p) is described by Eq. (9). Then maximum entropy value will be reached, 
when α  and β  satisfy the equation

 k p f p dp
0

1

0
1
2∫ ( ) ( ) = . (11)

If knowledge level density function of testees population f p0 ( )  has the form of trapezium 
(10) and is symmetric in point of the mean Ep of the population parameter p, whose values 
are in the interval [0; 1], then the solutions of the equation (11) will be all such functions k(p) 
for which the test item difficulty coincides with the mean of population parameter p:

 Ep = +α β
2

. (12)

The equation (11) has an infinite number of solutions satisfying the equation (12). When 
we fix test discrimination 1

β α−
, we will obtain the equation with one unknown param-

eter – test difficulty α β+
2

.

If the test consists of 2 items, whose characteristic functions are respectively k p1 ( )  and 
k p2 ( ), the biggest entropy will be reached for solving the system of equations:

 
k p k p f p dp

k p k p f p dp

1
0

1

2 0

0

1

1 2 0

1
3

1

∫ ( ) ( ) ( ) =

∫ ( ) + ( )( ) ( ) =










. (13)

Likewise, in the 3 items test case, the biggest entropy will be reached when solving the 
system of equations:

 

∫ ( ) ( ) ( ) ( ) =

∫ ( ) ( ) + ( ) ( ) + ( )
0

1

1 2 3 0

0

1

1 2 1 3 2

1
4

k p k p k p f p dp

k p k p k p k p k p kk p f p dp

k p k p k p f p dp

3 0

0

1

1 2 3 0

1

3
2

( )( ) ( ) =

∫ ( ) + ( ) + ( )( ) ( ) =
















. 

Now, suppose that k(p) is a logistic function, described by equation (1). Then in case 
of one item test maximum entropy value will be obtained, when parameter b satisfies the 
equation
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 1
1

1
20+

( ) =−
−∞

+∞

∫
e

f r drb r
. (14)

If the distribution of population knowledge level density function f r0 ( )  is symmetric 
in point of the mean Er of the population parameter r, for example, in case of normal prob-
ability distribution, entropy function achieves its maximum value when the item difficulty 
coincides with the mean of population parameter r:

 Er = b. (15)

We got the same result for two-parameter logistic model. We can see that the character-
istic function, described by Eq. (9) and logistic function (1) and (2) features, are similar in 
this case.

5. Evaluating the difficulty of the item

For practical applying the model, we must establish to which set of items – easy, middle or 
hard – the test item should be referred. Let us deal with an example of evaluating one item. 
Assume, that sets of items are described by the formula (9), where parameters α  and β  are 
selected like in the paragraph 3: kE (p, 0, 0.5), kM (p, 0, 1), kH (p, 0.5, 1). We will deal with 
one discrete mathematics test item, proposed in 2006–2007 spring semester interim examina-
tion taken by 405 VGTU students (Krylovas, Suboc, Kosareva 2007: 254–258). The students 
must determine, which of two proposed Boolean functions‘ systems is full (Krylovas 2005). 
The following Boolean functions systems were proposed:

Table 2. 10 variants of discrete mathematics test item. Question: which of two Boolean functions systems 
is full?

⊕ ∨{ } ⇒{ }, , ; ,1 1 ⊕ ∨{ } ⊕{ }, ; , ,&1

⊕ ⇔ ∨{ } ∨ ¬{ }, , ; , ⇒ ⇔{ } ⊕ ⇔{ }, ; ,

⇒ ¬{ } ⊕ ⇔{ }, ; , ∨{ } ⇒{ },& ; ,0

∨ ¬{ } ⊕ ∨{ }, ; , ,1 ⇒{ } ⇒{ },& ; ,1

↓{ } ⇒ ∨{ }; , ⊕ ∨{ } {}, ; |

It was established (Krylovas et al. 2007a, b: 249–253), that these 10 test items variants are 
equivalent by the difficulty. Therefore, we can join these variants and deal like with one test 
item. We call such test items parallel variants (Krylovas, Raulynaitis 2003). Let us divide 
the interval [0; 1] to n equal length intervals and assign all tested students to these intervals 
according to their discreet mathematics knowledge level. In each interval we will count the 
values of empirical item characteristic funcion  (p), as a proportion of correct responses to 
the item and all observations, which belong to this interval. Function  (p) has the feature of 
distribution function 0 ≤  (p) ≤1, when 0 ≤ p ≤1. However, it is not always non-decreasing. 
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Kolmogorov test lets us verify the hypotheses about coincidence of function  (p) and respec-
tively item characteristic functions kE , kM  and kH . Suppose, that  ni tested students belong 
to the i-th interval, and mi  of them gave the correct responses to the test item. Kolmogorov 
test statistic (Kruopis 1993), which is used to test the hypothesis H0 :  (p) ≡ k(p) is:

 Dn p
=

≤ ≤
max
0 1

|  (p) – k (p)|. 

We can count statistic Dn  in the following way. Primarily we count statistics

 D
m
n

k i
nn i n

i

i

+

=
= − 













max

, ,...,1 2
, 

 D k i
n

m
nn i n

i

i

−

=
−

−
= 





−








max

, ,...,1 2
1

1

, here m
n

0

0
0= . 

Then D D Dn n n= ( )+ −max , .  Hypothesis H0 is rejected when D Dn n> ( )0 05. . Here Dn 0 05.( ) 
is statistic Dn  probability distribution critical value with the significance level of 0.05. If n = 
10, then Dn 0 05.( ) = 0.40925.

We obtained these values of Kolmogorov statistics: DE , .10 0 46= ; DM , .10 0 28= ; 
DH , .10 0 68= , hence we cannot reject hypothesis H0 :  (p) ≡ kM (p), while hypotheses 
H0 :  (p) ≡ kE (p) and H0 :  (p) ≡ kH (p) are rejected with significance level 0.05. Conclu-
sion – the considered item may be assigned to the middle difficulty items having characteristic 
function kM (p, 0, 1).

In Table 3 all observations grouped into 10 intervals are presented. Data are grouped ac-
cording to the attainment level of tested students. mi  is the number of correct responses to 
the test item by students in the i-th interval; ni – number of all testees in the i-th interval:

Table 3. Data of correct responses to the test item, grouped in 10 intervals according to the attainment 
level of tested students

Interval mi ni
m
n

i

i

[0; 0.1] 9 43 0.1731
]0.1; 0.2] 13 23 0.3611
]0.2; 0.3] 10 27 0.2703
]0.3; 0.4] 14 23 0.3784
]0.4; 0.5] 22 19 0.5366
]0.5; 0.6] 37 12 0.7551
]0.6; 0.7] 43 6 0.8776
]0.7; 0.8] 32 2 0.9412
]0.8; 0.9] 30 0 1.0000
]0.9; 1] 40 0 1.0000
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6. Conclusions

The proposed mathematical model to forecast the results of knowledge testing allow us to 
construct norms-referenced estimation tests, optimally applied to the knowledge level of 
tested population. The novelty of this investigation is the applying segments of linear func-
tions as item characteristic functions and also as population knowledge level density function. 
However, this shape of functions is not the restriction of the model and it is selected because 
of being convenient to apply in practice.

Computational experiments were performed when the knowledge level of tested popula-
tion is low, middle or high, and test items – easy, middle or hard. Distribution of knowledge 
level of tested population and item characteristic functions were chosen as segments of 
linear functions. This program enables to increase the test reliability by choosing separate 
test items. It is important that we can select individual test, which is the best for particular 
testees population and forecast the results of knowledge testing. This allows to improve the 
process of knowledge testing.

Practical evaluation of model parameters (item calibration) is accomplished by mathemati-
cal statistics methods. In this paper it was shown, how we can assign the specific discrete 
mathematics test item to one of three item sets (easy, middle or hard items).

This model may be used for other grouping the population and item difficulty levels or 
another number of fuzzy sets. However, the determination of such sets requires gathering and 
analysing the empirical data and this will be the object of further author‘s investigation.

It is intended to analyse the stability of model in regard to function parameters and also 
by replacing segments of linear functions with other functions in the future.
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ŽINIŲ TIKRINIMO REZULTATŲ PROGNOZĖS MATEMATINIS MODELIAVIMAS

A. Krylovas, N. Kosareva

Santrauka

Straipsnyje pasiūlytas matematinis modelis žinių tikrinimo rezultatų tikimybiniam skirstiniui gauti. 
Aptarti šio modelio ir užduočių sprendimo teorijos (IRT) logistinio modelio skirtumai ir panašumai. 
Išnagrinėti 10 klausimų testo rezultatų tikimybiniai skirstiniai silpnai, vidutinei ir stipriai testuojamųjų 
populiacijoms parenkant įvairias testo klausimų sunkumo funkcijų kombinacijas. Apskaičiuotos entro-
pijos funkcijos reikšmės. Gauti rezultatai leidžia formuluoti rekomendacijas testo klausimams parinkti 
skirtingoms testuojamųjų grupėms pagal jų žinių lygį. Pasiūlytas tinkamiausios klausimo charakteristinės 
funkcijos parinkimo būdas, grindžiamas Kolmogorovo kriterijumi. Ši procedūra iliustruojama taikant 
ją konkrečiam diskrečiosios matematikos testo klausimui.

Reikšminiai žodžiai: testavimas, logistinis modelis, klausimo charakteristinė funkcija, generuojančioji 
funkcija, entropija, tikimybinis skirstinys.
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