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Abstract. Decision-making in fuzzy environment is often a very complex, especially when related 
to predictions and assessments. The Ratio system approach of the MOORA method and Interval-
valued fuzzy numbers have already proved themselves as the effective tools for solving complex 
decision-making problems. Therefore, in this paper an extension of the Ratio system approach of 
the MOORA method, which allows a group decision-making as well as the use of interval-valued 
triangular fuzzy numbers, is proposed. Interval-fuzzy numbers are rather complex, and therefore, 
they are not practical for direct assigning performance ratings. For this reason, in this paper it has 
also been suggested the approach which allows the expression of individual performance ratings 
using crisp, interval or fuzzy numbers, and their further transformation into the group performance 
ratings, expressed in the form of interval-valued triangular fuzzy numbers, which provide greater 
flexibility and reality compared to the use of linguistic variables. Finally, in this paper the weighted 
averaging operator was proposed for defuzzification of interval-valued triangular fuzzy numbers.

Keywords: MCDM, MOORA, ratio system approach, fuzzy set theory, interval-valued triangular 
fuzzy numbers, weighted Hamming distance.
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Introduction

Decision-making is often associated with the process of selecting the best alternative from 
the set of available alternatives. In many cases when selecting the best alternative, it is 
necessary to take into account the impact of multiple criteria. 

Since the 1970s, the multiple criteria decision-making (MCDM) approach has been 
developed rapidly and very soon it has become a main area of research for dealing with 
complex decision-making problems, which require the consideration of multiple objectives 
or criteria (Lertprapai 2013).
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As a result of that development, many MCDM methods are proposed, out of which 
only the most prominent are mentioned, such as: SAW (MacCrimmon 1968), Compromise 
Programming (Zeleny 1973; Yu 1973), AHP (Saaty 1980), TOPSIS (Hwang, Yoon 1981), 
PROMETHEE (Brans, Vickine 1985), ELECTRE (Roy 1991) and VIKOR (Opricovic 1998).

These methods were successfully used to solve many decision-making problems. How-
ever, these methods, the so-called ordinary MCDM methods, were based on the use of 
crisp numbers, and because of that, they were not fully adequate for solving many re-
al-world problems. Therefore, many MCDM methods were extended to enable the use of 
fuzzy numbers or interval-valued fuzzy numbers. 

Many real-world decision-making problems also require the participation of multiple 
decision makers and/or experts in the decision-making processes. Therefore, many MCDM 
methods wereextended also to provide a group decision-making approach.

The Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) method 
was proposed by Brauers and Zavadskas (2006). The MOORA method consists of two 
components, that is: the Ratio system approach and the Reference point approach. Brauers 
and Zavadskas (2010a) also proposed the MULTIMOORA method, as an extension of the 
MOORA method in which there has been added a third component: Full Multiplicative 
Form.

Similarly to other MCDM methods, for the MOORA and the MULTIMOORA meth-
od, some extensions have been proposed. Brauers et al. (2011) proposed the first fuzzy 
extension of the MOORA method, or more precisely the MULTIMOORA method. In 
that extension, the MULTIMOORA method has been updated by the fuzzy sets theory, 
and all three components of the MULTIMOORA method: the Ratio system approach, the 
Reference point approach and the Full multiplicative form have been modified to enable 
the usage of triangular fuzzy numbers. Balezentis et al. (2012a, 2012b) further modified 
the fuzzy MULTIMOORA, and proposed the fuzzy extension, named MULTIMOORA-FG, 
which includes the use of linguistic variables and enables the group decision-making ap-
proach. Balezentis and Zeng (2013) also proposed an extension of MULTIMOORA based 
on interval-valued fuzzy numbers.

The MOORA, MULTIMOORA and their extensions were used for solving numerous 
problems, such as the regional development (Brauers, Zavadskas 2010b, 2011a; Brauers, 
Ginevicius 2010), the choice of bank loan (Brauers, Zavadskas 2011b), the personnel se-
lection (Balezentis et. al 2012a, 2012b), forming a multiple criteria decision-making frame-
work for the energy crops prioritization (Balezentiene et al. 2013), the selection of building 
elements for the renovation of energy efficient buildings (Kracka et al. 2013), and so on. 

In the literature, it can also be identified a characteristic approach, initiated by Kali-
batas and Turskis (2008), which is based on the use of the Ratio system approach of the 
MOORA method.

Karande and Chakraborty (2012), and Dey et al. (2012) proposed the fuzzy extensions 
of the Ratio system approach of the MOORA method. Both of these extensions enable the 
use of fuzzy triangular numbers. The extension proposed by Dey et al. (2012) also included 
the group decision-making approach, but in this extension, the decision matrix has been 
defuzzified in the initial stage, and then the crisp MOORA has been further employed.



124 D. Stanujkic. An extension of the ratio system approach of MOORA method for group ...

Stanujkic et al. (2012a, 2012b) proposed the extensions of the Ratio system approach of 
the MOORA method, based on the use of interval fuzzy numbers.

The interval-valued fuzzy numbers provide an opportunity for a much more adequate 
modelling and solving complex real-world problems, but they are not suitable for direct 
assigning the values by decision makers. Therefore, they are often used in a combination 
with various linguistic scales.

In this paper, an extension of the Ratio system approach of the MOORA method, where 
the performance ratings of alternatives are expressed in interval-valued triangular fuzzy 
numbers, is proposed. The proposed extension also includes the group decision-making 
approach, where decision makers can express their individual performance ratings using 
crisp, interval or triangular fuzzy numbers. So obtained individual performance ratings are 
further transformed into the group, interval-valued triangular fuzzy performance ratings. 
This approach should provide a greater flexibility and more adequate determination of the 
group performance ratings compared to the use of linguistic scales. 

Because of all above mentioned reasons, the rest of this paper is organized as follows: 
In Section 1, some basic definitions and notations are given. In Section 2, some procedures 
for determining the weight of criteria and performance ratings, based on the group deci-
sion-making approach are presented, and in Section 3 the interval-valued fuzzy extension 
of the Ratio system approach of the MOORA method, is proposed. In Section 4, an exam-
ple is considered with the aim to explain in details the proposed methodology. Finally, the 
conclusions are given.

1. Preliminaries

In this section some basic definitions and notations, relevant for forming the extension of 
the Ratio system approach of the MOORA method for the multiple criteria group decision-
making based on interval-valued triangular fuzzy numbers, proposed in Section 3, are 
given.

1.1. Interval-valued fuzzy sets

In the classical set theory, an element can belong or does not belong to a set. Let X be a 
classical set of objects, called the universe, whose generic elements are denoted by x. The 
membership, in a classical subset A of X, is often represented by a degree of the member-
ship, such that:

 
∈µ =  ∉

1 ;,( )
0 ,A

x A
x

x A
 (1)

where: ( )A xµ denotes the membership function, and ( ) {0,  1}A xµ ∈ .
Unfortunately, many real-world decision-making problems are often related to the in-

fluence of uncertainty, which can not be easily expressed using the classical sets.
Zadeh (1965) introduced the Fuzzy sets theory, which allows a partial membership in a 

set. The fuzzy set A, illustrated in Figure 1, is completely defined by the set of pairs, such that
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 { },  ( )  ,AA x x x X= µ ∈  (2)

where ( ) [0,  1]A xµ ∈ .
The fuzzy sets theory was later extended. The concept of the interval-valued fuzzy set 

was proposed by Turksen (1986, 1996) and Gorzalczany (1987). The interval-valued fuzzy 
set A, illustrated in Figure 2, is given by: 

 ,  ( ) ,  ( )  l u
A AA x x x x X

   = µ µ ∈     
, (3)

where: ( )l
A xµ  is the lower limit of the degree of the membership, ( ) [0,  1]l

A xµ ∈ ; ( )u
A xµ  de-

notes the upper limit of the degree of the membership, ( ) [0,  1]u
A xµ ∈ ; and ( ) ( )l u

A Ax xµ ≤ µ .

1.2. Some typical types of numbers

As previously stated, the classical sets theory is based on the use of crisp numbers, and 
these numbers are not suitable for solving complex real-world decision-making problems.

The partial membership in a set, enabled in the fuzzy sets theory, introduced some new 
types of numbers such as interval, triangular, trapezoidal, and bell-shaped fuzzy numbers. 
The interval-valued fuzzy sets also introduced some new types of numbers such as inter-
val-valued triangular fuzzy numbers and interval-valued trapezoidal fuzzy numbers. 

Some of the commonly used numbers are listed below.
Crisp number. A crisp number, shown in Figure 3, is fully determined by its value m.

The membership function of the crisp number A is defined as follows:

 
=µ = 



1 ;,( )
0 otherwise.A

x m
x  (4)

Fuzzy number. A real fuzzy number A is described as a fuzzy subset of the real line ℜ with 
the membership function Aµ  that represents uncertainty, where the membership function 
is defined from the universe of discourse to [0, 1]. 
Interval fuzzy number. An interval fuzzy number is fully determined by a pair of real 
numbers (l, u), where l and u are the lower bound and the upper bound, respectively; and 
(l, u ∈ ℜ; l < u). The interval fuzzy number A , is shown in Figure 4.

The membership function of interval fuzzy number A is defined as follows:

 
∈µ = 



1 [ , ];,( )
0 otherwise.A

x l u
x  (5)

Fig. 1. Fuzzy set Fig. 2. The Interval-valued fuzzy set
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Triangular fuzzy number. A triangular fuzzy number, shown in Figure 5, is fully character-
ized by a triplet of real numbers ( , , )l m u , where parameters l, m and u, denote the smallest 
possible value, the most promising value, and the largest possible value that describes a 
fuzzy event (Dubois, Prade 1980; Ertugrul, Karakasoglu 2009). 

The membership function of the triangular fuzzy number is defined as follows:

 
 − − ≤ ≤
µ = − − ≤ ≤



( ) / ( ) ;
( ) ( ) / ( ), ;

0 otherwise.
A

x l m l l x m
x u x u m m x u



  (6)

Interval-valued triangular fuzzy number. According to Yao and Lin (2002), the interval-
valued triangular fuzzy number, shown in Figure 6, can be presented as follows:

 , ( , , ; ) ,( , , ; )l u
l m u A l m u AA A A a a a a a a   ′ ′ ′ ′= = ω ω    

   , (7)

where: LA and UA denote the lower and upper triangular fuzzy numbers, L UA A⊂  , 
respectively; l′ , m′  and u′ , denote the smallest possible value, the most promising value, 
and the largest possible value that describes a fuzzy event LA ; l, m and u, denote the small-
est possible value, the most promising value, and the largest possible value that describes a 
fuzzy event UA ; A′ω  and Aω  denote the maximum values of the lower ( )LA xµ



and upper 
( )UA xµ



 membership functions, respectively.

Normalized interval-valued triangular fuzzy number. The particular case of the interval-
valued triangular fuzzy numbers are the normalized interval-valued triangular fuzzy num-
bers, 1A A′ω = ω = , with the same mode. The normalized interval-valued triangular fuzzy 
number, shown in Figure 7, can be presented as follows:

 [ , ] ( , ), ,( , )l u
lA A A l l m u u′ ′= =      . (8)

Fig. 3. A crisp number Fig. 4. An interval fuzzy number

Fig. 5. A triangular fuzzy number Fig. 6. The interval-valued triangular 
fuzzy number
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1.3. The basic operations of interval-valued triangular fuzzy numbers

Suppose that [( , ), ,( , )]l l m u uA a a a a a′ ′=  and [( , ), ,( , )]l l m u uB b b b b b′ ′=  are two normalized in-
terval-valued triangular fuzzy numbers. Then, the basic operations on these fuzzy numbers 
(Chen 1997; Chen, S. J., Chen, S. M. 2008) are defined as follows:

 [( , ), ,( , )]l l l l m m u u u uA B a b a b a b a b a b′ ′ ′ ′+ = + + + + +  ; (9)

 [( , ), ,( , )]l u l u m m u l u lA B a b a b a b a b a b′ ′ ′ ′− = − − − − −  ; (10)

 [( , ), ,( , )]l l l l m m u u u uA B a b a b a b a b a b′ ′ ′ ′× = × × × × ×  ; (11)

 [( , ), ,( , )]l u l u m m u l u lA B a b a b a b a b a b′ ′ ′ ′÷ = ÷ ÷ ÷ ÷ ÷  ; (12)

 1 1 1 1 1 1[( , ), ,( , )]l l m u uA a a a a a
k k k k k k

′ ′× = × × × × × . (13)

1.4. Hamming distance

Let A  and B be two fuzzy sets. The Hamming distance ( ,  )d A B  is as follows:

 
1

( ,  ) | ( ) ( ) |
n

A i B i
i

d A B x x
=

= µ −µ∑  . (14)

Suppose that 1 2 3 4 5[( ,  ), ,  ( ,  )]A a a a a a=  and 1 2 3 4 5[( ,  ), ,  ( ,  )]B b b b b b=  are two nor-
malized interval-valued triangular fuzzy numbers. Then, the Hamming, normalized Ham-
ming and weighted normalized Hamming distances are as follows: 

 
1

( ,  ) | |
n

i i
i

d A B a b
=

= −∑  ;  (15)

 
1

1( ,  ) | |
5

n

i i
i

d A B a b
=

= −∑  ;  (16)

 
1

1( ,  ) | |
5

n

w i i i
i

d A B w a b
=

= −∑  ,  (17)

where wi denotes the weight (significance) of i-th parameter of an interval-valued triangu-
lar fuzzy number, 1 1n

ii w= =∑  and [0,1]jw ∈ .

1.5. Defuzzification of interval-valued triangular fuzzy numbers

As the time goes by, a number of defuzzification methods were proposed. However, these 
methods were mainly intended for the defuzzification of trapezoidal and triangular fuzzy 

Fig. 7. The normalized interval-valued triangular fuzzy number with the same mode
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numbers, such as, the methods proposed by Liou and Wang (1992) and Opricovic and 
Tzeng (2003).

The defuzzification method proposed by Liou and Wang (1992) can be shown as:

 1( )  [(1 )  ]
2

mf A l m u= −λ + + λ , (18)

where ( )mf A denotes a mapping function that transforms the fuzzy numbers into the crisp 
ones, λ denotes an index of optimism, and [0,  1]λ∈ .

By assigning different values to the coefficient λ, decision makers can express their 
opinions more realistically, i.e. levels of their optimism or pessimism about something.

Opricovic and Tzeng (2003) also proposed a simple to use defuzzification method, 
which can be shown as:
 ( )

3
l m umf A + +

= .  (19)

On the basis of Eqs (18) and (19), in this paper, the following formula was proposed for 
the defuzzification of normalized interval-valued triangular fuzzy numbers:

 1( ) (1 ) (1 )
5

fm A l l m u u′ ′= −α + −β + γ +β +α   , (20)

where a, b, and g are coefficients, , [0,1]α β∈ , and 0γ ≥ .
By giving different values to coefficients a, b, and g in the Eq. (20), the decision makers 

have the opportunity to express their opinions more accurately. In addition, the Eq. (20) 
has some special forms such as:

 – when a = b
 1( ) (1 )( ) ( )

5
fm A l l m u u′ ′= −α + + γ +α +   . (21)

 – when 0.5α =β = , 1γ = , l l′= and u u′=

 ( )
5

l m umf A + +
= . (22)

As it can be seen, the Eq. (22) is very similar to the Eq. (19) and what is more, it takes 
into account the specificities of normalized interval-valued triangular fuzzy numbers.

2. Multiple criteria group decision making

A typical MCDM problem can be more concisely presented in the following form:

 [ ]ij m nD x ×= ; (23)

 [ ]j nW w= , (24)

where: D denotes the decision matrix, xij is the performance rating of alternative Ai with re-
spect to criterion Cj., W denotes the weight vector, wj is the weight of criterion Cj, i = 1,2, … 
m; m is the number of compared alternatives, j = 1,2, ..., n; n is the number of the criteria.

In Eqs (23) and (24) the values of xij and wj are crisp numbers. Many previously pub-
lished studies have indicated that crisp numbers are not fully adequate for solving complex 
real-world decision-making problems. These studies have also pointed out the importance 
of the group-decision making approaches. 
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The interval-valued fuzzy multiple criteria group decision-making can be presented in 
the following form:
 [ ]k k

m nijD x ×=

 ; (25)

 [ ]k k
njW w=

 , (26)

where: kD denotes a fuzzy decision matrix formed by the decision maker/expert k, k
ijx is 

the interval-valued fuzzy performance rating of alternative Ai with respect to criterion Cj 
obtained from decision maker/expert k, kW denotes the fuzzy weight vector obtained from 
the decision maker/expert k, and k = 1,2, …, K; K denotes a number of decision makers 
or experts.

In the multiple criteria group decision-making, it is very important how to aggregate 
individual criteria weights and individual performance ratings into the group (aggregated) 
criteria weights and performance ratings.

2.1. Determining the weights of criteria

Many published papers have also indicated that the use of the group decision-making 
approaches and pairwise comparison procedure provides an efficient approach for precisely 
determining the relative importance of criteria i.e. weights of criteria.
Pairwise comparison. The pairwise comparison procedure is quite simple and understand-
able, even for decision makers who are not familiar with the MCDM. For a decision making 
problem that contains n criteria, the process of determining weights of criteria begins by 
forming reciprocal square matrix:
 [ ]ij n nA a ×= , (27)

where: A denotes a pairwise comparison matrix, ija  is the relative importance of criterion 
Ci in relation to criterion Cj, 1,2, ,i n=  , 1,2, ,j n=  , and n is the number of criteria. In 
the matrix A, 1ija = when i j=  and 1/ji ija a= .

The nine-point scale, shown in Table 1, proposed by Saaty (1980), is used to assign a 
relative importance of criteria.

Table 1. The scale of relative importance for pairwise comparison

Intensity of Importance Definition
1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance
2, 4, 6, 8 For interpolation between the above values

After forming the matrix A, by using one of several available procedures, weights of 
criteria can be calculated. Using the Normalization of the Geometric Mean of the Rows 
procedure, the weights of criteria are calculated as follows:
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1 1

11 1

n n
n nn

i ij ij
ij j

w a a
== =

   
   =
   
   

∑∏ ∏ . (28)

While forming the matrix A, it is very important that each decision maker should 
perform its comparisons consistently. The decision about the consistency of performed 
comparisons and their acceptability, are made on the basis of the Consistency Ratio. If the 
consistency ratio is higher than 0.1, then the pairwise comparison matrix A is inconsistent, 
and therefore the comparisons should be reviewed and improved. 

The Consistency Ratio is calculated as follows:

 CR CI RI= ,  (29)

where: CR denotes the consistency ratio of the pairwise comparison matrix A, CI is the 
Consistency Index and RI is the Random Consistency Index. 

The values of CI can be calculated as follows:

 max( ) ( 1)CI n n= λ − − , (30)

where λmax is the maximum eigenvalue of the pairwise comparison matrix and it can 
be calculated as follows:

 max
1 1

 
n n

ij j
j i

a w
= =

   λ =       
∑ ∑ , (31)

where wj is the weight of criterion Cj and n is the number of criteria.
The values for RI are determined based on matrix size n. Table 2 shows the value of the 

Random Consistency Index RI for different matrix sizes (Saaty 1980).

Table 2. The Random Consistency Index for different matrix sizes

Matrix size (n) 1 2 3 4 5 6 7 8 9 10
RI 0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.46 1.49

Thanks to this controlling mechanism the above mentioned procedure for calculation 
of criteria weights has become very popular and frequently used. 
Group decision-making approach to determine criteria weights. In many published pa-
pers, the use of the different group decision-making approaches to determine the group 
criteria weights, were considered. In this approach, the simplest and the most efficient one 
is accepted and used.

For a group that contains K decision makers, the group weight of each criterion wj is 
calculated using the geometric mean, as follows:

 
1

1

KK
k

j j
k

w w
=

 
=   
 
∏ , (32)

where: k
jw  is the weight of criterion Cj, obtained on the basis of pairwise comparisons 

performed by decision maker k.
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2.2. Determining the interval-valued fuzzy performance ratings

The interval-valued fuzzy numbers provide much greater opportunities than the ordinary 
fuzzy numbers, especially in the case of solving complex real-world decision-making prob-
lems. 

However, these numbers are not suitable for assigning values directly by decision mak-
ers, and therefore the interval-valued fuzzy numbers are often used in combination with 
linguistic scales. In such approaches, in order to express their attitudes, the decision maker 
uses linguistic variables, whose values are defined in advance, which in some way can limit 
the precise expression of their attitudes.

In order to allow the decision makers to express more accurately their attitudes about 
the performance ratings of alternatives, instead of linguistic variables, in this approach, they 
have an opportunity to express their individual opinions using crisp, interval or triangular 
fuzzy numbers. 

After that, the transformation of individual performance ratings into the corresponding 
group, the interval-valued triangular fuzzy, performance ratings can be performed using 
the following procedure:

Let k
ijx denote performance ratings of the alternative Ai with respect to criterion Cj ob-

tained from the decision maker/expert k, and k
ijx  can be expressed using crisp, k k

ij ijx m=
 
, 

interval, [ , ]k k k
ij ij ijx l u= , or triangular fuzzy numbers ( , , )k k k k

ij ij ij ijx l m u= . Then, the individ-
ual performance ratings are transformed into a group, the interval-valued triangular 

[( , ), ,( , )]ij ij ij ij ij ijx l l m u u′ ′= , performance ratings using the following equations:

 min( )k
ij ijk
l l= ; (33)

 
1

1

KK
k

ij ij
k

l l
=

 
′ =   

 
∏ ; (34)

 
1

1

KK
k

ij ij
k

m m
=

 
=   
 
∏ ; (35)

 

1

1

K
K

k k
ij ij

k
u u

=

 
=   
 
∏ ; (36)

 max( )k
ij ijk

u u= . (37)

The proposed equations unfortunately contain some limitations, i.e., they are not suffi-
cient for determining the group interval-valued triangular fuzzy performance ratings when 
all individual performances are presented using: i) only interval fuzzy numbers or ii) only 
crisp numbers. Therefore, when individual performance ratings of a certain criterion are 
expressed:

 – using only the interval fuzzy numbers, the mode k
ijm  must be determined first, as 

follows:
 0.5 ( )k k k

ij ij ijm l u= + , (38)

after which the Eq. (25) to (29) should be used.



132 D. Stanujkic. An extension of the ratio system approach of MOORA method for group ...

 – using only crisp numbers, the following equations should be used:

 min( )k
ij ijk
l m= ; (39)

 min( )k
ij ijk
l m′ = ; (40)

 
1

1

KK
k

ij ij
k

m m
=

 
=   
 
∏ ; (41)

 max( )k k
ij ijk

u m= ; (42)

 max( )k
ij ijk

u m= . (43)

3. The Interval-valued fuzzy extension of the Ratio system  
approach of the MOORA method

When compared to other MCDM methods, the Ratio system approach of the MOORA 
method is based on a specific idea that the overall performance rating of an alternative can 
be determined as a difference between its sum of weighted normalized ratings of benefit 
criteria1 and the sum of weighted normalized ratings of cost criteria2, as follows:
 

max min

i j ij j ij
j j

S w r w r
∈Ω ∈Ω

= −∑ ∑ , (44)

where: Si denotes the overall performance rating of alternative Ai, rij is the normalized per-
formance rating of alternative Ai with respect to criterion Cj, wj is the weight of criterion 
Cj, Wmax and Wmin denotes the set of benefit criteria and cost criteria, respectively.

After that, the considered alternatives are ranked on the basis of their Si in ascending 
order, and the alternative with the highest value of Si is the best ranked.

For normalization, the authors of the MOORA method (Brauers, Zavadskas 2006) pro-
posed the use of vector normalization procedure, as follows:

 
1 2

1

ij
ij

n

ij
i

x
r

x
=

=
 
  
 
∑

. (45)

The above discussed computational procedure is based on the use of crisp numbers and 
attitudes of the single decision maker. To enable the use of interval-valued fuzzy triangular 
numbers for expressing the performance ratings and th use of the group decision-making 
approach, some changes have to be made in it. 

The detailed step-by-step computational procedure of the extended Interval-valued 
Fuzzy Ratio system approach of the MOORA method, which enables the use of the in-
terval-valued triangular fuzzy numbers and the group decision-making approach, can be 
precisely expressed using the following steps:

1 Criteria to be maximized, i.e. the larger the better type.
2 Criteria to be minimized, i.e. the smaller the better type.
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Step 1. Identify available alternatives and select the evaluation criteria. In this step, the 
team of decision makers/experts identifies the available alternatives and chooses the criteria 
for their evaluation.
Step 2. Determine the relative importance of the evaluation criteria. In this step, the 
team of decision makers/experts determines weights of evaluation criteria using the pro-
cedure, proposed in subsection 2.1.
Step 3. Construct the interval-valued fuzzy decision matrix. In this step, using the pro-
cedure proposed in the subsection 2.2, the interval-valued fuzzy decision matrix is formed.
Step 4. Construct the normalized interval-valued fuzzy decision matrix. Similarly to 
the TOPSIS method, the MOORA method is based on the use of the vector normalization 
procedure. In many fuzzy extensions of the TOPSIS method, the vector normalization pro-
cedure has been replaced by the less complex normalization procedures, usually with the 
linear scale transformation - max method (Saremi et al. 2009; Mahdavi et al. 2008; Wang, 
Elhag 2006), and sometimes by some other normalization as the linear scale transforma-
tion – max-min method (Yang, Hung 2007).

For this reason, in order to determine the normalized interval-valued triangular fuzzy 
performance ratings ijr , the following equation is proposed: 

 , , , ,ij ij ij ij
ij

j j j j j

l l u umr
x x x x x+ + + + +

    ′ ′
    =
        

 , (46)

where
 maxj iji

x x+ = . (47)

Step 5. Calculate the overall interval-valued fuzzy performance ratings based on the 
Ratio system approach of the MOORA method, for each alternative. The overall inter-
val-valued fuzzy performance ratings, based on the Ratio system approach of the MOORA 
method, can be determined using the following equation:

 i j jS S S+ −= −   , (48)

where:
 

max

 i j ij
j

S w r+

∈Ω
= ∑  ; (49)

 
min

 i j ij
j

S w r−

∈Ω
= ∑  . (50)

Step 6. Rank the alternatives and select the best one. The results obtained by using the 
Eq. (41) are in fact the interval-valued triangular fuzzy numbers. Therefore, in order to 
rank the available alternatives, the proposed extension should have the possibility of rank-
ing interval-valued triangular fuzzy numbers or it should include a defuzzification method 
which must be used before their ranking.

Therefore, in this extension of the Ratio system approach of the MOORA method the 
use of the two approaches were considered, namely:

 – the distance based approach, and 
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 – the approach based on the defuzzification of the interval-valued triangular fuzzy 
numbers.

The distance based approach. The most widely used distances for fuzzy sets are the Ham-
ming distance and the Euclidean distance. In this approach, the use of the Hamming dis-
tance is proposed, or more precisely the Hamming distance between the overall interval-
valued performance ratings of alternatives and the anti-ideal reference point A−

 .
For simplicity, in this approach as the anti-ideal reference point is choosen 

[(0,  0),  0,(0,  0)]A− = , and therefore the Eqs (16) and (17) can be written as follows: 

 
1

1( ,  )
5

n

i
i

d A A a−

=
= ∑  ;  (51)

 
1

1( ,  )
5

n

w i i
i

d A A w a−

=
= ∑  .  (52)

Depending on the fact whether the decision maker wants or does not want to give more 
importance to some of the parameters of the interval-valued triangular fuzzy number (l, l’, 
m, u’ and u) relating to the alternatives ranking, there can be used equations (52) or (51).
The approach based on the defuzzification. As previously mentioned, for the defuzzifica-
tion of the ordinary fuzzy numbers a number of procedures were proposed, such as the 
procedures proposed by Liou and Wang (1992), Chiu and Park (1994), Opricovic and 
Tzeng (2003), and so on. However, these procedures can not be so easily applied to the 
defuzzification of interval-valued fuzzy numbers. 

In the subsection 1.5, an approach, which was specially adapted for the defuzzification 
of the normalized interval-valued triangular fuzzy numbers was proposed.

By giving different values to the coefficients a, b, and g in the Eq. (20), the decision 
makers have the opportunity to express their opinions more accurately.

4. Numerical example

To demonstrate the applicability and efficiency of the proposed approach, in this section is 
shown its use to solve a particular problem, on an example adopted from Stanujkic et al. 
(2014). In order to demonstrate briefly the advantages of the proposed methodology, this 
example is slightly modified.

The mining company XYZ is planning to start the exploitation of a new mine with sur-
face mining. The geographical location of the new mine, i.e. the distance of the new mine 
to the existing flotation does not provide a cost-effective transportation of the excavated 
ore. Therefore, the team of three experts was formed with the aim to evaluate some com-
minution circuit designs and propose the most appropriate one.

In the preliminary selection, the team formed of three experts considers three typical 
comminution circuit designs:

 – A1, comminution circuit designs based on the combined use of rod mills and ball 
mills;
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 – A2, comminution circuit designs based on the use of ball mills; and
 – A3, comminution circuit designs based on the use of semi-autogenous mills.

To evaluate the aforementioned comminution circuit designs and select the most ap-
propriate one, the team of experts has proposed the following criteria:

 – C1, Grinding efficiency;
 – C2, Economic efficiency; 
 – C3, Capital investment; and
 – C4, Environmental impact.

At the beginning of the evaluation, each expert, using the procedure previously pro-
posed in the subsection 3.1, has performed an assignment of the criteria weights. The 
results of pairwise comparisons, obtained from experts, are shown in Tables 3, 4 and 5.

After that, the team of experts has estimated the performance ratings of the three spec-
ified comminution circuit designs in relation to the selected evaluation criteria, using the 
procedure described in the subsection 3.2. They have evaluated the specified designs in 
relation to the characteristics of the ore which will be excavated from the ore body Cerovo. 

Table 3. The pairwise comparisons matrix and the relative criteria weights obtained  
from the first decision maker

Criteria C1 C2 C3 C4 wi

Grinding efficiency C1 1 2 3 5 0.44
Economic efficiency C2 1/2 1 3 7 0.34
Capital investment costs C3 1/3 1/3 1 5 0.16
Environmental impact C4 1/5 1/7 1/5 1 0.05

CR = 0.078

Table 4. The pairwise comparisons matrix and the relative criteria weights obtained  
from the second decision maker

Criteria C1 C2 C3 C4 wi

Grinding efficiency C1 1 3 4 5 0.52
Economic efficiency C2 1/3 1 3 5 0.28
Capital investment costs C3 1/4 1/3 1 3 0.13
Environmental impact C4 1/5 1/5 1/3 1 0.06

CR = 0.070

Table 5. The pairwise comparisons matrix and the relative criteria weights obtained  
from the third decision maker

Criteria C1 C2 C3 C4 wi

Grinding efficiency C1 1 4 3 2 0.49
Economic efficiency C2 1/4 1 3 1 0.20
Capital investment costs C3 1/3 1/3 1 1 0.13
Environmental impact C4 1/2 1/1 1/1 1 0.18

CR = 0.089
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In order to simplify the procedure of determining the performance ratings of the con-
sidered alternatives in relation to the selected criteria, the experts have used the following 
approach:

 – Commonly used comminution circuit design, based on the use of the rod mills and 
ball mills, i.e. alternative A1, was chosen as a standard solution, which is why the 
performance ratings of alternative A1, in relation to the selected criteria, have set to 
the value 1.

 – The performance ratings of the remaining alternatives were assigned in relation to the 
standard alternative A1, where decision makers have had the opportunity to express 
their attitudes using crisp, interval fuzzy or triangular fuzzy numbers.

The results of evaluation are shown in Table 6.
The group performance ratings, obtained using the procedure described in the subsec-

tion 2.2, are shown in Table 7.

Table 6. The performance ratings of alternatives obtained from experts

C1 C2 C3 C4

A1 1.00 1.00 1.00 1.00
Expert 1 A2 [0.90, 0.95] [1.05, 1.07] [0.90, 0.95] (0.90, 1.02, 1.03)

A3 (1.05, 1.07, 1.10) [1.05, 1.10] (1.00, 1.10, 1.20) [0.90, 0.95]
Expert 2 A2 [1.02, 1.05] [1.08, 1.10] [0.90, 1.05] 1.00

A3 [1.00, 1.05] 1.00 1.10 1.10
Expert 3 A2 [0.90, 0.95] (1.04, 1.05, 1.06) (0.80, 0.90, 0.95) (0.85, 0.90, 1.00)

A3 (0.80, 1.05, 1.07) (0.90, 1.02, 1.06) [0.90, 1.20] [0.90, 1.00]

Table 7. The group performance ratings

A1 A2 A3

C1 [(1.00, 1.00), 1.00, (1.00, 1.00)] [(0.90, 0.94), 0.96, (0.98, 1.05)] [(0.80, 0.94), 1.06, (1.07, 1.10)]

C2 [(1.00, 1.00), 1.00, (1.00, 1.00)] [(1.04, 1.06), 1.05, (1.08, 1.10)] [(0.90, 0.97), 1.01, (1.08, 1.10)]

C3 [(1.00, 1.00), 1.00, (1.00, 1.00)] [(0.80, 0.87), 0.90, (0.98, 1.05)] [(0.90, 0.95), 1.10, (1.20, 1.20)]

C4 [(1.00, 1.00), 1.00, (1.00, 1.00)] [(0.85, 0.87), 0.97, (1.01, 1.03)] [(0.90, 0.90), 1.10, (0.97, 1.00)]

The process of transforming the individual performance ratings into the group perfor-
mance ratings can seem complex. Therefore, it is given an example of the transformation 
performed for the criterion C2 of the alternative A2, because it involves the use of crisp, 
interval and triangular fuzzy numbers.

As it can be seen from Table 7, the performance ratings obtained from the three de-
cision makers are as follows: 1

32 [1.05,  1.10]x = , 2
32 1.00x = , and 3

32 (0.90,  1.02,  1.06)x = .
The corresponding group performance rating for the alternative A2 in Table 8, expressed in 

the form of the interval-valued triangular fuzzy number, 32 [(0.90, 0.97), 1.01, (1.08, 1.10)]x =  , 
is obtained as follows:

 – the parameter l , i.e. number 0.90, was determined by using the Eq. (33), i.e. as a 
minimum of numbers 1.05 and 0.90;
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 – the parameter l’ , i.e. 0.97, was determined by using the Eq. (34), i.e. as a geometric 
mean of numbers 1.05 and 0.90;

 – the parameter m , i.e. 1.01, was determined by using the Eq. (35), i.e. as a geometric 
mean of numbers 1.00 and 1.02;

 – the parameter u’ , i.e. 1.08, was determined by using the Eq. (36), i.e. as a geometric 
mean of numbers 1.10 and 1.06; and

 – the parameter u, i.e. 1.10, was determined by using the Eq. (37), i.e. as a minimum 
of numbers 1.10 and 1.06.

The group weights of criteria, obtained by using the Eq. (32), and the normalized group 
performance ratings, obtained by using the Eq. (46), are shown in Table 8.

The overall interval-valued fuzzy performance ratings based on the cost and benefit 
criteria, obtained by using Eq. (49) and Eq. (50), and overall interval-valued fuzzy perfor-
mance ratings of alternatives, obtained by using Eq. (48), are shown in Table 9.

Table 8. The group criteria weights and the normalized performance ratings

wj A1 A2 A3
C1 0.48 max [(0.91, 0.91), 0.91, (0.91, 0.91)] [(0.82, 0.85), 0.87, (0.89, 0.95)] [(0.73, 0.86), 0.96, (0.98, 1.00)]

C2 0.28 max [(0.91, 0.91), 0.91, (0.91, 0.91)] [(0.95, 0.96), 0.95, (0.98, 1.00)] [(0.82, 0.88), 0.92, (0.98, 1.00)]

C3 0.15 max [(0.83, 0.83), 0.83, (0.83, 0.83)] [(0.67, 0.72), 0.75, (0.82, 0.88)] [(0.75, 0.79), 0.92, (1.00, 1.00)]

C4 0.09 min [(0.97, 0.97), 0.97, (0.97, 0.97)] [(0.83, 0.85), 0.94, (0.99, 1.00)] [(0.87, 0.87), 1.07, (0.95, 0.97)]

Table 9. The results of the comminution circuit design evaluation

iS+ iS− iS
A1 [(0.82, 0.82), 0.82, (0.82, 0.82)] [(0.09, 0.09), 0.09, (0.09, 0.09)] [(0.73, 0.73), 0.73, (0.73, 0.73)]
A2 [(0.75, 0.79), 0.80, (0.82, 0.86)] [(0.07, 0.08), 0.08, (0.09, 0.09)] [(0.68, 0.71), 0.72, (0.73, 0.77)]
A3 [(0.69, 0.78), 0.86, (0.89, 0.91)] [(0.08, 0.08), 0.10, (0.09, 0.09)] [(0.61, 0.70), 0.76, (0.80, 0.82)]

The overall interval-valued fuzzy performances, obtained by using the proposed ex-
tension of the Ratio system approach of the MOORA method, are also interval-valued 
triangular fuzzy numbers. To select the most appropriate alternative(s), or rank the al-
ternatives, the interval-valued triangular fuzzy numbers should be transformed into the 
corresponding crisp numbers.

The ranking results and the ranking order of the alternatives obtained on the basis of 
distance based approach, i.e. by using Eq. (16), are shown in Table 10.

Table 10. Ranking order of the alternatives

Si Rank
A1 0.73 2
A2 0.72 3
A3 0.74 1
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In this case, all distances from the anti-ideal point had the same significance. When 
necessary, by using the formula (17), the decision makers can give more importance to 
some of the distances.

The ranking results and the ranking order of the alternatives obtained on the basis of the 
distance based approach are show in Table 11. In this case, for the sake of transformation 
of the interval-valued triangular fuzzy numbers into the crisp ones, the Eq. (21), with a = 
0.5 and g = 1, was used. 

Table 11. Ranking order of the alternatives

Si Rank
A1 0.44 2
A2 0.43 3
A3 0.45 1

By using Eqs (20) or (21), with different values of coefficients a, b and g , the decision 
makers can carry out the necessary analysis and make a selection of the most suitable 
alternative(s).

Conclusions 

Compared to crisp and ordinary fuzzy numbers, the interval-valued fuzzy numbers provide 
much greater opportunities for solving real-world problems, especially the problems which 
are placed in a fuzzy environment or problems which include some forms of predictions 
or forecasting. Therefore, in this paper an extension of the Ratio system approach of the 
MOORA method that enables the use of interval-valued triangular fuzzy numbers is pro-
posed.

However, direct assign of values to the performance ratings of alternatives in relation 
to the evaluation criteria, when these are expressed using interval-valued triangular fuzzy 
numbers, is not so common and easy for the decision makers and/or experts. Because of 
that, the proposed extension enables the use of crisp, interval and triangular fuzzy numbers 
for expressing the individual performance ratings of alternatives and their transformation 
into the interval-valued group performance ratings. This approach should ensure a greater 
flexibility in relation to the use of linguistic variables as well as the possibility of the more 
precise expressing performance ratings in a fuzzy environment.

Defuzzification of interval-valued triangular fuzzy numbers is also more complex than 
the defuzzification of ordinary fuzzy numbers. Therefore, in this paper, the weighted av-
eraging operator was proposed for the defuzzification of interval-valued triangular fuzzy 
numbers. In the literature, the use of numerous averaging operators has been discussed, 
but in this approach the weighted averaging operator was chosen because of its simplicity 
and efficiency. 

The usability and efficiency of the proposed extension is presented on the example of 
the comminution circuit design selection. Characteristics of ore in ore deposits can vary 
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within certain limits, and these characteristics may also be related to the depth of the ore 
body. This makes the selection of comminution circuit design a complex problem. Using 
the proposed extension of the Ratio system approach of the MOORA method decision, the 
makers can analyze different scenarios and make the most appropriate choice.

Certainly, the proposed approach is not limited to the selection of comminution circuit 
design. Its application is much broader, and it can be applied to solve a number of other 
complex problems.

Finally, it should be noted that in addition to the proposed extension of the Ratio sys-
tem approach, in a similar way, also should be proposed an extension of the Reference point 
approach, or even more an extension of the Full multiplicative form. With these extensions, 
a new extension of the MULTIMOORA method can be obtained.
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