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Abstract. Deterministic chaos situations produced by local optimisation algorithms are considered. A family of test
multi-extremal functions is proposed that allows getting the collections of functions with an arbitrary pre-defined num-
ber of the local optima. Special software is developed for generating test functions from the family, performing multiple
local optimisations of different initial points, visualising the chaotic attraction regions. Properties of the regions of
attraction are presented. Regularity of the attraction regions is required to be a special characteristic of the local optimisation
algorithms.
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1. Introduction

Many global optimisation algorithms combine global

exploration of the objective function domain with a num-

ber of local optimisation searches: in this way, comprehen-

sive global coverage is complemented by local algorithms

efficiency.

Multistart algorithms are the widespread examples of

such an approach. They use global covering points as the

starting ones for the local optimisation algorithms, so a great

number of local searches are performed.

Multiple local searches, however, often duplicate each

other, starting from different points but converging to the

same local optimum. These duplications can be consider-

able, so a number of the local searches must be optimised.

Special clustering techniques are often used for this

purpose; they a priori create the clusters of potential start-

ing points for local searches. Process of forming the clus-

ters can be based, for example, on the distances between

the points: the points inside a cluster are “close” to each

other, and the clusters are “far” from each other [1].

Actually, the clusters are used here for optimisation of

some real objects, namely the regions of attraction of local

optima.

Definition 1. The region of attraction (RA) of a local

optimum x* is a set of the points such that the local search,

starting from any of these points, converges to x*.

Other different names used for RA are area, domain, or

basin of attraction. Being the RA models, the clusters are

used instead of them in global optimisation algorithms. So,

as only one local search must be ideally performed for each

RA [2], then it is desirable to start only one local search

from each cluster. Generally, if a new point is assigned to a

cluster with a local search already performed from any of

its points, then there is no need in starting a local search

from this point.

However, the notions of RA and cluster are not sufficiently

adequate. In particular, two typical problems are connected

with clustering methods [1]: underclustering (a cluster may

contain several Ras, so some local optima can be missed) and

overclustering (RA may be divided into several clusters, so the

same optimum can be located several times).

In addition, the “attraction region” term is sometimes

applied not for an actual RA. For example, in [3, 4] it means,

for simplicity, only a special object used in a test function

construction, not any real RA.

Generally, Ras can have a very complex form, espe-

cially in the deterministic chaos situations. It is hardly or

even impossible to produce any close approximation to Ras

by means of clustering approaches. Thus, there cannot be a

great sense in clustering in such cases.

The problem of describing the Ras for local optimisation

algorithms is considered in the article. Simple Nelder-Mead

and approximate gradient methods are applied many times

to test functions from a family of functions with a fixed

number of local optima. The phenomenon of deterministic

chaos for corresponding Ras is demonstrated.
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2. Test functions family

Let F
0
 be a family of functions defined on K = [0,1]n [5]
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Let A = A(x
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, f ), x

0
∈K, f∈F

0
, be a local minimisation

algorithm used to find S(f), starting from an initial point x
0
.

Then A will usually converge to one of the local minima of

a function f.

Let us require that all points p
1 

, …, p
m

 must be the

local minima points, so next constraints must be satisfied:
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Now, let us define the test functions family F as one

consisting of the functions satisfied by (1)–(3).

An arbitrary point x from K belongs to one of the RAs,

corresponding to the local minima (p
1
,…, p

m
), or to none

of them. In the former case, we can postulate that a non-

empty RA exists for each p
i 
, i = 1,…, m, due to (3). In the

latter case, the local search A converges to any other point,

ie on the boundary of K. In view of the fact that there are

relatively few such points in most cases, we shall treat all

such points as belonging to one complementary RA.

Definition 2. The complementary RA is a set of all the

points such that the local search, starting from them, does

not converge to any of the local minima p
1
,…, p

m 
.

Thus we can split K into m + 1 RAs: m for the pre-

defined local minima and 1 for the complementary RA.

Thus, we construct the family, each function of which

has the known characteristics:

• Number of local minima: m;

• Points of all local minima and their values: (p
1
, …,

p
m 

), ( c
1 

, …, c
 m 

);

• Points of global minima p* and its value c*:
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k 
, for all k, satisfied (4);

• Number of regions of attractions: m + 1.

Also, the family F has other useful characteristics:

• Actual error of an optimisation algorithm can be

determined for each function from F,

• Collections of functions with the same number of

local minima can be chosen.

Further in the article, the values n = 2, m = 15 are con-

sidered. Such small values are chosen in order to have good

visualisation pictures. Fig 1 presents a function graph for a

case when a distance  ρ
2
 is chosen, ie
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 2.1. Setting the parameters

We can previously set next parameters of the test func-

tions family F:

• Dimension: n;

• Number of local minima: m;

• Metric: ρ
1
 or ρ

2 
;

• α
j
 : maximal possible slope for j-th dimension, ie

q
ij
 ∈ [0, α

j 
], i = 1,…, m, j = 1,…, n;         (5)

• γ : maximal possible value for the local minima, ie

c
i
 ∈ [0, γ

 
], i = 1,…, m;         (6)

• β: a power in a distance function (2.1) or (2.2).

Also, we can set the coefficients q
ij
 the same for all di-

mensions in every component, ie  q
ij
 ≡ q

i
 , j = 1,…, n,

i  = 1,…, m.

Fig 1. Test function from the family F for ρ  = ρ
2
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Next parameters are chosen randomly, by means of a

random number generator:

• Local minimums (p
1 

, …, p
m 

), such that p
i
 ∈K, i =

1,…, m;

• Coefficients ( q
11 

, …, q
mn

, c
1 

, …, c
m 

), taking into

account (5), (6).

3. Deterministic chaos

The phenomenon of deterministic chaos is well-known.

It appears for deterministic systems or algorithms when a

negligible change of their initial conditions can result in a

considerable change of the results.

Deterministic chaos is demonstrated by:

• Many dynamic systems. Compound pendula, oscil-

lating chemical reactions, predator-prey ecologies

are the examples of chaotic systems. Having a fully

deterministic behaviour and starting from very close

initial conditions such systems quickly move to dif-

ferent states.

• For numerical analysis algorithms. Deterministic

Newton’s method for solving the simple equations

produces a chaotic picture for the regions of attrac-

tion of their roots (as shown in Fig 2).

In optimisation, however, deterministic chaos situations

are practically unknown and uninvestigated [7].

We show here that a deterministic chaos can be observed

for the local optimisation algorithms. We take perfectly

deterministic local optimisation algorithm, without any ran-

dom components. Then we see that very small changes of

the algorithm’s starting point result in large changes of the

solution, and RAs of the local optima are chaotic. Multi-

extremum functions from the family F described by (1)–

(3) are good testbeds for producing deterministic chaos and

chaotic RAs.

3.1. Nelder-Mead method

Let us consider the Nelder-Mead method [8] designed

for the minimisation of a function of n variables. It per-

forms the comparison of function values at the n + 1 verti-

ces of a general simplex, followed by the replacement of

the vertex with the highest value by another point. The sim-

plex adapts itself to the local landscape, and contracts to

the final local minimum.

The Nelder-Mead method is the deterministic iterative

algorithm, not depending on a random choice of any pa-

rameters. Does this algorithm converge to the local mini-

mum closest in some sense to its initial point? Is the algo-

rithm stable with respect to its initial point? The answers to

the both questions are negative. The algorithm is, of course,

entirely deterministic and knowledge of its initial point

determines the point of its convergence uniquely. However,

even a small change of the initial point can lead the algo-

rithm very far from the point of its former convergence.

Fig 3 illustrates this situation. Two different colours here

mark the points of two different local searches started from

two close points.

The phenomenon of deterministic chaos is not deter-

mined by the size of an initial simplex used in the Nelder-

Mead algorithm. Any decrease of the simplex size does not

eliminate the deterministic chaos.

Some pictures illustrating the deterministic chaos situ-

ations are presented here. They are formed in the following

way. Fixed parameters for the family F are set (as in sec-

tion 2.1), and the corresponding random parameters are

chosen, fixing a test function f  from F. Additionally, the

conditions (3) must be checked, thus generating test func-

tions may require much time in case of many local minima

and high dimensions.

Then the local optimisation algorithm is applied many

times to the function f. The initial points for these optimi-

sations are taken from the uniform cubic grid U consisting

of NxN points, U = {u
ij 

= ( u
i
, u

j
 ), i, j = 1,…, N}∈K, where

N

k

N
u

k

1

2

1 −
+=   , k = 1,…, N.

A unique colour h
i
 is assigned to each local minimum

p
i 
, i =1,…, m. A point is painted with the colour h

j 
, if the

local algorithm, starting from this point, has converged to

Fig 2. Regions of attraction for Newton’s algorithm of solving the
system of two equations:
x – sin(x) cosh(y) = 0, y – cos(x) sinh(y) = 0 [6]

Fig 3. Instability of Nelder-Mead algorithm path due to a small
change of its initial point
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p
j
, j∈1,…, m (ie the point belongs to RA of p

j 
). Points

from the complementary RA (starting from which, the lo-

cal search does not converge to any of the points ( p
1 

, …,

p
m 

)) are painted by the colour h
m+1 

. So the region K is

splitted into m + 1 RAs. Crosses mark the local minima

points. Situation of deterministic chaos in Fig 4, 5 is ob-

vious.

3.2. Approximate gradient method

A variant of gradient algorithm is also considered for

performing multiple local optimisation searches,
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Figs 6 and 7 are made for the same function from the

considered family F. We can see that the phenomenon of

deterministic chaos is observed for various local opti-

misation algorithms, although shapes of the corresponding

RAs are different.

Fig 5. Regions of attraction for the Nelder-Mead algorithm
(ρ  = ρ

2
, N = 700)

Fig 4. Regions of attraction for the Nelder-Mead algorithm
(ρ  = ρ

1
, N = 700)

Fig 7. RAs for the approximate gradient algorithm for the same
function as in Fig 6

Fig 6. RAs for the Nelder-Mead algorithm
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4. RAs properties

Some hypotheses about RAs are expressed in the litera-

ture dealing with RAs in optimisation algorithms [1–4, 9–

11]:

1) RA is a contiguous, convex set;

2) RA containing the global optimum usually has the

largest size;

3) Size of RA (diameter, Lebegue measure) reflects its

significance;

4) With a reasonable number of restarts, the global

optimum’s RA will be found.

Our experiments with creating chaotic pictures of RAs

show that these hypotheses can be wrong. Instead, we dis-

cover next properties of RAs:

1) RA generally is neither convex, nor even connected

set;

2) Points of different RAs can alternate, forming a de-

terministic chaos picture;

3) RA’s size does not reflect the significance of the cor-

responding local optimum;

4) RAs depend on a local optimisation algorithm;

5) RAs depend rather from a distance between local

optima than from the values in these points;

6) Clustering based on a distance between the points is

not an adequate technique for producing RAs;

7) Notion of RA can be non-productive and ineffec-

tive even for simple local optimisation algorithms,

such as the approximate gradient or Nelder-Mead

methods.

5. Software

Special software is developed, that allows:

• Setting the test family parameters (like in section

2.1);

• Generating test functions. A special code is assigned

to each combination of parameters, which uniquely

defined a test function. This code is later used for

reconstructing the function, in order to draw its

graph, apply another local optimisation algorithms

to it, etc;

• Storing all information about actual generated func-

tions in the database;

• Performing multiple local optimisations from dif-

ferent initial points;

• Storing and visualising the optimisation results;

• Compute the characteristics of the RAs, such as ra-

dius, diameter, percentage of boundary points etc.

Process of preparing the data for the pictures like Fig 4,

5 (performing of 490 000 local Nelder-Mead searches and

storing the results in the MS SQL Server database) requires

nearly 25 min on the IBM PC/ Intel Celeron 1,8 GHz com-

puter.

Fig 8 demonstrates the screen for setting the parameters

of the test family, optimisation algorithm and visualisation

method.

6. Conclusions

Local optimisation algorithms must be checked for cha-

otic character of RAs generated by them. Regularity of RAs

must be a special characteristic of such algorithms.
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APIBRĖŽTO CHAOSO SUFORMAVIMAS LOKALIAISIAIS OPTIMIZAVIMO ALGORITMAIS

V. E. Podobedov

Santrauka
Straipsnyje nagrinėjamos lokaliųjų optimizavimo algoritmų suformuotos apibrėžto chaoso situacijos. Pasiūlyta daugiaekstreminių

funkcijų šeima, kuri leidžia nustatyti iš anksto pasirinktų lokaliųjų opmimumų reikšmes. Sukurta speciali programinė įranga, kuri iš
funkcijų šeimos kuria testavimo funkcijas, atlieka kartotinį lokalinį optimizavimą pagal įvairius pradinius taškus ir vaizduoja chaoso
zonas. Pateikos tų zonų savybės. Zonų taisyklingumas lemia lokaliojo optimizavimo algoritmų ypatybes.

Reikšminiai žoidžiai: globalusis ir lokalusis optimizavimas, chaoso zona, apibrėžtas chaosas.
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