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Abstract. We propose an algorithm based on the particle swarm paradigm (PSP) to address nonlinear constrained
optimization problems. While some algorithms based on PSP have already been proposed in this context, the equality
constraints have been posing some difficulties. The proposed algorithm is based on the relaxation of the dominance
concept introduced in the multiobjective optimization. This concept is used to select the best particle position and the
best ever particle swarm position. We propose also a stopping criterion for the algorithm and present numerical results
with some problems collected from the literature. The new algorithm is implemented in a solver connected with AMPL,
allowing easy coding and solving of problems.
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1. Introduction

A typical nonlinear constrained optimization problem
can be defined as
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where RRf n →:  is the objective function,
EmnE RRc →:  are Em  equality constraint functions,

ImnI RRc →:  are Im  inequality constraint functions, and
l and u are simple bounds on variables x. We allow −∞=il ,
and/or +∞=iu , meaning that variable ix , ( ni ,,1…= ) may
not have a lower and/or an upper bound.

Parsopoulos and Vrahatis [1] proposed a penalty frame-
work for constrained optimization based on a particle swarm
paradigm (PSP) for solving the resulting unconstrained sub-
problems.

Hu and Eberhart [2] and later Hu et al. [3] also pro-
posed an algorithm based on PSP for nonlinear constrained
optimization. The algorithm finds initial feasible popula-
tion and ensures feasibility during the entire optimization
process. However, for small feasible regions (in particular
when equality constraints are present), obtaining of initial
feasible population can be a difficult task with too many
constraint evaluations.

In this paper we propose an algorithm to find the glo-
bal optimum of problem (1) that uses a relaxed dominance
concept adapted from the multiobjective optimization, to
be able to assess progress towards feasibility and op-
timality.

In the next section the particle swarm paradigm for un-
constrained optimization is described. Section 3 is used to
present the main ideas behind our proposed algorithm and
Section 4 reports on the implementation details. Numerical
results with some test problems are presented in Section 5
and Section 6 contains the conclusions.
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2. The particle swarm algorithm for unconstrained
optimization

The particle swarm optimization algorithm (PSOA) was
firstly proposed by Eberhart and Kennedy [4, 5] and has
deserved some attention during the last years in the global
optimization field. PSOA is based on the population of agents
or particles and tries to simulate its social behaviour in op-
timal exploration of  problem space.

During time (iterations in the optimization context) each
agent possesses a velocity vector that is a stochastic combi-
nation of its previous velocity and the distances of its cur-
rent position to its own best ever position and to the best
ever swarm position. The weights of the last two directions
are controlled by two parameters called cognitive and so-
cial parameters [6].

PSOA belongs to a class of stochastic algorithms for
global optimization and its main advantages are the easily
parallelization and simplicity. PSOA seems to outperform
the genetic algorithm for some difficult programming classes,
namely the unconstrained global optimization problems [6].

In spite of the referred advantages, PSOA possesses some
drawbacks, namely its parameters dependency and the slow
convergence rate in the vicinity of the global minimum.

In this section we briefly describe PSOA. This descrip-
tion is a summary of gbest PSOA tested in [6] and the reader
is pointed to [6] for other variants and details (see also [7]
for recent study).

PSOA is based on the population (swarm) of particles.
Each particle is associated with velocity that indicates where
the particle is traveling. Let t be a time instant. The new
particle position is computed by adding the velocity vector
to the current position

( 1)= ( ) ( 1),p p px t x t v t+ + + (2)

being )(tx p  particle p position, sp ,1,= … , at time instant
t, 1)( +tv p  new velocity (at time t+1) and s is population
size.

The velocity update equation is given by
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for nj ,1,= … , where )(tι  is a weighting factor (inertial),
µ  is the cognitive parameter and ν  is the social parameter.

)(1 tjω  and )(2 tjω  are random numbers drawn from the
uniform distribution (0,1)U , used for each dimension

nj ,1,= … . )(ty p  is particle p position with the best ob-
jective function value so far and )(ˆ ty  is a particle position
with the best function value so far. )(ˆ ty  can be described in
a more rigorous way as

{ }1

ˆ( ) arg min ( )

( ), , ( ) .

a A

s

y t f a

A y t y t

∈
=

= …

PSOA can be described as follows:

Algorithm 1  PSOA

1. Randomly initialize the swarm positions

{ }(0),(0),=X 1 sxx …

and velocities { }(0),(0),=V 1 svv … .
2. Let 0=t  and )(=)( txty pp , sp ,1,= … .
3. For all p  in },{1, s…  do:
If ))((<))(( tyftxf pp  then set )(=1)( txty pp +  else

set )(=1)( tyty pp + .
4. For all p  in },{1, s…  do:
Compute 1)( +tv p  and 1)( +tx p , using equations (2)

and (3).
5. If the stopping criterion is true, then stop. Otherwise

set 1= +tt  goes to step 3.
The stopping criterion mostly used in the literature is

related to the function value at the global optimum. The
algorithm stops, if either the objective function at the best
ever particle is approximately equal to the known objective
minimum, or a maximum number of iterations is exceeded.

PSOA described by Algorithm 1, where all particles are
governed by equations (2) and (3), has no guaranteed con-
vergence onto a local or to a global optimum. In [6] modifi-
cations to the traditional algorithm are proposed in order to
obtain convergence to a local optimum and asymptotic con-
vergence to a global optimum. A correct choice of the cog-
nitive, social and inertial parameters guarantees the algo-
rithm convergence to a point in space.

3. Constrained optimization

A careful inspection of Algorithm 1 reveals that only the
objective function is used to see if the new particle position
is more favourable than the previous one. In order to extend
PSOA to constrained optimization it suffices to replace the
test of step 3 in Algorithm 1. The new test must account for
two simultaneous objectives: one is to minimize the objec-
tive function and the other is to obtain feasibility, the latter
being more important.

To measure the infeasibility of a particle we propose the
following function:

















=
+

=
∑∑ +++

IE m

i

i

m

i

i xcxc

ex 1

I

1

E ))]([(1log|))(|(1log

=)(H
,

where }{0,max=][ cc + . The infeasibility function

[ [+∞→ ,1:H nR  does not account for the simple bound
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constraints as they are addressed by the projection of the
particle position. We postpone this matter to the end of this
section.

To illustrate the effect of the infeasibility measure con-
sider hs014 problem from Hock and Schittkowski [5]
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The equality part of function H  is plotted in Fig 1, the
inequality part in Fig 2, while the combined plot is shown
in Fig 3.

It is an easy task to prove the following lemma and there-
fore we omit the proof.

Lemma 1 For infeasibility function )(H x  we have

H
=1 if is feasible

( )
>1 if is infeasible.

x
x

x




Fig 1. Equality )(H x  plot for hs014 problem

Fig 2. Inequality )(H x  plot for hs014 problem

Fig 3. )(H x  plot for hs014 problem

Thus, problem (1) can then be replaced by the equiva-
lent problem
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The dominance concept from multiobjective optimiza-
tion is now adapted to this constrained uniobjective func-
tion problem (see [8] for another application of the domi-
nance concept to nonlinear optimization). The description
of the dominance concept follows.

Suppose that we have two objective functions )(1 xf
and )(2 xf  (the extension to more than two objective func-
tions is straightforward) and let us define vector

))(),(( 21 xfxf . Pair ))(),(( 21 ii xfxf  is said to dominate
))(),(( 21 jj xfxf  if and only if )()( jkik xfxf ≤ , 1,2=k ,

and )(<)( jkik xfxf  for at least one {1,2}∈k .
Finding the global solution of problem (4) is somehow

equivalent to find point x  for which ))(H),(( xxf  domi-
nates ))(H),(( xxf , for all xx ≠  and 1=)(H x . We there-
fore must give priority in minimizing )(H x  over minimiz-
ing )(xf .

For a given particle position px  we consider that
progress was attained if either

)(H>)(H pp xy

or

( )H( ) H( ) or H( ) 1   and ( )> ( )p p p p py x x f y f x≤ ≤ + ε (5)

i.e., we consider that progress was attained, if either the
improvement in the feasibility was attained (regardless of
obtaining or not the improvement in the objective function)
or the improvement in the feasibility was not obtained, but
the objective function improvement is forced. The second
condition of feasibility in (5) is used to allow a feasible
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point with lower function value to be chosen. Getting, by
chance, point py  where )(H py  is exactly one would pre-
vent any feasible point with lower objective function value
to become a leader, if 0>ε  tolerance was not used.

The simple bound constraints are imposed when com-
puting the new particle position. The new particle is pro-
jected onto the region defined by the simple bounds using
the following procedure:

if

if < , = 1, , .

if >

p p
i i i i

p p
i i i i

p
i i i

x l x u

x l x l i n

u x u

 ≤ ≤
← 



…
(6)

We present now the implemented algorithm for con-
strained nonlinear optimization.

Algorithm 2 NLCPSOA
1. Randomly initialize the swarm positions

{ }(0),(0),=X 1 sxx … and velocities

{ }(0),(0),=V 1 svv … .

2. Let 0=t  and )(=)( txty pp , sp ,1,= … .
3. For all p  in },{1, s…  do:

If  ))((>))((H txHty pp  or ))((H))((H(( txty pp ≤  or

)1))((H ε+≤tx p  and )))((>))(( txftyf pp  then set

)(=1)( txty pp +  else set )(=1)( tyty pp + .

4. For all p  in },{1, s…  do:
Compute 1)( +tv p  and 1)( +tx p , using equations (2)

and (3) and the projection (6).
5. If the stopping criterion is true, then stop. Otherwise

set 1= +tt  go to step 3.

4. Implementation details

4.1. The initial population

The initial swarm positions are randomly generated. If
both simple bounds are finite ( −∞≠il  and ∞≠iu ) i co-
ordinate of particle p position is randomly generated by
uniform distribution ),( ii ulU .

If one of the simple bounds is not finite, the algorithm
requires initial guess, x̂ . Coordinate i of particle p position
is then randomly generated by using
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The initial guess, when provided by the user, is included
in the initial swarm.

In spite of this strategy for randomly generating swarm
we recommend the user to provide, whenever it is possible,
bounds on the variables, since that use (7) can reduce or
increase the search space without any advantage of solving
the problem.

4.2. The stopping criterion

The most used stopping criterion in the particle swarm
context has been to stop the algorithm, if a maximum num-
ber of iterations has been reached, or if the (known) global
optimum has been attained to given tolerance.

In general, this stopping criterion is not appropriate, since
the global optimum is not known in advance and stopping
the algorithm when a maximum number of iterations is
reached causes premature or too late termination.

A typical stopping criterion is based on the magnitude
of the search direction. When the magnitude is approximately
zero, progress seems no longer possible. This idea can also
be used in the particle swarm context. Since in this case we
are dealing with the population of points, a possible exten-
sion of this criterion is to stop when all the search directions
are approximately zero, i.e., the algorithm stops, if the maxi-
mum velocity for all particles is approximately zero. More
formally we stop if

{ }1, ,
max ( 1)p

p s
v t ε

∈
+ ≤

… (8)

where 0>ε  is a small tolerance.
Since the proposed algorithm allows a particle to travel

outside the feasible region (although in a controlled way) a
feasible point may not ever be found. When the condition
(8) is satisfied, but the best ever particle position is infea-
sible ( 1>)ˆ(H y ), the swarm is reinitialized. The new swarm
includes the best ever found particle and the other particles
are randomly initialized following the previously described
procedure.

4.3. Connection to AMPL

AMPL [9] is a mathematical programming language that
allows the codification of optimization problems in a pow-
erful and easy to learn language. AMPL also provides an
interface that allows a wide variety of solvers to communi-
cate with it and automatic differentiation, when requested.

The implemented algorithm is available in NLCPSOA
(NonLinear Constrained Particle Swarm Optimization Al-
gorithm) solver. The solver contains an interface to connect
to AMPL allowing the user to write and solve a problem
coded in AMPL in an extremely easy way. The user is re-
ferred to AMPL web page http://www.ampl.com for more
details on AMPL and related solvers. The user can set sev-
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eral options for NLCPSOA solver by using the standard
argument passing provided by AMPL.

NLCPSOA returns the best ever found solution to AMPL.

5. Numerical results

In this section we provide numerical results with the
collection of problems from literature. We are mainly inter-
ested in nonlinear constrained global optimization problems
both with equality and inequality constraints.

The selected problems were coded in AMPL and are
available in the internet web page http://
www.norg.uminho.pt/aivaz/.

This avoids the need to fully describe the problems and
the possible introduction of errors in their transcription.

The parameters used in the following numerical results
are: 2==νµ , 410−=ε  and )(tι  is linear interpolation
between 0.9 and 0.4.

The numerical results for the engineering problems de-
scribed in [3] are presented in Table 1, Table 2, Table 3 and
Table 4. Numerical comparison between a particle swarm
penalty approach and genetic algorithms is made in [3] and
we chose to report only the numerical results related to
therein proposed particle swarm algorithm.

In Vessel design problem we have four variables and
four inequality ( 0≤ ) constraints. f is the objective function
value at the found solution. While Hu et al. [3] used ranges

991 1 ≤≤ x , 991 2 ≤≤ x , 20010 3 ≤≤ x  and
20010 4 ≤≤ x , therein reported solution is out of range.

We relaxed the lower bounds on 1x  and 2x  in order to
obtain, approximately, the same solution.

In Beam design problem we have four variables and
seven inequality ( 0≤ ) constraints.

In Spring design problem we have three variables and
four inequality ( 0≤ ) constraints.

In Himmelblau’s design problem we have five variables
and three range constraints, 92)(0 1 ≤≤ xc I ,

110)(90 2 ≤≤ xc I  and 25)(20 3 ≤≤ xc I .

Table 1. Vessel design problem

Table 2. Beam design problem

Table 3. Spring design problem

Table 4. Himmelblau�s design problem

Table 5 presents the comparison between the results re-
ported in [1] and with our solver for other six problems.
The values in the table refer to the objective function value
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at the found solution. Some of these problems are from Hock
and Schittkowski [10] test suit.

Problem pso1 has a quadratic objective function with a
linear equality constraint and a quadratic inequality con-
straint. Problem pso2 has a cubic objective function with
two quadratic inequality constraints. Problem pso3 has a
polynomial objective function and four polynomial inequal-
ity constraints. Problems pso4 and pso5 have quadratic ob-
jective functions with three range constraints. Problem pso6
has a quadratic objective function with two linear inequal-
ity constraints.

One of the major drawbacks of stochastic algorithms is
a large number of objective and constraint functions evalu-
ations required. No reference on the number of functions or
constraint evaluations  is made in the previously reported
numerical results and to obtain a feasible initial swarm a
small number of particles in the swarm is recommended
(around 20 in [3]).

In our proposed algorithm, the size of the swarm has a
great impact on the ability of the algorithm in finding a fea-
sible optimal solution. Thus, we propose a larger swarm
size (around 100-300). In Table 6 we present the number of
objective function evaluations required to converge to the
solution (nfun). The number of constraints evaluations is
equal to the number of function evaluations.

The choice of the parameters for the implemented algo-
rithm has guaranteed convergence to a point in space con-
firmed by numerical experiences. Theoretical convergence
to an optimum is not guaranteed.

Table 6. Number of function evaluations

The proposed algorithm proved to be reliable and com-
parable to other already proposed algorithms for constrained
optimization.

The algorithm finds the solution that minimizes the con-
straints violation. When the problem has an empty feasible
region, the algorithm is able to present the solution that mini-
mizes the constraints violation.

The preliminary numerical testing looks promising and
in the future we will focus on designing a definitive algo-
rithm with guaranteed convergence properties. Borrowing
the ideas from Error! Reference source not found.], suffi-
cient reduction in one of the measures H  or f  might be
required in order to consider that progress was attained in-
stead of simple reduction as described in (5).
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6. Conclusions

We proposed an algorithm for nonlinear constrained glo-
bal optimization based on the dominance concept. This con-
cept is used to select the best particle position and the swarm
best ever particle position.

Table 5. Obtained solutions vs best solutions in [1]
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NELINIJINE TRAJEKTORIJA JUDANČIO DALELIŲ SRAUTO OPTIMIZAVIMAS

A. I. F. Vaz, E. M. G. P. Fernandes

Sant rauka

Pagal dalelių srauto judėjimo teoriją sukurtas algoritmas, skirtas nelinijinės optimizacijos problemoms spręsti. Pana�ūs algoritmai
būvo siūlomi ir anksčiau, tačiau kildavo keblumų su apribojimais. Pasiūlytame algoritme pritaikyta dominavimo koncepcija. �i koncepcija
naudojama geriausiai atskiros dalelės ir dalelių srauto padėčiai nustatyti. Taip pat algoritmui pasiūlytas stop kriterijus, i�spręsti parinkti
konkretūs u�davinių pavyzd�iai. Kad būtų paprasčiau suformuluoti ir i�spręsti u�davinį, naujasis algoritmas u�programuotas matematinio
programavimo kalba.

Pagrindiniai �od�iai: nelinijinis optimizavimas, dalelių srauto optimizavimas, dominavimo koncepcija.
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