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Abstract. Recently genetic algorithms (GAs) are a great success in solving combinatorial optimization problems. In this
paper the performance issues related to the genetic search in the context of the grey pattern problem (GPP) are dis-
cussed. The main attention is paid to the investigation of the solution recombination, i.e. crossover operators, which
play an important role developing robust genetic algorithms. We implemented seven crossover operators within the
hybrid genetic algorithm (HGA) framework, and carried out the extensive experiments in order to test the influence of
the recombination operators on the genetic search process. The results obtained from the experimentation with GPP test
instances (benchmarks) demonstrate promising efficiency of so-called multiple parent crossover which is based on a
special type of recombination of several solutions-parents.

Keywords: combinatorial optimization, heuristic algorithms, genetic algorithms, crossover operators, grey pattern prob-
lem.

1. Introduction

The grey pattern problem (GPP) [1] is based on a
rectangle (grid) of dimensions n

1
 × n

2
 containing n = n
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 ×

n
2
 points (square cases) with m black points and n − m

white points. By juxtaposing many of these rectangles, one
gets a grey pattern (frame) of density m/n. The objective is
to get the finest grey pattern, that is, the black points have
to be spread on the rectangle as regularly as possible. The
larger n, the more refined pattern is possible. The grey
pattern problem is a special case of a more general problem,
the quadratic assignment problem (QAP) [2]. QAP is
formulated in the following way. Let two matrices A = (a

ij
)

n×n

and B = (b
kl
)

n×n
 and set Π of all possible permutations of

the integers from 1 to n be given. The goal is to find
permutation π = (π(1), π(2), ..., π(n)) ∈  Π that minimizes
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In the grey pattern problem matrix (aij)n×n is defined as
aij = 1 for i, j =1, 2, ..., m and aij = 0 otherwise. Matrix
(bkl)n×n is defined by the given values – the distances be-

tween every two of n points. More precisely,
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r, t = 1, ...., n1, s, u = 1, ..., n2. frstu may be thought of as an
electrical repulsion force between two electrons (to be put
on the grid points) i and j (i, j = 1, ..., n) located in positions
k = π(i) and l = π(j) with coordinates (r, s) and (t, u). The
ith (i ≤ m) element of permutation π, π(i) = n2(r − 1) + s,
gives the location in the rectangle where a black point has
to be placed. The coordinates of the location π(i) of the
black point are derived according to the formulas: r = ((π(i)
− 1) div n2) + 1, s = ((π(i) − 1) mod n2) + 1, i = 1, 2, ..., m.
(x div y = x/y ; x mod y = x − x/y  × y, where x/y  denotes
the integer part of x/y which is always smaller than (or equal
to) x/y.)

Many heuristic approaches can be applied for solving
both QAP and, at that time, its particular case - the grey
pattern problem (see, for example, [1, 3]). Recently, genetic
algorithms (GAs) are among the advanced heuristic tech-
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niques for the quadratic assignment like problems, among
them, GPP [4–8].

Very roughly, genetic algorithms may be characterized
as follows [9]. Let P be a subset of Π; it is referred to as
population, and it is composed of individuals, i.e. solutions
(permutations), π1, π2, ... πPS = |P|. (Further, we also shall
call the solution (permutation), π, as a chromosome, the
single position, i, of the solution − as a gene, and the value
at the given position (gene), π(i) − as an allele.) Each indi-
vidual (πi) is associated with fitness, i.e. the corresponding
objective function value (z(πi)). In this case individual πi is
preferred to individual πj if z(πi) < z(πj). The following are
the main steps of the genetic search. A pair of members of
P is selected to be parents. New solutions (i.e. offspring)
are created by combining the parents; this recombination
operator is known as a crossover. Afterwards, a replace-
ment scheme is applied to determine which individuals
survive to form the next generation. In addition, some indi-
viduals may undergo mutations. Over many generations,
less fit individuals (worse solutions) tend to die-off, while
better individuals (solutions) tend to predominate. The pro-
cess is continued until a certain termination criterion is met.

In this paper the issues related namely to the genetic
search for the grey pattern problem are concerned. The main
attention is paid to the investigation of the recombination
operators which play an important role constructing effi-
cient GAs. The paper is organized as follows. A hybrid
genetic algorithm (HGA) framework and recombination
operators are discussed in Section 2. In Section 3 we present
the results of testing several crossover operators within the
improved HGA. Section 4 completes the paper with con-
clusions.

2. A hybrid genetic algorithm framework and recom-
bination operators

2.1. A hybrid genetic algorithm framework: the
state-of-the-art and extensions

The state-of-the-art genetic algorithms are rather hybrid,
i.e. combined genetic local search algorithms which incor-
porate additional heuristic components [5, 6]. The example
of such component is a post-crossover pro-cedure which is
used as a local improvement algorithm applied to the solu-
tion previously produced by the crossover. Heuristic algo-
rithms can also be applied for the construction of high qual-
ity initial populations. As a result, the hybrid genetic search
is done in an optimized search space where the populations
consist solely of local optima – this appears to be a more
effective process than searching in a random solution space.

Applying HGAs it does not necessary mean that near-
optimal solutions are reached in reasonable time. Indeed,
HGAs often use the elaborated improvement heuristics (like
simulated annealing, tabu search) that, in general, are quite

time-consuming. This could be thought of as a serious short-
coming, especially if we wish to create HGAs that are com-
petitive with other optimization techniques. In this situa-
tion it is important to make some additional extensions of
HGAs. The following are the basic principles of designing
the extended hybrid genetic algorithms (EHGAs): 1.
EHGAs should incorporate as robust local improvement
algorithms as possible. Here, we assume that algorithm A1
is more efficient than algorithm A2, if A1 finds (in average)
the solution(s) with the average objective function value
(quality) ◊f  in less time than A2. Naturally, the long time
behaviour does not matter as long as we are speaking about
the fast algorithms within EHGAs. 2. In EHGAs the com-
pactness of the population is highly desirable. As long as
the efficient improvement procedures are used, the large
populations are not necessary: the small size of the popula-
tion is compensated by the robustness of the improvement
algorithm. Obviously, the compact populations allow to save
the computation time when comparing to HGAs which deal
with larger populations. 3. EHGAs must maintain a suffi-
cient degree of diversity within the population. This is es-
pecially true for the small populations. Indeed, the smaller
the size of the population, the larger the probability that
diversity will be lost quickly. To overcome this difficulty,
so-called “cold restarts” may be proposed; here, as a “cold
restart” we call deep reconstruction of the population, for
example, the mutations applied to the members of popula-
tion with the subsequent local improvement. “Cold restart”
takes place each time the fact of premature convergence of
the algorithm is determined, i.e. the level of the diversity
within the current population is below a certain threshold.

The template of the extended hybrid genetic algorithm
is presented in Fig 1 (see also [6, 10]). Note that in our

Fig 1. Basic flowchart of the extended  hybrid genetic algorithm
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experiments we applied a limited iterated tabu search (ITS)
procedure in the role of a local improvement algorithm.
ITS procedure (but with the increased number of iterations)
is also used in both the initial population construction and
the restart process. The details of ITS algorithm are omit-
ted for the sake of brevity. Those interested in ITS approach
are addressed to [11].

2.2. Recombination operators within hybrid
genetic algorithms

As mentioned above, HGAs operate with high quality
optimized populations. Despite this fact the recombination
of solutions still remains one of the critical things construc-
ting competitive genetic algorithms. Very likely, the role of
recombination operators within HGAs is more significant
than in ordinary GAs. In fact, we can think of HGA as a
process that combines intensification and diversification
(I&D) of the search [11, 12].

The intensification (local improvement) concentrates
the search in limited portions of the solution space, while
the diversification is responsible for escaping from the cur-
rent local optimum and moving towards unvisited so far
solutions. From this point of view, the crossover is a spe-
cial sort diversification mechanism which guides the glo-
bal search, i.e. exploration of new regions of the solution
space. Thus, the proper exploration strategy is, in some
sense, even more severe than the intensification process.
In this situation we naturally make additional demands of
crossover operators. The crossover is highly desirable to
be “strong” enough to minimize the possibility of possible
falling back into the previous local optima. On the other
hand, if the crossover is too “disruptive”, the resulting al-
gorithm may be similar to a “blind” random multistart which
is known to be not a very efficient method.

We start our discussion of the recombination operators
with the crossover by Tate and Smith, 1995 [13]. It is called
a uniform like crossover (ULX). ULX works as follows.
First, all items assigned to the same position in both par-
ents are copied to this position in the child. Second, the
unassigned positions are scanned from left to right: for the
unassigned position, an item is chosen randomly, uniformly
from those in the parents, if they are not yet included in the
child. Third, remaining items are assigned at random.

One of the modifications of ULX operator is a so-called
block uniform like crossover (or simply block crossover
(BX)). BX is distinguished for the fact that some blocks
(segments) of elements are considered instead of the single
elements. The block size is in the range [1, n/2 ]. Copying
blocks the feasibility of permutation must be kept.

The other recombination operator is a cycle crossover
(CX) [14]. The key idea of this operator is that CX pre-
serves the information contained in both parents, that is,
all the alleles of the offspring are taken either from the first
or the second parent. The main steps of CX are as follows.
1. All the alleles found at the same locations in both par-
ents are assigned to the corresponding locations in the child.
2. Starting from the first (or randomly chosen) location,
provided that the corresponding element has not been in-
cluded in the offspring, an element is chosen in a random
way from the parents. After this, one performs additional
assignments to ensure that no random assignment occurs.
Then, the next unassigned location is processed in the same
manner until all the locations have been considered.

Ahuja et al., 2000, proposed a swap path crossover
(SPX) [15]. Let π′, π′′  be a pair of parents. In SPX one
starts at some random gene and the parents are examined
from left to right until all the genes have been considered.
If the alleles at the position being looked at are the same,
one moves to the next position; otherwise, one performs a
swap (interchange) of two alleles in π′ or in π′′  so that the
alleles at the current position become alike. (For example,
if the current gene is i, and a = π′(i), b = π′′ (i), then, after a
swap, either π′(i) becomes b, or π′′ (i) becomes a.) Ahuja et
al. suggests to perform the swap for which the correspond-
ing solution has a lower objective function value. The ele-
ments in the two resulting solutions are then considered,
starting at the next position, and so on. The best solution
obtained (the fittest child) serves as an off-spring. The swap
path crossover is illustrated in Fig 2.

One point crossover (OPX) operators are classical so-
lution recombination procedures widely used in early ver-
sions of genetic algorithms [9]. One of the variants of OPX
for QAP is due to Lim et al. [16]. The idea of OPX is quite
simple. A crossing point (site) is chosen randomly between
1 and n − 1 in one of the parents. As a result, a child chro-

Fig 2. Example of a swap path crossover
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mosome is obtained containing information partially de-
termined by each of parent chromosomes.

Recently, Drezner introduced an original recombina-
tion operator − a cohesive crossover (COHX) [4]. COHX
produces the offspring in several steps. At the beginning,
some mask − n1 × n2 matrix M − is created (n1, n2 are GPP
dimensions). The initial mask position is fixed at (i0, j0),
where i0 ∈  {1, 2, ..., n1}, j0 ∈  {1, 2, ..., n2}. Matrix M is
then filled in according to a wave propagation fashion (see
Fig 3).

Fig 3. Filling in a mask

There exist n different masks M(1), M(2), ..., M(k), ..., M(n).
k, i0, and j0 are in the following relation: k = n2(i0 - 1) + j0, i0

= 1, 2, ..., n1, j0 = 1, 2, ..., n2. kth recombined solution π(k)

(k ∈  {1, 2, ..., n}) is generated in three steps:
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where i = 1, 2, ..., n, π
w
 = argmax {z(π′), z(π′′ )};

3) for every unassigned position i (π (k)(i) = 0), an item is

chosen randomly from those not yet included in the
offspring.

A visual example of generation of a solution is given in
Fig 4. As a result, n solutions are produced, but only the

best of them is regarded as an offspring, i.e.
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Multiple parent crossover (MPX) was described by
Misevičius in [7], although the idea of using combinations
of several solutions goes back to Boese et al al. [17]. MPX
is distinguished for the fact that the offspring derives the
information from many parents − this is the contrast and, at
that time, the advantage to the traditional operators where
two parents are used only. In MPX, the ith element π°(i) is
created by choosing a not yet chosen number j in such a

way that probability ))(Pr( ji =°π  is maximized. Here,

probability ))(Pr( ji =°π  is equal to ∑
n

j
ijij dd , where d

ij

is the entry of desirability matrix D = (d
ij
)

n×n
. The value of

d
ij
 is determined by sum q

ij
 + ε, where q

ij
 is the number of

times that element i is assigned to position j = π(i) in µ
parents (which participate in the creation of the child), and
ε is a correction (noise). The process is to be continued
until all the genes of the offspring take on their values. An
example of producing the offspring in multiple parent
crossover (µ = 5) is given in Fig 5.

3. Testing of the extended hybrid genetic algorithm for
the grey pattern problem

In this section we present the results of experimental
comparison of the crossovers outlined above. In the experi-
ments we used the instances of GPP generated according to
the method described in [1]. For the set of problems tested
the size of instances, n, equal to 256, and the frames (rect-
angles) are of dimensions 16 × 16, i.e. n1 = n2 = 16. The
instances are denoted by the name grey_16_16_m, where
m is the number of black points. Remind that for these in-
stances data matrix B remains unchanged, while the data

matrix A is of the form 
 
 
 

1 0

0 0 , where 1 is a sub-matrix of

size m × m composed of 1s only.

Fig 4. Example of a cohesive crossover
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We used the extended hybrid genetic algorithm dis-
cussed in Section 2.1 as an experimental basis for the cross-
over operators. The efficiency measure for the crossover
operators is the average deviation of solutions obtained from
the best known solution − δ  ( %][ )(100 zzz

$$−=δ , where
z  is the average objective function value over 10 restarts
(single applications of EHGA to a given instance), and z

$

is the best known value (BKV) of the objective function).
In the experimental comparison equal conditions are cre-
ated: all the crossover variants use the identical initial so-
lutions and require approximately the same CPU time. The
following are the values of the control parameters of EHGA:
population size − 8; number of generations − 25; number
of offsprings per generation − 1; number of iterations of
the post-crossover (ITS procedure) − 5n. The number of
parents in MPX crossover is equal to the population size.

The results of the comparison of the crossover opera-
tors are presented in Table 1. The results from Table 1 dem-

onstrate that crossovers have considerable influence on the
final solutions produced by the genetic algorithm. This is
true despite of the fact that the powerful post-crossover
procedure is used. This indicates that the recombination
operators, which are responsible for the exploration of new
regions in the solution space hide high potential. The per-
formance of different crossovers varies in quite large ranges;
nevertheless, some regularities can be discovered. For ex-
ample, less disruptive crossovers (OPX, COHX) appear to
be more efficient than highly disruptive crossovers (ULX);
surprisingly, the cycle crossover (the minimally available
disruptive crossover) produces only medium-quality results.
So, it could be concluded that a good crossover should bring
some randomness to the offspring, however this must be
done in a subtle way. It can also be seen that the crossovers
that incorporate some a priori knowledge about the prob-
lem being solved (for example, SPX) seem to be better than
the “pure” operators (for example, BX). The preliminary

Table 1. Comparison of the crossover operators for GPP. The best results obtained are printed in bold face.
CPU time per restart is given in seconds. 3 GHz PENTIUM computer was used in the experiments

a comes from [8]; b comes from [12]; c comes from [5]; d comes from [11].

Fig 5. Example of a multiple parent crossover
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nation, i.e. crossover operators, which play one of the main
roles in the efficient genetic algorithms.

We implemented seven crossover procedures and car-
ried out several experiments in order to find out what is the
difference of the solutions produced by these cross-overs.
From the results obtained it can be seen that the crossover
operators influence the final results of GA considerably, even
in the cases when powerful post-crossover procedures are
applied. The results of the experimental computations show
relatively high performance of the  crossovers with a lower
degree of disruption as well as the crossovers that incorpo-
rate the problem-oriented knowledge (COHX, OPX, SPX).
Another effective operator is the multiple parent crossover
- MPX - which is based on a special type of recombination
of several solutions. The results demonstrate that MPX en-
ables to achieve better solutions than the standard two-par-
ent operators. More precisely, the results of MPX are up to
22 % better than those of 2-parent crossovers. The power
of MPX is also corroborated by the fact that new best known
solutions for eight GPP instances have been discovered.

Further elaboration of the multiple parent crossover
operator for GPP and similar combinatorial optimization
problems, like QAP, TSP, could be one of the promising
directions for future research.
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KRY�MINIMO (KROSOVERIO) OPERATORIŲ TYRIMAS SPREND�IANT �PILKŲ �ABLONŲ� SUDARYMO
U�DAVINĮ

A. Misevičius

Sant rauka

Pastaraisiais metais pasiektas didelis progresas sprend�iant kombinatorinio optimizavimo u�davinius genetiniais algoritmais (GA).
�iame straipsnyje nagrinėjami GA efektyvumo klausimai �pilkų �ablonų� sudarymo (formavimo) u�davinio kontekste. Daugiausia
dėmesio skiriama sprendinių kry�minimo (krosoverio) operatoriams, atliekantiems svarbų vaidmenį genetiniuose algoritmuose, tirti.
Realizuoti septyni skirtingi kry�minimo algoritmai, kurie įtraukti į hibridinio genetinio algoritmo sudėtį, i�bandyti sprend�iant minėtą
u�davinį. Eksperimentinių tyrimų tikslas � nustatyti kry�minimo operatorių įtaką GA gaunamiems sprendiniams. Eksperimentų, atliktų
su įvairiais �pilkų �ablonų� sudarymo u�davinio testiniais pavyzd�iais (duomenimis), rezultatai liudija labai auk�tą kai kurių kry�minimo
procedūrų efektyvumo laipsnį. Tai visų pirma pasakytina apie vadinamąjį �daugelio tėvų� kry�minimą, kuris pagrįstas netrivialaus kelių
sprendinių-tėvų po�ymių kombinavimu, naudojant algoritmą.

Pagrindiniai �od�iai: kombinatorinis optimizavimas, euristiniai algoritmai, genetiniai algoritmai, kry�minimo (krosoverio)
operatoriai, �pilkų �ablonų� sudarymo u�davinys.
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