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Abstract. Most evolutionary multi-objective algorithms perform poorly in many objective prob-
lems. They normally do not make selective pressure towards the Region of Interest (RoI), the privi-
leged zone in the Pareto frontier that contains solutions important to a DM. Several works have 
proved that a priori incorporation of preferences improves convergence towards the RoI. The work 
of (Fernandez, E. Lopez, F. Lopez, & Coello Coello, 2011) uses a binary fuzzy outranking relational 
system to map many-objective problems into a tri-objective optimization problem that searches the 
RoI; however, it requires the elicitation of many preference parameters, a very hard task. The use 
of an indirect elicitation approach overcomes such situation by allowing the parameter inference 
from a battery of examples. Even though the relational system of Fernandez et al. (2011) is based 
on binary relations, it is more convenient to elicit its parameters from assignment examples. In 
this sense, this paper proposes an evolutionary-based indirect parameter elicitation method that 
uses preference information embedded in assignment examples, and it offers an analysis of their 
impact in a priori incorporation of DM’s preferences. Results show, through an extensive computer 
experiment over random test sets, that the method estimates properly the model parameter’s values.
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Introduction

A consequence of the multi-objective conflicting nature of optimization problems is the diffi-
culty to reach the ideal solution (cf, Deb, 2001; Coello, Lamont, & Van Veldhuizen, 2007; Zhu 
& Luo, 2016). Instead, the solution of a Multi-objective Optimization Problem (MOP) can be 
seen as the search for the best compromise, i.e. the solution that best matches the decision 
maker’s (DM’s) preferences. However, in order to find such solution, the DM should provide 
additional information related to its particular system of preferences (Fernandez et al., 2011). 

Multi-Objective Evolutionary Algorithms (MOEAs) are robust algorithms used to ap-
proximate the Pareto frontier in situations where mathematical programming has troubles 
dealing with the characteristics of objective functions and constraints (cf. Coello, 1999). These 
strategies provide set of solutions that in general do not dominate each other. Alternatively, 
for a better approximation of the best compromise, an evolutionary approach can incorporate 
information about the DM’s preferences. According to (Branke, Salvatore, Greco, Slowiński, 
& Zielniewicz, 2016), the incorporation of preferences of a DM in the search process can be 
motivated by the sampling of the Pareto frontier, the reduction of the DM’s cognitive effort 
to handle only the Region of Interest (RoI), and because the DM’s preference information 
reinforces the necessary selective pressure. Let us point out that the incorporation of prefer-
ence can be seen as a method that offers support to the limited capacity of the human mind 
to handle several conflicting objectives at the same time (Miller, 1956). So, the incorporation 
of DM preferences can be a very useful tool in solving many-objective problems. 

The research works presented by Branke (2015) and Bechikh (2013) show a survey about 
approaches that incorporate preferences in MOEAs. Some examples are value reservation 
utility functions (Phelps & Koksalan, 2003; Deb, Sinha, Korhonen, & Wallenius, 2010; Bran-
ke, Greco, Słowiński, & Zielniewicz, 2015), reservation points (Deb, 2007), reference points 
(Molina, Santana-Quintero, Hernández-Díaz, Coello Coello, & Caballero, 2009), desirabil-
ity thresholds (Wagner & Trautmann, 2010), decision rules (Greco, Slowinski, Figueira, & 
Mousseau, 2010), and outranking relations (e.g. Fernandez et al., 2011). The use of outrank-
ing approaches is recommended because they can handle imprecise, ordinal and qualitative 
information, as well as phenomena like intransitivity, incomparability and veto situations.

The work of (Fernandez et al., 2011) proposes the use of fuzzy outranking relations to 
incorporate preferences in MOEAs. This work defines a surrogate model that reduces a 
many-objective optimization problem to one with three objectives to find the best compro-
mise; it has been successfully employed in the solution of portfolio optimization problems 
in (Fernandez, Lopez, Mazcorro, Olmedo, & Coello, 2013; Fernandez, Gomez, Rivera, & 
Cruz-Reyes, 2015; Cruz-Reyes, Fernandez, Sanchez, Coello Coello, & Gomez, 2017). A dis-
advantage of the approach from (Fernandez et  al., 2011) is that it requires the elicitation 
of many preference parameters such as weights, thresholds, and others. Information about 
the model’s parameters can be obtained either directly or indirectly. In the direct-eliciting 
method, the DM, perhaps in collaboration with a decision-analyst, is responsible for making 
a direct setting of the preference model’s parameters values. This task is certainly difficult for 
a DM because the meaning that (s)he personally assigns to such parameters is barely clear 
(Fernandez, Navarro, & Mazcorro, 2012). The direct elicitation has been the subject of strong 
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criticism in the literature. According to Bouyssou et al. (2006), the only valid preference 
information is that arising from pair-wise comparisons of actions, or evaluation of actions. 
On the other hand, Preference Disaggregation Analysis (PDA) is an ad-hoc regression-like 
method that properly estimates the parameters’ values from a battery of examples (Doumpos, 
Marinakis, Marimaki, & Zopounidis, 2009). These indirect elicitation methods require less 
time and cognitive effort from the DM (Greco, Mousseau, & Slowinski, 2008).

In order to infer all the parameters required by a preference model, the PDA methods 
solve a nonlinear problem that commonly involves non-convex constraints (see Fernandez 
et al., 2012). As shown in (Mousseau & Slowinski, 1998; Dias & Mousseau, 2006), this type 
of problem is very complex, and it becomes impractical working large data sets (Doumpos 
et al., 2009). The most viable alternative consists in the use of metaheuristics, such as evo-
lutionary approaches, which can find with ease, and comparatively less time, approximated 
solutions convenient for real purposes, cf. (Kahraman, Engin, Kaya, & Kerim Yilmaz, 2012; 
Xiong, Molina, Leon Ortiz, & Herrera, 2015). 

In the frame of outranking methods, indirect parameter elicitation approaches are used 
in multi-criteria ordinal classification problems addressed by ELECTRE TRI (e.g. Mousseau 
and Slowinski, 1998; Mousseau, Figueira, & Naux, 2001; Doumpos et al., 2009). In these pa-
pers, the reference preference information is given through assignment examples. Since the 
approach by Fernandez et al. (2011) is based on several binary preference relations it would 
be natural the use of pair-wise comparisons to form a battery of examples as in (Fernandez 
et al., 2012). However, a PDA strategy can be beneficiated from a reference set formed by 
assignment examples. Medium size sets of assignment examples can contain more preference 
information from the DM than many pairwise comparisons of actions; often the DM feels 
more comfortable assigning conveniently chosen actions than expressing preferences (strict, 
weak, indifference, incomparability, K-preference, non-preference) on pairs of actions. Ad-
ditionally, an important data source to create the reference set comes from past decisions 
made by the DM or accepted by her/him; usually, these past decisions are given as assign-
ment examples (e.g. students with high, medium or low performance). 

Based on the above, this paper proposes a PDA evolutionary approach that uses assign-
ment examples to infer the preference parameters of the model by Fernandez et al. (2011). 
The inferred model can be used to solve many-objective problems as in (Fernandez et al., 
2013, 2015). This paper proposes a method to generate random instances for the problem 
studied along with a performance model for the proposed PDA approach. This work comple-
ments its research by analysing the impact of the suggestions of a DM about the definition 
of ranges of values for the parameters over the quality of the obtained configuration from 
the parameter elicitation. The method of solution is analysed through different points of 
view (based on two metaheuristics, and different settings for the parameter search space). 
The research shows experimental evidence that the PDA method estimates properly the pa-
rameter values for the preference model considered, according to the reference set and by 
reducing the inconsistencies to zero. Also, it shows that the capacity of prediction on new 
decisions using the parameters identified results in a low level of inconsistencies. Finally, it 
also demonstrates the importance of involving the DM in the initial process of identifying 
proper bounds for the parameters.
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This work is related to the popular outranking approach for multi-criteria decision mak-
ing (e.g. Roy, 1991), which is an option to value or utility function-based methods, e.g. the 
work of (Gastelum Chavira, Leyva Lopez, Solano Noriega, Ahumada Valenzuela, & Alvarez 
Carrillo, 2017) uses it to model DM’s preferences in credit ranking. The outranking approach 
is used to address problems in which only partial compensation among criteria is allowed, 
and non-transitive preferences, veto situations, incomparability, imprecise criterion scores, as 
well as ordinal and qualitative scales could be a real concern. In comparison to the rational 
paradigm in which the value function methods are based, the outranking approach is more 
flexible and capable to model ill-shaped preferences of real decision makers and consumers. 
In this sense, new methods able to make robust and cognitive less-demanding elicitation of 
preference model parameters are welcome. In addition, the outranking models are used to 
compare assets related with the economy of an enterprise, to model preferences of consumer, 
or to support decision making processes. Moreover, our approach is necessary in optimiza-
tion strategies like the one in (Fernandez et al., 2011) because they require previous elicita-
tion of parameters to compare alternatives based on the DM’s preferences.

The remaining content of this article is organized as follows. Section 1 describes the op-
timization method proposed for the estimation of parameter values; the associated surrogate 
model is defined from a battery of examples formed by actions sorted in groups that are 
defined according to the DM preferences. Section 2 shows the method followed to construct 
random instances for the reference set organized in groups. Sections 3 and 4 analyse the 
performance of the approach through an extensive experimental design. Finally, the Section 
Conclusions shows the final remarks derived from the research.

1. An optimization approach for inferring the model’s parameter values

This section details the method followed to infer parameter values. The content is organized 
into four subsections. The first one defines the reference set utilized as input for the inference 
process. The second subsection briefly describes the relational system of preferences whose 
parameters are going to be estimated. In the third subsection, the optimization problem to 
inferring the model’s parameters is formulated; the last subsection details the method fol-
lowed to solve such problem.

1.1. The reference set

The reference set, denoted as Tn,k, is a set of actions assigned to ordered classes according 
to the DM’s preferences. Without loss of generality, this work considers that the classes are 
ordered from the worst to the best. The construction of Tn,k is described in Section 2.

1.2. The preference model

The works of (Bechikh, 2013) and (Branke, 2015) are surveys about the use of DM prefer-
ences in multi-objective approaches to approximate the RoI. This task influence directly in 
the reduction of the cognitive effort required from the DM in the search process for a solu-
tion to a given optimization problem (cf. Branke et al., 2016). This not only offers a better 
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opportunity of sampling the Pareto frontier (cf. Bastiani, Cruz-Reyes, Fernandez, & Gomez, 
2015) but also aids in the achievement of better solutions.

The ELECTRE methods (cf. Roy, 1996) are among the most widely used preference mod-
els in multi-criteria decision-making; their relevance arises from the fact that up to now they 
are studied in trending topics such as prospective multiple attribute decision making (cf. 
Zolfani, Maknoon, & Zavadskas, 2016) or its most recent application in prioritized multicri-
teria decision making (cf. Xiaohan, Suojan, Xianglin, & Xiuli, 2018). The ELECTRE methods 
have been successfully integrated with fuzzy outranking relational systems of preferences to 
develop metaheuristics that reinforce the selective pressure toward the RoI in many-objective 
optimization problems. Indeed, the strategy proposed by Fernandez et al. in 2011, and such 
relational system of preferences is the object of study. 

The fuzzy outranking relational system of (Fernandez et al., 2011) contains six binary 
relations based on the credibility index of outranking s(h, x, y), where set h = {w, q, p, u, 
v} includes parameters such as weights wi, indifference thresholds qi, preference thresholds 
pi, pre-veto thresholds ui and veto thresholds vi. The credibility index s(h, x, y) is defined 
over each pair of actions (x, y) and it quantifies, in the range [0, 1], the degree of truth of 
the predicate “the DM considers that option x is at least as good as y”. The s(h, x, y) can be 
calculated as in ELECTRE III (Roy, 1996) with the simplification introduced by (Mousseau 
& Dias, 2004), see Appendix for a brief description of its calculation. The use of s(h, x, y) 
and the credibility, asymmetry, and symmetry thresholds (denoted l, b, and e respectively) 
results in relations of indifference, strict preference, weak preference, incomparability, K-
preference, and Non-preference. The formal definition of the binary relations is briefly de-
scribed in Table 1. 

Let us point out that the dominance concept among two alternatives x and y is defined as 
follows (based on the definition presented in (Meghwani & Thakur, 2017)). Let x, y be two 
alternatives, each is characterized by a vector of n objectives, and, without loss of generality, 
let us consider that those objectives represent minimization functions. The vector x is said 
to dominate y (in short: x ≺ y), if xi ≤ yi for every objective i∈{1, . . . , n}, and xi < yi

 for at 
least one of them. Whenever a vector x dominates a vector y, then x can be considered a 
better solution.

To characterize best compromise solutions (i.e. solutions based on preferences of a spe-
cific DM), the work of (Fernandez et al., 2011) uses s(h, x, y) and the relations in Table 1 to 
define the tri-objective optimization model shown in Eq. (1).

 ( ) ( ) ( )( )min card , card , card .x O S NS NSN W F∈   (1)

The optimization problem in Eq. (1) relies on three different sets to define its objectives. 
For each feasible alternative x∈O, a set of strictly outranking solution (So)x is defined as  
(So)x = {y∈O | yP(l, b)x}, i.e. the set (So)x contains the best compromises x for which there 
is no other alternative that has a relation of type yPx. Then, the set (So)x defines the (l, b, e)-
non-strictly-outranked frontier NS = {x∈O | card(So)x = ∅}, where card stands for cardinality; 
the solutions in this frontier represents the subset of the Pareto frontier mostly in agreement 
with the DM’s preferences.
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Table 1. Binary relations of the fuzzy outranking relational system defined in (Fernandez et al., 2011)

Relation Notation Formal Definition

(l, b)-strictly 
preferred

xP(h, l, b)y x dominates y; OR
s(h, x, y) ≥ l ∧ s(h, y, x) < 0.5; OR
s(h, x, y) ≥ l ∧ (0.5 ≤ s (h, y, x) < l) ∧ (s(h, x, y) – s(h, y, x))≥b

(l, e)-indif-
ferent

xI(h, l, e)y s(h, x, y) ≥ l ∧ s(h, y, x) ≥ l ∧ s(h, x, y) – s(h, y, x) < e.

(l, b, e)-
weakly 
preferred

xQ(h, l, b, e)y s(h, x, y) ≥l ∧ s(h, x, y) > s(y, x); AND
not. xP(h, l, b)y; AND
not. xI(h, l, e)y.

(l, e)-K-
preferred

xK(h, l, e)y 0.5 ≤ s (h, x, y) < l; AND
s (h, y, x) < 0.5; AND
(s(h, x, y) – s(h, y, x)) >e.

incompara-
bility 

xR(h)y s(h, x, y) <0.5 ∧ s(h, y, x) <0.5.

(l, b, e)-non-
preference

x~(h, l, b, e)y not. xP(h, l, b)y ∧ not. yP(h, l, b)x; AND
not. xQ(h, l, b, e)y ∧ not. yQ(h, l, b, e)x; AND
not. xK(h, l, e)y ∧ not. yK(h, l, e)x; AND
not. xI(h, l, e)y; AND
not. xR(h)y. 

The second objective in Eq. (1) is based on the (l, b, e)-non-weakly-outranked frontier 
(WNS). This frontier is formed by solutions x that does not have alternatives that weakly out-
ranked it, i.e. WNS = {x∈O | card(WNS)x = ∅}, where (WNS)x = {y ∈NS | yQ(l, b, e)x or yK(l, 
b)x}. Finally, the third objective uses the outranking net flow score Fn(x) of an alternative 
x, a very popular measure to rank a set of alternatives in which a fuzzy preference relation 
is defined. The cardinality of (FNS) = {y∈NS | Fn(y) > Fn(x)}, where Fn(a) = Sc∈NS –{a} [s (a, 
c) – s (c, a)] defines such third objective.

The problem in Eq. (1) reduces the original dimensionality of any many-objective opti-
mization problem to only three objectives by exploiting the incorporation of preferences in 
the search process. This problem requires the elicitation of the parameters of the associated 
preference model, a task that is solved by the proposed approach presented in the following 
section.

1.3. The inference approach

An inference approach for the previous relational system would be a strategy that could 
properly estimate the values of the parameters (h, l, b, e), i.e. that identifies the configura-
tions of the parameters which minimize the inconsistencies among the preference relations 
established by the model, and those given by the DM, through a reference set T. This problem 
can be formally defined as follows. Let Pfr be the set of feasible parameter vectors (h, l, b, e), 
T a reference set formed by a finite set of actions {x1 ,x2,…, xk}, C(x): x → Ci a function that 
defines for an action xi∈T the class Ci in which is assigned to, and A={P, I, Q, K, ~, R} the set 
of preference relations; the classes (also called categories in the related literature) are ordered 
from the worst to the best, according to the DM’s preferences in each particular problem. The 
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ideal solution of the parameter elicitation problem would be (h0, l0, b0, e0)∈Pfr such that the 
following equivalences are satisfied for all (x, y)∈T × T:

E1: C(x) – C(y) > 1 ⇒ xPb ∨ xRb;  (2.a)
E2: C(x) – C(y) = 1 ⇒ xIy ∨ xQy ∨ xPy ∨ xKy ∨ xRy;  (2.b)
E3: xPy ⇒ C(x) ≥ C(y);  (2.c)
E4: xQy ⇒ C(x) = C(y) or C(x) – C(y) = 1;  (2.d)
E5: xIy ⇒ C(x) – C(y) ≤ 1;  (2.e)
E6: xKy ⇒ C(x) = C(y) or C(x) – C(y) = 1.  (2.f)

where P, Q, K, I and R are defined as in Table 1, but now depending on (h, l, b, e). As a 
consequence, the truth values of the above implications are functions of the parameters to be 
inferred. The two first implications, i.e. E1 and E2, ensure that the assignments in the refer-
ence set T agrees with the established preference relation; for example, an action that lies in 
a class that is non-adjacent to another must establish a strict preference or incomparability 
relation. The remaining implications are related with a proper order of the classes, in con-
cordance with the relations established by the preference model and its parameter values. 

The best parameter setting should be the closest solution to the ideal one in the sense of 
a certain acceptable metric. Following the works of (Fernandez et al., 2011, 2012) we propose 
a metric based on inconsistencies. The above implications can identify inconsistencies among 
the preferences relations coming from the inferred parameters and the DM’s preferences 
contained in the reference set T. Shortly, an inconsistency arises when an implication in Eqs 
(2) is false. For example, given (x, y)∈T and (h, l, b, e)∈Pfr we call inconsistency with (1.a) 
the fact that C(x) – C(y) > 1 but the preference relation is xQ(h, l, b)y. Let N1, N2, …, N6 
be the number of inconsistencies that appear in T derived from Eqs (2.a), (2.b), (2.c), (2.d), 
(2.e) and (2.f) respectively.

Since the method by Fernandez et al. in 2011 gives priority to find the non-strictly out-
ranked set, N1 and N3 are far the most important measures. So, the best values for (h,l,b,e) 
can be obtained by solving the optimization problem:

                                               min (f1, f2) 
 s.t. (h, l, b, e) ∈ Pfr, (3)

where Pfr is the feasible region of the parameter values, f1 = N1 + N3, and f2 = N2 + N4 + N5 + 
N6, with pre-emptive priority favouring f1 over f2. 

Note that the preference information derived from actions organized in classes cannot 
directly be transformed into relations between pairs of actions. For example, the assignment 
of two actions to the same class does not imply indifference; within the same class we can 
have weak preference, K-preference, even strict preference; besides, the assignment of two 
actions to adjacent classes does not imply strict preference favouring the action in the higher 
class; the actions could be close to the boundary between the classes and fulfil an indifference 
(or incomparability) condition. Hence, this work is proposed given that it is not possible to 
assume preference relations directly from a reference set with actions organized in an ordered 
set of classes, and exploiting that possibility opens the opportunity to increase preference 
information favouring the development of more robust parameter elicitation strategies.
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1.4. Optimization approach based on a PDA method

The proposed indirect elicitation approach solves Problem (3) using a single-objective opti-
mization Genetic Algorithm (GA). The approach uses the pre-emptive priority established 
for the problem to solve it in two stages. During the first stage, it searches for the best value 
Boundf1 that it could find for the first objective f1; after that, in the second stage, it introduces 
Boundf1 as a constraint that must be satisfied when minimizing the value of second objective 
f2. Finally, the approach reports the best sets of parameters (h∗, l∗, b∗, e∗) found at the end 
of the second stage. The general approach can be seen depicted in Figure 1, and the elements 
of the GA are described in the remaining of this section.

Genetic Representation of the Solution. A solution in the GA population is represented 
by a vector ρ of real numbers. This vector represents the parameter vector (h, l, b, e) to be 
estimated to solve Problem (3). Given that h involves the set of parameters (w, q, p, u, v) per 
criterion, the size of ρ is 5n + 3, where n is the number of criteria.

Fitness Function. The objectives f1 and f2 of Problem (3) are used to assess the quality of 
a solution vector ρ; they are the fitness functions used by the GA during the first and second 
stages, respectively (see Figure 1). 

Initialization Function. The GA initializes its population with 100 individuals randomly 
generated. Each individual is defined by the vector ρ previously described. The GA requires 
the definition of lower and upper bounds for each criterion on ρ, then it initializes each of 
them with a value randomly chosen from the interval formed by the bounds.

Selection. The binary tournament selection is the chosen method of selecting parents in 
the GA. This tournament method is used each time that a parent must be selected among the 
actual population. The method randomly chooses two different individuals as possible parents, 
then, it selects the one with the best fitness, accordingly to the stage. Ties are broken arbitrarily. 

Genetic Operators. In order to generate the next population of individuals, or solutions, 
each pair of selected parents is combined through crossover and/or mutation operators. First, 
the Simulated Binary Crossover (SBXCrossover) operator simulates the operation of a single-
point binary crossover directly on real variables under a probability distribution, cf. (Deb & 
Agrawal, 1995). The resulting offspring from the SBXCrossover are two children that will be 
the object of the Polynomial Mutation process, which is used to produce a slight variation 
on the children, cf. (Deb & Tiwari, 2008). 

Stop Criterion. Finally, the main loop of the GA is repeated until a maximum number of 
evaluations on the fitness function is reached. Let us note that one evaluation is accumulated 
each time that a new child is generated. The number of evaluations is user defined, and in 
this research, it was set to 100000. 

Figure 1. The strategy followed to solve Problem (3) using a single-objective algorithm

Bound f  ¬ Genetic (P, f )1 1

 (h*, l*, b*, e*) ¬ Genetic (P, f , Bound f )2 1
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Figure 2 shows the complete pseudocode of the GA. The algorithm generates Population-
new each iteration, it is the set of new individuals created by the selection, crossover and mu-
tation operators. In Line 16 the original set of solutions, called Population, and Populationnew 
are combined and ranked to select the next generation of individuals. The ranking is made 
through the specified fitness function Objective, and the size of the set and the maximum 
number of evaluation MaxEvaluations are left to be defined by the user.

2. Instance generator

The PDA strategy proposed in Section 1.4 (see Figure 1) uses Probleminstance as input, i.e. an 
instance of Problem (3) which is defined as L = (DM, Tn,k) where DM is the decision maker 
who is wanted to be modelled, and Tn,k is the training set provided by him/her and that 
contains n actions organized in k classes reflecting his/her preferences.

GeneticAlgorithm(ProblemInstance, Objective)
1:  Population ← GenerateRandomIndividuals(ProblemInstance, size)
2:  DM ← GetDM(Probleminstance)
3:  T ← GetReferenceSet(Probleminstance)
4:  eval ←0
5: repeat
6:                        Populationnew ← ∅
7:                        for i = 0 to size do
8:                          parent1 ← BinaryTournament(Population, Objective, DM, T)
9:                           parent2 ← BinaryTournament(Population, Objective, DM, T)
10:                          {child1, child2} ← SBXCrossover(parent1, parent2)
11:                          child1 ← PolynomialMutation(child1)
12:                          child2 ← PolynomialMutation(child2)
13:                        Populationnew ← Populationnew ∪ {child1, child2}
14:                        eval ← eval + 2
15:                      end for
16:                      Population ← RankingByFitness(Population, Populationnew, Objective, DM, T, size)
17:            until eval = MaxEvaluations

Figure 2. Genetic Algorithm pseudocode

According to the revised scientific literature, there are no DM’s benchmarks who could 
support an extensive study of the performance of a PDA approach. To address this situation, 
this work proposes the definition of a mechanism to simulate DMs, and with it the construc-
tion of reference sets. Both topics are discussed in the following subsections. Note that this 
mechanism can be used as reference points for comparison in future researches.

2.1. Simulation of a decision maker

A simulated DM, called DMsim, can be defined in general, for the preference model under 
study, by specifying values for the associated parameters. In this sense, different sets of model 
parameter values would represent different DMs, and therefore, those parameter values can 
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be taken from previous works that provide elicitations for the same preference model, or 
they can be random values.

The preference model studied on this work is characterized by the criteria parameter set 
h = {w, q, p, u, v}, and the thresholds (l, b, e). Hence, simulated DMs are defined by giving 
specific values to those parameters. Particularly, one DMsim is denoted by a vector t0 = (h0, 
l0, b0, e0) with specific values on its parameters. 

In this work, the simulated DMs are generated artificially. For this purpose, one DMsim 
is created by randomly defining the vector t0. Firstly, for the vector h0, each parameter value 
of each criterion is randomly chosen from a predefined interval, verifying the satisfaction 
of the constraints established on them by (Fernandez, Navarro, & Bernal, 2009; Fernandez 
et al., 2011). After that, the values of h0 are paired with one of the following tuples (l0, b0, 
e0) = {(0.51,0.15,0.07), (0.67,0.15,0.07), (0.70,0.20,0.10), (0.75,0.20,0.10)}. The simulated DM 
generated using this particular method is denoted by DMsim-parameters, and its specific values 
t0 = (h0, l0, b0, e0) are considered as the “true” preference parameter values that should be 
approximated by the inference approach. 

2.2. Generation of reference sets T from a DMsim

The present study considers two type of sets T. The training or reference set, denoted by Tn,k, 
that forms part of the instance L = (DMsim, Tn,k) of Problem (3) and that is used by the pro-
posed PDA approach; and, the test set, called Tn, that forms part of the test case G = (DMsim, 
Tn) which is used in the performance evaluation of the elicitation process. Let us observe that 
for a proper evaluation of the proposed PDA, the instance P and the test case Q must involve 
the same DM (in this case DMsim because (s)he is being simulated).

Training set Tn,k 

The training reference set Tn,k must be given by the DM. It is formed by n actions (alterna-
tives, objects) each of which should be assigned to one of k classes. It is important to note that 
the classes are labelled from k down to 1, implying that they are organized from the worst to 
the best. Each alternative on the set is characterized by m criteria.

Figure 3 shows the general method to create a training reference set Tn,k from a DMsim. 
The algorithm requires as input the specific parameter values t0 of the simulated decision 
maker, a sampling size N of actions, the number of classes k, the number of criteria m, the 
interval that will be used to define the values of each criterion, and the number of actions per 
class nclass. The first phase of the algorithm generates one action per class {g1, g2, …, gk} that 
works as central element; these elements are used as reference of each class gi in the second 
phase to incorporate new actions until the training reference set Tn,k is completely formed.

GenerateInstance(t0, N, k, m, [a, b], nclass)
1:       {T, I} ← GenerateCentralElements(t0, N, k, m, [a, b])
2:       {Tn,k} ← ExtendClasses(T, I, t0, nclass, k, m, [a, b])
3:       return Tn,k

Figure 3. General method to create training reference sets Tn,k



Technological and Economic Development of Economy, 2019, 25(4): 693–715 703

Figure 4a presents the pseudocode used to generate the central elements in the method 
GenerateCentralElements(…). This algorithm creates the set I formed by the subsets {I1, 
I2, …, Ik}. Each subset Ii will contain at the end one action that will be representative of the 
class gi. The construction of I is based on a trial and error method. First, an initial set O (of 
size N) of random actions is created using GenerateRandomActions(…), this functions as-
signs a random value chosen in the interval [a, b] to each of the m objectives of every action 
x∈O (see Line 3), and its net flow value Fn(x) is computed (see Lines 4 and 5, and Table 2). 
After that, the interval of variation of the net flow value is estimated in the whole set O (see 
Lines 6 to 8), and it is used to define equally spaced intervals that will characterize each class 
gi (see Lines 9 to 11). Next, each action x∈O will be assigned to a subset Ii if its specific net 
flow value Fn(x) lies in the interval characterizing the class gi (see Lines 15 to 19). Finally, 
the central element of a subset Ii is the action x∈Ii whose net flow value Fn(x) is closest to 
the average net flow value computed among the actions belonging to subset Ii (Line 19); ties 
are broken arbitrarily. If this algorithm remains with one subset Ii empty, the whole process 
is repeated (see Lines 26 and 27), otherwise, it adds each central element to T and returns 
along with the set I.

GenerateCentralElements (t0, N, k, m, [a, b])
1: I ← {I1, I2, …, Ik}
2: repeat
3:    O ← GenerateRandomActions (N, m, [a, b])
4:     for each x∈O
5:         Fx ← Fn(x)
6:     Fmin ← minx∈O{Fx} 
7:     Fmax ← maxx∈O{Fx}
8:     Variationnetflow ← (Fmax – Fmin) / k
9:     for each Ii ∈ I
10:        Ii,ini ← Fmin + (i–1)×Variationnetflow
11:        Ii,fin ← Fmin + i×Variationnetflow
12:    T ← ∅
13:    for each Ii ∈ I
14:        Ii ← ∅
15:        for each x∈O
16:              if Fx ≥ Ii,ini and Fx < Ii,fin then
17:                    Cx ← gi
18:                    Ii ← Ii ∪ x
19:                    Ii,avgflow ← Ii,avgflow+ Fx
20        if |Ii| > 0 then
22:              Ii,avgflow ← Ii,avgflow / |Ii|
23:              Ii,central ← arg minx∈O{|Fx – Ii,avgflow |}
24:              Ii ← Ii,central
25:              T ← T ∪ Ii,central
26:        Empty ← {Ii | |Ii| = 0}
27: until |Empty| = 0
28: return {I, T}

ExtendClasses(T, I, t0, nclass, k, m, [a, b]) 
1: n ← nclass×k
2: Tn,k ← T
3: repeat
4:        y ← GenerateRandomActions(1, m, [a, b])
5:        C’y ← {g1, g2, …, gk}
6:        for each x∈ Tn,k
7:               i ← C(x) 
8:               if yP(t0)x then C’y ← C’y ∩{gi, gi+1,…,gk}
9:               if xP(t0)y then C’y ← C’y ∩{g1, g2,…,gi}
10:             if yQ(t0)x then C’y ← C’y ∩{gi, gi+1}
11:             if xQ(t0)y then C’y ← C’y ∩{gi-1, gi}
12:             if yI(t0)x then C’y ← C’y ∩{ gi-1,gi, gi+1}
13:             if yK(t0)x then C’y ← C’y ∩{gi, gi+1}
14:             if xK(t0)y then C’y ← C’y ∩{gi-1, gi}
15:             if |C’y| ∃ 0 and ∃{Ii | |Ii| < nclass, gi ⊆ C ’y} then
16:             j ← mingi ⊂ C’y {i | |Ii| < nclass}
17:             Cy ← gj
18:             Tn,k ← Tn,k ∪ y
19:             Ij ← Ij ∪ y
20:      Full ← {Ii | |Ii| = nclass}
21: until |Full| = k 
22: return Tn,k

a) Pseudocode to generate central  
elements of Tn,k

b) Pseudocode to complete the training  
reference set Tn,k

Figure 4. Pseudocode for methods GenerateCentralElements(…) and ExtendClasses(…)
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The training set Tn,k is initialized with the set T obtained from GenerateCentralEle-
ments(…), and it is completed in the algorithm shown in Figure 4b. This algorithm generates 
one new action y at a time (see Line 4), and it identifies the possible classes where it could 
belong according to its relation with the actions x already in Tn,k (see Lines 6 to 14). If there 
are one or more classes for action y, it is chosen the class gi with the smallest value i and 
whose related subset Ii has not been completed (i.e. |Ii| < nclass); otherwise the new action y 
is discarded (see Lines 15 to 20). The ExtendClasses(…) algorithm continues until all the 
classes are completed, and return the generated training set Tn,k (see Lines 21 and 22).

The functions used by methods of Figure 4 are: a) the GenerateRandomActions(n, m, [a, 
b]), which returns n actions with m objectives each with values defined in the range [a,b]; b) 
the function C(x), which provides the index i of the class gi to which action x belongs; and, 
c) the function Fn(x), used to compute the net flow score (and defined in Table 2). 

            Table 2. The computation of the net flow value

Set / Measure Conditions
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( ) ( )
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where Fn(x) > Fn(y) denotes a certain preference of x over y 

Also, the algorithm uses several structures to keep track of the information required for 
the construction of Tn,k, which are: i) Cx, the class; ii) C’y, the group of possible classes to 
assign action y that is compatible with the actual set Tn,k; and, iii) the elements Fx, Ii,avgflow, 
Ii,central which contain information of the net flow score of an action x, the average net flow 
score of the actions Ii of a class gi, and the central element of a class gi, respectively. The al-
gorithm ends when each class has Nmax, then it combines them to form Tn,k and returns it.

Test set Tn

The test set Tn contains a larger number of actions than Tn,k. This set also defines its mem-
bers (actions) by their m criterion values. Each pair (x,y)∈Tn×Tn is associated with a binary 
relation of the set A = {P, I, Q, K, R, ~, P-1, Q–1, K-1} using t0, the characteristic parameters 
of the DMsim. 

The set Tn is also generated through the function GenerateRandomActions(n,m,[a,b]), 
as done previously for Tn,k. It requires as input the number of actions n, the number of 
criteria m describing each action, and the range [a, b] within which each criterion value is 
randomly generated. The set A = {P, I, Q, K, R, ~, P–1, Q–1, K–1} contains the preference 
statements that the DMsim establishes on every (x,y)∈Tn×Tn, having in mind that he/she can 
only assign one relation per pair. To simulate the DM’s responses, we assume that the rela-
tion xAiy holds if and only if xAi(h0, l0, b0, e0)y where Ai∈A and Ai(h0, l0, b0, e0) is one 
of the relations given in Table 1. That is, the preference statement made by simulated DMs 
when (s)he is questioned about his/her preference on a pair of actions (x, y) corresponds to 
xAi(h0, l0, b0, e0)y.



Technological and Economic Development of Economy, 2019, 25(4): 693–715 705

Finally, the creation of the test set Tn allows the assessment of the performance of the 
proposed PDA approach in different events than those used to elicit the parameter values. 
In other words, the set Tn represents future decisions of a DM that can be available to test 
the preference model generated to characterize the DM. This work defines such preference 
statements as relations established by the DM among pairs of actions.

2.3. Definition of the sets of instances

The PDA approach proposed in Section 1.4 was validated using different instances of Prob-
lem (3) as training sets, and different test sets. 

The set S42,3 is the training instances set and it is formed by 16 instances that were used to 
train the PDA approach to elicit the parameters of 16 different simulated DMs. Particularly, 
each instance Li = (DMsim-parameters, Tn,k) on S42,3 contains a specific randomly generated 
DMsim-parameters, and a training reference set T42,3 created using GenerateInstance(…). The 
inputs received by this algorithm were the parameter values t0 corresponding to that DMsim-

parameters, a sampling size N = 1000, a number of classes k = 3, a number of criteria of m = 10, 
the interval [1, 10] for each criterion, and nclass=14 as the number of actions per class. The 
training reference set T42,3 size of 42 actions is considered a reasonable size for simulation 
due to it is a size that would not require an excessive effort from a real DM. 

The set S100 is the test cases set, and it contains also 16 cases; each test case Gi  =  
(DMsim-parameters, Tn) on S100 contains the DMsim-parameters associated to its corresponding in-
stance Li in S42,3, and a test set T100. The set T100 is formed by 100 actions characterized by 
10 criteria, whose values are randomly defined in the interval [1, 10], and, by 9,900 different 
relations among pairs of actions. These preference relations are defined using the DMsim, or 
t0, and according to Table 1; therefore, each test case of S100 contains 9,900 preference judg-
ments that express preferences from simulated DMs.

3. Experimental design

The conducted experimental design evaluates the performance of the PDA based method 
proposed in Section 1.4. This method elicits parameters from a battery of sorted samples 
organized in classes that reflect the preferences of a DM. The content of this experiment is 
organized as follows. The first part describes the indicator of quality used to evaluate the 
solution set offered by the PDA; this indicator is based on the inconsistencies produced by 
the approach using the estimated parameters’ values obtained from each reference set Tn,k. 
The second part describes the evaluation done over the optimization approach; this part 
details the statistical analysis used to demonstrate whether there is a significant difference 
between the performance of the optimization approach when using different metaheuristics 
in its implementation.

3.1. Performance evaluation

The indicator IP, or estimated error, defined in this section, is used to evaluate the quality 
of the solutions provided by the approach presented in Section 1.4. This indicator evaluates 
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the prediction capacity of the best solution set t* = (h∗, l∗, b∗, e∗) obtained for each instance 
Li∈S42,3. Such prediction capacity is measured by computing the error in the estimation of 
preferences on the corresponding test case Gi∈S100.

Given an instance Li = (DMsim-parameters, T42,3) of S42,3, its corresponding test case Gi = 
(DMsim-parameters, T100), the best solution t* estimated by the proposed PDA approach, and the 
parameters’ values setting t0 = (h0, l0, b0, e0) associated with DMsim-parameters, the calculation 
of the estimated error IP can be defined as in Eq. (4). 
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The calculation of IP assesses the inconsistencies existing between the best solution t* to 
Problem (3) derived from the optimization approach, and the parameters t0 that define the 
simulated DM. This indicator defines as inconsistency the situation in which a strict prefer-
ence relation xP(t0)y established by the DMsim on the training set T42,3 is not in concor-
dance with the preference relation xA(t*)y defined by the solution t* given by the PDA, i.e 
the estimated parameters’ values failed in the prediction of the preference relation and they 
predicted xA(t*)y for a relation A ≠ P.

In summary, the Eq. (4) can be used to measure the quality of the solutions obtained 
from S42,3 in the optimization approach by using t* to define the preference relations in a 
new set S100. Then, IP is the indicator of the performance of the parameter elicitation method 
proposed in this work.

3.2. Statistical evaluation

The analysis of the performance of the optimization approach proposed in this work is evalu-
ated using three different strategies. The first strategy uses the proposed GA that looks for 
a solution in a search space defined for all the parameters elicited within a range deviated 
from the expected value on ±30%, this strategy is denoted m*1. The second strategy (denoted 
m*2) uses also the same GA, and it also looks for a solution in a search space defined in the 
range of ±30% of the expected values in all the parameters but l, which is reduced to ±10%. 
The purpose of this experiment is to examine the importance of a proper definition of this 
parameter. The last strategy uses the metaheuristic Simulated Annealing on its most basic 
definition, and it also considers the search space defined in a range deviated 30% from the 
expected parameter values, this strategy is denoted m*3, and its purpose consists in to evaluate 
the performance of the proposed PDA using a different metaheuristic.

The evaluation is centered in the identification of the best strategy to estimate the prefer-
ence parameters from the DM’s judgments. The proposed optimization approach can be used 
to elicit parameters, and it is evaluated on the performance of different metaheuristics, and 
how the search space can influence in a proper identification of parameters. For this purpose, 
it is analysed in this section if there is or not significant differences among m*1, m*2 , and m*3. 

The statistical analysis uses the indicator IP to measure the quality of the solutions derived 
from the optimization approach. Firstly, the indicator is computed using the best solutions 
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obtained by each strategy m*i on each instance from S42,3, and the test cases set S100. After 
that, statistical tests were applied over the sorted data to assess the significance of the re-
sults. For this purpose, the STAC Web Platform1, (a statistical tool equipped with different 
statistical tests), was used. Within this platform, the selected tests where the Non-parametric 
multiple groups All vs All, with the particular case of the Friedman test as Ranking Test. 
Additionally, they were specified as Post-hoc methods for p-value adjustment the tests: a) 
Finner; b) Nemenyi; c) Holm; and d) Shaffer. The significance level was set at 0.05. In the 
Ranking Test, the null hypothesis H0 was: The means of the results of two or more algorithms 
are the same. In the post-hoc analysis, the null hypothesis H0 was: The mean of the results of 
each pair of groups is equal.

4. Results

This section presents the results derived from analysis of the optimization approach and its 
implementations m*1, m*2, and m*3 based on different metaheuristics and configurations. The 
results are organized into two subsections. The first subsection presents the summary of 
the performance indicator IP using the estimations obtained with the set of instances S42,3, 
and the test cases set S100. The second subsection summarizes the results from the statistical 
evaluation; according to these data, the method reveals that the strategy using a change over 
the range of ±10% from the expected values of the parameters has the best performance, 
showing significant difference in contrast with the other two strategies; this reveals the im-
portance for a DM to invest a bit of time trying to figure out proper ranges of values to 
estimate parameters of a preference model.

Let us note that the performance of all the indicators m*
perf in the set S42,3 was of 0 

inconsistences, i.e. the preference model with the estimated parameter values given by the 
optimization approach reflects the preferences of the DM. The estimation of parameters was 
used with strategies having a stop criterion of 100000 evaluations, and a population of 100 
individuals (in the case of the GA). The results from the evaluation of the performance of 
each solution, and from the analysis of robustness are presented in the following section.

4.1. Results from evaluation of the performance

The first part of the experiment measured the performance evaluation using the indicator IP 
over each test case Gi∈S100. Table 3 presents the values achieved for each instance Li∈S42,3. 
The 16 instances are organized in four sub-tables. Each sub-table is organized in sets of three 
columns representing an instance and the performance m*1, m*2, m*3 of each strategy given 
by IP, i.e. the number of inconsistencies; this performance is contrasted against the expected 
number of strict preference relations (given by the row titled Total), and the number of cor-
rect predictions (shown in the row Consisten.), according to the corresponding test set of 
the case Gi.

1 Statistical Web Tool found at URL: http://tec.citius.usc.es/stac/ranking.html

http://tec.citius.usc.es/stac/ranking.html
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Table 3. Comparison of performance among PDA strategies using IP

a) Instances 1 to 4

Instance L1 L2 L3 L4

Strategy m*1 m*2 m*3 m*1 m*2 m*3 m*1 m*2 m*3 m*1 m*2 m*3

Total 529 555 558 540 501 578 322 338 376 309 313 354
IP 75 15 28 72 41 66 30 26 56 29 25 62
Consisten. 454 540 530 468 460 512 292 312 320 280 288 292

b) Instances 5 to 8

Instance L5 L6 L7 L8

Strategy m*1 m*2 m*3 m*1 m*2 m*3 m*1 m*2 m*3 m*1 m*2 m*3

Total 517 521 504 319 291 326 227 247 285 211 216 248
IP 61 29 28 55 27 46 31 21 43 33 26 56
Consisten. 456 492 476 264 264 280 196 226 242 178 190 192

c) Instances 9 to 12

Instance L9 L10 L11 L12

Strategy m*1 m*2 m*3 m*1 m*2 m*3 m*1 m*2 m*3 m*1 m*2 m*3

Total 527 553 562 325 340 375 365 385 411 251 270 306
IP 45 23 22 35 30 47 47 27 55 55 30 64
Consisten. 482 530 540 290 310 328 318 358 356 196 240 242

d) Instances 13 to 16

Instance L13 L14 L15 L16

Strategy m*1 m*2 m*3 m*1 m*2 m*3 m*1 m*2 m*3 m*1 m*2 m*3

Total 426 435 416 395 397 443 243 281 297 229 248 310
IP 32 23 18 37 33 49 35 27 37 27 26 78
Consisten. 394 412 398 358 364 394 208 254 260 202 222 232

4.2. Results from the statistical evaluation

Table 4 summarizes the values of the indicator IP; these values are used to make the statisti-
cal evaluation. The first column shows the instances, the remaining ones contain the value 
of IP per strategy.

The result from the Friedman ranking test, with a significant level of 0.05, rejects the null 
hypothesis H0: the means of the results of two or more algorithms are the same. Table 5 shows 
the ranking derived from this test, which presents the strategy m*2 as the best algorithm, i.e. 
the use of the GA with a better range of search for the value of the parameter l.

Tables 6a, 6b, 6c, and 6d summarize the results of post-hoc analysis, for S100 using Finner, 
Nemenyi, Holm, and Shafer comparisons, respectively. The null hypothesis tested was H0: 
the mean of the results of each pair of groups is equal. In all the comparisons, the hypothesis 
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is rejected when the strategy m*2 is compared against the other two, implying that there is 
significant difference in the performance achieved when using it. In the other side, the com-
parisons accepted the hypothesis when using the strategies m*1 vs m*3 which indicates that 
they have a similar performance. 

Finally, derived from the above results, let us note that the proposed optimization ap-
proach estimates properly the parameter values of a preference model from a battery of as-
signment examples. This claim is supported by the fact that the elicitation performed by all 
the strategies reduced the number of inconsistencies to 0, in all the instances of the set S42,3. 
Also, it was observed that a proper definition of the bounds of the parameters under study 
limits the search space with a positive impact on their elicitation; this is corroborated by the 
result obtained from the controlled reduction of the feasible region of l in the strategy m*2 
that shows a better estimation of parameter values, with a significant difference in its perfor-
mance (given by IP), when it was compared against m*1 and m*3 configured with a different 
feasible region. The last fact reflects the importance that has the involvement of the DM on 
the proper definition of feasible bounds for the preference model’s parameters.

Table 4. Summary of inconsistencies derived from indicator IP

Instance L m*1 m*2 m*3

L1 75 15 28
L2 72 41 66
L3 30 26 56
L4 29 25 62
L5 61 29 28
L6 55 27 46
L7 31 21 43
L8 33 26 56
L9 45 23 22
L10 35 30 47
L11 47 27 55
L12 55 30 64
L13 32 23 18
L14 37 33 49
L15 35 27 37
L16 27 26 78

Table 5. Ranking derived from Friedman test

Rank Algorithm
1.18750 m*2

2.37500 m*1

2.43750 m*3
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Table 6. Results of the post-hoc multiple comparisons derived from the ranking test

a) Finner post-hoc comparison

Comparison Statistic Adjusted p-value Result

m*1 vs m*2 3.35876 0.00122 H0 is rejected
m*2 vs m*3 3.53553 0.00122 H0 is rejected
m*1 vs m*3 0.17678 0.85968 H0 is accepted

b) Nemenyi post-hoc comparison

Comparison Statistic Adjusted p-value Result

m*1 vs m*2 3.35876 0.00235 H0 is rejected
m*2 vs m*3 3.53553 0.00122 H0 is rejected
m*1 vs m*3 0.17678 1.00000 H0 is accepted

c) Holm post-hoc comparison

Comparison Statistic Adjusted p-value Result

m*1 vs m*2 3.35876 0.00157 H0 is rejected

m*2 vs m*3 3.53553 0.00122 H0 is rejected

m*1 vs m*3 0.17678 0.85968 H0 is accepted

d) Shaffer post-hoc comparison

Comparison Statistic Adjusted p-value Result

m*1 vs m*2 3.35876 0.00157 H0 is rejected
m*2 vs m*3 3.53553 0.00122 H0 is rejected
m*1 vs m*3 0.17678 0.85968 H0 is accepted

Conclusions

The present work deals with the parameter elicitation problem in multi-criteria decision 
problems based on a PDA strategy. It defines a bi-objective optimization problem to elicit 
preference parameter values, and it proposes a strategy based on single-objective metaheuris-
tics to solve it. The strategy obeys a lexicographical order identified in the optimization ap-
proach, and it is tested extensively through two distinct metaheuristics, and different settings 
for the parameter search space. 

The performance analysis of the proposed strategy was evaluated based on two experi-
mental designs. The first one considers the application of two different metaheuristics, i.e. 
the Genetic and the Simulated Annealing algorithms. The results from this experiment reveal 
a significant statistical difference, in favour of the Genetic Algorithm (GA), on the capacity 
of prediction obtained from the estimated parameter values. In other words, the proposed 
elicitation strategy estimates better the parameter values for the preference model when the 
GA is used.
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The second experimental design involves the use of the GA and two distinct configura-
tions of the search space defined for the credibility threshold l. The results show that a search 
space deviated ±10% from the expected value of l improves the quality of the estimated 
parameter values from those obtained from a search space deviated ±30%. It was observed 
that the GA estimated parameters values that when used to predict new situations obtained a 
statistically significant reduction in the number of inconsistencies. This information provides 
evidence of the importance of an adequate definition of the range of possible values of the 
parameters to be elicited by the DM, as the case of l, because the better the bounds that are 
provided, the better estimations that are achieved by the proposed elicitation strategy.

Finally, let us note that this research also contributes with an approach to simulate Deci-
sion Maker (DM) preferences using actions organized in an ordinal ordered set of classes, 
a strategy that can be used to generate benchmark of random reference sets to test future 
optimization approaches for related problems. Also, let us point out that the bi-objective 
strategy does not scale with the number of criteria involved in the actions considered, and 
hence it can deal with high dimensional actions.
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APPENDIX

Calculation of the credibility index of outranking

Let G be a family of N consistent criteria which are used as basis for the DM’s judgments 
about actions. The ELECTRE methods introduced a binary relation S that is a model of the 
preference relation “at least as good as”. Proposition xSy (‘x outranks y’) holds if, and only 
if, the DM has sufficient arguments in favour of ‘x is at least as good as y’ and there are no 
strong arguments against it. In more formal way, the coalition of the criteria in agreement 
with that proposition is strong enough, and there is no important coalition discordant with 
it. This can be expressed by the following logical equivalence:

 ( ) ( ) , , ,xSy C x y D x y↔ ∧

where: 
 – C(x,y) is the predicate about the strength of the concordance coalition; it is 
composed by the criteria subsets ( ) ( ) ( ){ } | i i i iC xSy g G g x g y q= − ≥ −  and 

( ) ( ) ( ) ( ){ }  | i i i i i iC yQx g G g y p g x g y q= − ≤ < − . Observe that Q denotes weak 
preference, and pi and qi denote the preference and indifference thresholds for cri-
terion i, pi ≥ qi ≥ 0.

 – D(x,y) is the predicate about the strength of the discordance coalition; it is formed by 
the criteria subset ( ) ( ) ( ){ }|i i i iC yPx g G g y g x p= ∈ − ≥ , here P denotes strict prefer-
ence.

 – ∧ and ~ are the logical connectives for fuzzy conjunction and fuzzy negation, respec-
tively.

Let c(x, y) denote the truth degree of predicate C(x, y). Using the product operator for 
conjunction, in ELECTRE III the degree of credibility s(x,y) of xSy is calculated by:

 ( ) ( ) ( ), , , ,x y c x y Nd x ys = ⋅

where Nd(x, y) denotes the truth degree of the non-discordance predicate. The concordance 
index c(x,y) is defined as follows:

 

( ) ( ), , ,
i

i i
g G

c x y w c x y
∈

= ⋅∑
where wi is the weight of the i-th criterion (w1 + w2 + ... + wN = 1), and ci(x, y) is the marginal 
(partial) concordance index for the i-th criterion. This index is calculated by:
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The partial discordance is measured in comparison with a veto threshold vi, which is the 
maximum difference obtained from gi(y)–gi(x) that is compatible with s(x,y) > 0. Following 
Mousseau and Dias (2004), we shall use a simplification of the original formulation of the 
discordance indices in the ELECTRE III method given by:

 
( )

( )
( ){ }, min 1 , .

i
ig C yPx

Nd x y d x y
∈

= −  

The value of di(x,y) is calculated by:
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∇


∇



∇

where ∇i = gi(y) – gi(x) and ui is a discordance (pre-veto) threshold. Finally, and given that 
the degree of credibility s(x,y) is calculated by combining all the previous equations, the 
following parameters must be specified:

1. the vector of weights w;
2. the vector of indifference thresholds q;
3. the vector of preference thresholds p;
4. the vector of veto thresholds v;
5. the vector of discordance thresholds u.

Additionally, if a crisp outranking relation is built on the universe, then a cutting level 
l* should be specified.


