Measuring the efficiency of banks: the bootstrapped I-distance GAR DEA approach

    Milan Radojicic Affiliation
    ; Gordana Savic Affiliation
    ; Veljko Jeremic Affiliation


The efficiency of the banking sector, particularly in developing countries, has captivated the attention of various researchers. Contributing to this issue, we present the results of in-depth analysis of the efficiency of Serbian banks during the period 2005–2016. Unlike previous papers evaluating the efficiency of South-Eastern European banks, we emphasize the importance of applying weight restrictions in Data Envelopment Analysis (DEA). The aim is to incorporate every aspect of a decision-making unit’s performance to avoid misevaluation of a bank’s efficiency. As a possible remedy to the issue, a bootstrapped I-distance is suggested as a statistically sound framework for determining weight bounds in the Global Assurance Region (GAR) DEA model. In terms of average efficiency, the banking sector of Serbia exhibits an improving trend over the period analyzed. The results show how banks can be evaluated when the impact of all the operating inputs and outputs are properly factored into the study.

Keyword : efficiency evaluation, data envelopment analysis, weight restriction, bootstrap, I-distance, banking, multivariate statistical methods

How to Cite
Radojicic, M., Savic, G., & Jeremic, V. (2018). Measuring the efficiency of banks: the bootstrapped I-distance GAR DEA approach. Technological and Economic Development of Economy, 24(4), 1581-1605.
Published in Issue
Aug 14, 2018
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Aiello, F., & Bonanno, G. (2017). On the sources of heterogeneity in banking efficiency literature. Journal of Economic Surveys, 32(1), 194-225.

Alhassan, A. L., & Tetteh, M. L. (2017). Non-Interest Income and Bank Efficiency in Ghana: a two-stage DEA bootstrapping approach. Journal of African Business, 18(1), 124-142.

Allen, R., Athanassopoulos, A., Dyson, R. G., & Thanassoulis, E. (1997). Weights restrictions and value judgements in data envelopment analysis: evolution, development and future directions. Annals of Operations Research, 73, 13-34.

Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management science, 39(10), 1261-1264.

Asmild, M., & Matthews, K. (2012). Multi-directional efficiency analysis of efficiency patterns in Chinese banks 1997–2008. European Journal of Operational Research, 219(2), 434-441.

Avkiran, N. K. (1999). An application reference for data envelopment analysis in branch banking: helping the novice researcher. International Journal of Bank Marketing, 17(5), 206-220.

Avkiran, N. K. (2006). Developing foreign bank efficiency models for DEA grounded in finance theory. Socio-Economic planning sciences, 40(4), 275-296.

Avkiran, N. K. (2009). Opening the black box of efficiency analysis: an illustration with UAE banks, Omega, 37(4), 930-941.

Avkiran, N. K. (2015). An illustration of dynamic network DEA in commercial banking including robustness tests. Omega, 55, 141-150.

Bal, H., Örkcü, H. H., & Çelebioğlu, S. (2010). Improving the discrimination power and weights dispersion in the data envelopment analysis. Computers & Operations Research, 37(1), 99-107.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.

Barros, C. P., Chen, Z., Liang, Q. B., & Peypoch, N. (2011). Technical efficiency in the Chinese banking sector. Economic Modelling, 28(5), 2083-2089.

Berger, A. N. (2007). International comparisons of banking efficiency. Financial Markets, Institutions & Instruments, 16(3), 119-144.

Berger, A. N., & Humphrey, D. B. (1997). Efficiency of financial institutions: International survey and directions for future research. European Journal of Operational Research, 98(2), 175-212.

Bulajic, M., Jeremic, V., Knezevic, S., & Zarkic-Joksimovic, N. (2013). A statistical approach to evaluating efficiency of banks. Economic Research-Ekonomska Istraživanja, 26(4), 91-100.

Casu, B., Girardone, C., & Molyneux, P. (2004). Productivity change in European banking: a comparison of parametric and non-parametric approaches. Journal of Banking & Finance, 28(10), 2521-2540.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.

Chiu, C. R., Chiu, Y. H., Fang, C. L., & Pang, R. Z. (2014). The performance of commercial banks based on a context – dependent range – adjusted measure model, International Transactions in Operational Research, 21(5), 761-775.

Cook, W. D., & Zhu, J. (2008). CAR-DEA: context-dependent assurance regions in DEA. Operations Research, 56(1), 69-78.

Cooper, W. W., Seiford, L. M., & Tone, K. (2006). Introduction to data envelopment analysis and its uses: with DEA-solver software and references. Springer Science & Business Media.

Cvetkoska, V., & Savić, G. (2017). Efficiency of bank branches: empirical evidence from a two-phase research approach. Economic Research-Ekonomska Istraživanja, 30(1), 318-333.

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Vol. 1). Cambridge university press.

Davutyan, N., & Yildirim, C. (2017). Efficiency in Turkish banking: post-restructuring evidence. The European Journal of Finance, 23(2), 170-191.

Delis, M., Iosifidi, M., & Tsionas, M. G. (2017). Endogenous bank risk and efficiency. European Journal of Operational Research, 260(1), 376-387.

Devaney, M., & Weber, W. L. (2002). Small-business lending and profit efficiency in commercial banking. Journal of Financial Services Research, 22(3), 225-246.

Dobrota, M., Bulajic, M., Bornmann, L., & Jeremic, V. (2016). A new approach to the QS university ranking using the composite I‐distance indicator: uncertainty and sensitivity analyses. Journal of the Association for Information Science and Technology, 67(1), 200-211.

Dobrota, M., Martic, M., Bulajic, M., & Jeremic, V. (2015). Two-phased composite I-distance indicator approach for evaluation of countries’ information development. Telecommunications Policy, 39(5), 406-420.

Dyson, R. G., & Thanassoulis, E. (1988). Reducing weight flexibility in data envelopment analysis. Journal of the Operational Research Society, 39(6), 563-576.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1), 1-26.

Emrouznejad, A., Banker, R., Lopes, A. L., de Almeida, M. R. (2014). DEA in the public sector. Socioeconomic Planning Sciences, 48(1), 2-3.

Emrouznejad, A., & Yang, G. L. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4-8.

Eskelinen, J. (2017). Comparison of variable selection techniques for data envelopment analysis in a retail bank. European Journal of Operational Research, 259(2), 778-788.

Färe, R., Grosskopf, S., Maudos, J., & Tortosa-Ausina, E. (2015). Revisiting the quiet life hypothesis in banking using nonparametric techniques. Journal of Business Economics and Management, 16(1), 159-187.

Ferrier, G. D., & Hirschberg, J. G. (1997). Bootstrapping confidence intervals for linear programming efficiency scores: with an illustration using Italian banking data. Journal of Productivity Analysis, 8(1), 19-33.

Fethi, M. D., & Pasiouras, F. (2010). Assessing bank efficiency and performance with operational research and artificial intelligence techniques: a survey. European Journal of Operational Research, 204(2), 189-198.

Fukuyama, H., & Matousek, R. (2017). Modelling bank performance: a network DEA approach. European Journal of Operational Research, 259(2), 721-732.

Fukuyama, H., & Weber, W. L. (2002). Estimating output allocative efficiency and productivity change: application to Japanese banks. European Journal of Operational Research, 137(1), 177-190.

Fukuyama, H., & Weber, W. L. (2017). Japanese bank productivity, 2007–2012: a dynamic network approach. Pacific Economic Review, 22(4), 649-676.

Galagedera, D. U. (2014). Modeling risk concerns and returns preferences in performance appraisal: an application to global equity markets. Journal of International Financial Markets, Institutions and Money, 33, 400-416.

Gofman, M. (2017). Efficiency and stability of a financial architecture with too-interconnected-to-fail institutions. Journal of Financial Economics, 124(1), 113-146.

Gonçalves, A. C., Almeida, R. M., Lins, M. P. E., & Samanez, C. P. (2013). Canonical correlation analysis in the definition of weight restrictions for data envelopment analysis. Journal of Applied Statistics, 40(5), 1032-1043.

Hou, X., Wang, Q., & Zhang, Q. (2014). Market structure, risk taking, and the efficiency of Chinese commercial banks. Emerging Markets Review, 20, 75-88.

Huang, T. H., Lin, C. I., & Chen, K. C. (2017). Evaluating efficiencies of Chinese commercial banks in the context of stochastic multistage technologies. Pacific-Basin Finance Journal, 41, 93-110.

Isik, I., & Hassan, M. K. (2002). Technical, scale and allocative efficiencies of Turkish banking industry. Journal of Banking & Finance, 26(4), 719-766.

Išljamović, S., Jeremić, V., Petrović, N., & Radojičić, Z. (2015). Colouring the socio-economic development into green: I-distance framework for countries’ welfare evaluation. Quality & Quantity, 49(2), 617-629.

Ivanovic, B. (1977). Classification theory. Institute for Industrial Economic, Belgrade.

Jain, V., Kumar, A., Kumar, S., & Chandra, C. (2015). Weight restrictions in data envelopment analysis: a comprehensive genetic algorithm based approach for incorporating value judgments. Expert Systems with Applications, 42(3), 1503-1512.

Jayaraman, A. R., Srinivasan, M. R., & Jeremic, V. (2013). Empirical analysis of banks in India using DBA and DEA. Management, 18(69), 25-35.

Jeremic, V., Bulajic, M., Martic, M., Markovic, A., Savic, G., Jeremic, D., & Radojicic, Z. (2012). An evaluation of European countries’ health systems through distance based analysis. Hippokratia, 16(2), 170-174.

Jeremic, V., Bulajic, M., Martic, M., & Radojicic, Z. (2011). A fresh approach to evaluating the academic ranking of world universities. Scientometrics, 87(3), 587-596.

Johnes, J., Izzeldin, M., & Pappas, V. (2014). A comparison of performance of Islamic and conventional banks 2004–2009. Journal of Economic Behavior & Organization, 103, 93-107.

Kao, C., & Liu, S. T. (2004). Predicting bank performance with financial forecasts: a case of Taiwan commercial banks. Journal of Banking & Finance, 28(10), 2353-2368.

Kao, C., & Liu, S. T. (2014). Multi-period efficiency measurement in data envelopment analysis: the case of Taiwanese commercial banks. Omega, 47, 90-98.

Kao, C., & Liu, S. T. (2016). A parallel production frontiers approach for intertemporal efficiency analysis: the case of Taiwanese commercial banks. European Journal of Operational Research, 255(2), 411-421.

Kevork, I. S., Pange, J., Tzeremes, P., & Tzeremes, N. G. (2017). Estimating Malmquist productivity indexes using probabilistic directional distances: an application to the European banking sector. European Journal of Operational Research, 261(3), 1125-1140.

Kumar, M., Charles, V., & Mishra, C. S. (2016). Evaluating the performance of indian banking sector using DEA during post-reform and global financial crisis. Journal of Business Economics and Management, 17(1), 156-172.

Kuosmanen, T., & Post, T. (2001). Measuring economic efficiency with incomplete price information: with an application to European commercial banks. European Journal of Operational Research, 134(1), 43-58.

Le, P. T., Harvie, C., & Arjomandi, A. (2017). Testing for differences in technical efficiency among groups within an industry. Applied Economics Letters, 24(3), 159-162.

Liu, J. S., Lu, L.Y., & Lu, W. M. (2016). Research fronts in data envelopment analysis. Omega, 58, 33-45.

Liu, J. S., Lu, L. Y., Lu, W. M., Lin, B. J. (2013). Data envelopment analysis 1978–2010: a citation-based literature survey. Omega, 41(1), 3-15.

Mandic, K., Delibasic, B., Knezevic S., & Benkovic, S. (2017). Analysis of the efficiency of insurance companies in Serbia using the fuzzy AHP and TOPSIS methods. Economic Research-Ekonomska Istraživanja, 30(1), 550-565.

Marković, M., Knežević, S., Brown, A., & Dmitrović, V. (2015). Measuring the productivity of Serbian banks using Malmquist index. Management: Journal of Sustainable Business and Management Solutions in Emerging Economies, 20(76), 1-10.

Mecit, E. D., & Alp, I. (2013). A new proposed model of restricted data envelopment analysis by correlation coefficients. Applied Mathematical Modelling, 37(5), 3407-3425.

Mihailović, N., Bulajić M., & Savić, G. (2009). Ranking of banks in Serbia. Yugoslav Journal of Operations Research, 19(2), 323-334.

Moradi‐Motlagh, A., & Saleh, A. S. (2014). Re‐examining the technical efficiency of Australian banks: a Bootstrap DEA Approach. Australian Economic Papers, 53(1-2), 112-128.

Mukherjee, A., Nath, P., & Nath Pal, M. (2002). Performance benchmarking and strategic homogeneity of Indian banks. International Journal of Bank Marketing, 20(3), 122-139.

Nurboja, B., & Košak, M. (2017). Banking efficiency in South East Europe: evidence for financial crises and the gap between new EU members and candidate countries. Economic Systems, 41(1), 122-138.

Paradi, J. C., & Zhu, H. (2013). A survey on bank branch efficiency and performance research with data envelopment analysis. Omega, 41(1), 61-79.

Paul, S., & Kourouche, K. (2008). Regulatory policy and the efficiency of the banking sector in Australia. Australian Economic Review, 41(3), 260-271.

Podinovski, V. V. (2005). The explicit role of weight bounds in models of data envelopment analysis. Journal of the Operational Research Society, 56(12), 1408-1418.

Podinovski, V. V. (2016). Optimal weights in DEA models with weight restrictions. European Journal of Operational Research, 254(3), 916-924.

Psillaki, M., & Mamatzakis, E. (2017). What drives bank performance in transitions economies? The impact of reforms and regulations. Research in International Business and Finance, 39, 578-594.

Puri, J., & Yadav, S. P. (2013). A concept of fuzzy input mix-efficiency in fuzzy DEA and its application in banking sector. Expert Systems with Applications, 40(5), 1437-1450.

Radojicic, M., Savic, G., Radovanovic, S., & Jeremic, V. (2015, September). A novel bootstrap DBA-DEA approach in evaluating efficiency of banks. 12th Balkan Conference on Operational Research – BALCOR (pp. 375-384), Constanta, Romania.

Ray, S. C., & Das, A. (2010). Distribution of cost and profit efficiency: evidence from Indian banking. European Journal of Operational Research, 201(1), 297-307.

Řepková, I. (2014). Efficiency of the Czech banking sector employing the DEA window analysis approach. Procedia Economics and Finance, 12, 587-596.

Sahoo, B. K., & Tone, K. (2009). Decomposing capacity utilization in data envelopment analysis: an application to banks in India. European Journal of Operational Research, 195(2), 575-594.

Sarrico, C. S., & Dyson, R. G. (2004). Restricting virtual weights in data envelopment analysis. European Journal of Operational Research, 159(1), 17-34.

Savic, G., Radosavljevic, M., & Ilievski, D. (2012). DEA window analysis approach for measuring the efficiency of Serbian banks based on panel data. Management, 17(65), 5-14.

Scalzer, R. S., Rodrigues, A., Macedo, M. Á. D. S., & Wanke, P. (2018). Insolvency of Brazilian electricity distributors: a DEA bootstrap approach. Technological and Economic Development of Economy, 24(2), 718-738.

Seifert, L. M., & Zhu, J. (1998). Identifying excesses and deficits in Chinese industrial productivity (1953–1990): a weighted data envelopment analysis approach. Omega, 26(2), 279-296.

Shang, J., & Sueyoshi, T. (1995). A unified framework for the selection of a flexible manufacturing system. European Journal of Operational Research, 85(2), 297-315.

Silva, T. C., Tabak, B. M., Cajueiro, D. O., Dias, M. V. B. (2017). A comparison of DEA and SFA using micro-and macro-level perspectives: efficiency of Chinese local banks. Physica A: Statistical Mechanics and its Applications, 469, 216-223.

Simar, L. (2007). How to improve the performances of DEA/FDH estimators in the presence of noise?. Journal of Productivity Analysis, 28(3), 183-201.

Simar, L., & Wilson, P. W. (1998). Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models. Management Science, 44(1), 49-61.

Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage, semi-parametric models of production processes. Journal of Econometrics, 136(1), 31-64.

Simar, L., & Zelenyuk, V. (2011). Stochastic FDH/DEA estimators for frontier analysis. Journal of Productivity Analysis, 36(1), 1-20.

Simper, R., Hall, M. J., Liu, W., Zelenyuk, V., & Zhou, Z. (2017). How relevant is the choice of risk management control variable to non-parametric bank profit efficiency analysis? The case of South Korean banks. Annals of Operations Research, 250(1), 105-127.

Staub, R. B., Souza, G. D. S., & Tabak, B. M. (2010). Evolution of bank efficiency in Brazil: A DEA approach. European Journal of Operational Research, 202(1), 204-213.

Stewart, C., Matousek, R., & Nguyen, T. N. (2016). Efficiency in the Vietnamese banking system: a DEA double bootstrap approach. Research in International Business and Finance, 36, 96-111.

Takamura, Y., & Tone, K. (2003). A comparative site evaluation study for relocating Japanese government agencies out of Tokyo. Socio-Economic Planning Sciences, 37(2), 85-102.

Tan, Y., Floros, C., & Anchor, J. (2017). The profitability of Chinese banks: impacts of risk, competition and efficiency. Review of Accounting and Finance, 16(1), 86-105.

Tandon, D., Tandon, K., & Malhotra, N. (2014). An evaluation of the technical, pure technical and scale efficiencies in the Indian banking industry using data envelope analysis. Global Business Review, 15(3), 545-563.

Tanna, S., Luo, Y., & De Vita, G. (2017). What is the net effect of financial liberalization on bank productivity? A decomposition analysis of bank total factor productivity growth. Journal of Financial Stability, 30, 67-78.

Taylor, W. M., Thompson, R. G., Thrall, R. M., & Dharmapala, P. S. (1997). DEA/AR efficiency and profitability of Mexican banks a total income model. European Journal of Operational Research, 98(2), 346-363.

Thanassoulis, E., Boussofiane, A., & Dyson, R. G. (1995). Exploring output quality targets in the provision of perinatal care in England using data envelopment analysis. European Journal of Operational Research, 80(3), 588-607.

Thompson, R. G., Langemeier, L. N., Lee, C. T., Lee, E., & Thrall, R. M. (1990). The role of multiplier bounds in efficiency analysis with application to Kansas farming. Journal of Econometrics, 46(1-2), 93-108.

Thompson, R. G., Singleton Jr, F. D., Thrall, R. M., Smith, B. A. (1986). Comparative site evaluations for locating a high-energy physics lab in Texas. Interfaces, 16(6), 35-49.

Thoraneenitiyan, N., & Avkiran, N. K. (2009). Measuring the impact of restructuring and countryspecific factors on the efficiency of post-crisis East Asian banking systems: integrating DEA with SFA. Socio-Economic Planning Sciences, 43(4), 240-252.

Tortosa-Ausina, E., Grifell-Tatjé, E., Armero, C., & Conesa, D. (2008). Sensitivity analysis of efficiency and Malmquist productivity indices: an application to Spanish savings banks. European Journal of Operational Research, 184(3), 1062-1084.

Tsionas, E. G., & Mamatzakis, E. C. (2017). Adjustment costs in the technical efficiency: an application to global banking. European Journal of Operational Research, 256(2), 640-649.

Wong, Y. H., & Beasley, J. E. (1990). Restricting weight flexibility in data envelopment analysis. Journal of the Operational Research Society, 41(9), 829-835.

Yu, M. M. (2012). An integration of the multi-component DEA and GAR models to the measurement of hotel performance. Current Issues in Tourism, 15(5), 461-476.

Zelenyuk, N., & Zelenyuk, V. (2014, December). Regional and ownership drivers of bank efficiency. 27th Australasian Finance and Banking Conference. Sydney, Australia.

Zhu, J. (1996). DEA/AR analysis of the 1988–1989 performance of the Nanjing textiles corporation. Annals of Operations Research, 66(5), 311-335.