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Abstract. This paper presents the technological measures currently being developed at institutes and vehicle research cen-
tres dealing with forefront road identification. In this case, road identification corresponds with the surface irregularities 
and road surface type, which are evaluated by laser scanning and image analysis. Real-time adaptation, adaptation in ad-
vance and system external informing are stated as sequential generations of vehicle suspension and active braking systems 
where road identification is significantly important. Active and semi-active suspensions with their adaptation technologies 
for comfort and road holding characteristics are analysed. Also, an active braking system such as Anti-lock Braking System 
(ABS) and Autonomous Emergency Braking (AEB) have been considered as very sensitive to the road friction state. Ar-
tificial intelligence methods of deep learning have been presented as a promising image analysis method for classification 
of 12 different road surface types. Concluding the achieved benefit of road identification for traffic safety improvement is 
presented with reference to analysed research reports and assumptions made after the initial evaluation.

Keywords: road identification, road irregularities, laser scanning, semi-active suspension, damper, image analysis, friction 
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Introduction

Vehicle safety and comfort properties highly depend on 
the road where the vehicle is moving. From the perspec-
tive of its interaction with the wheel, the road, in respect 
of its design parameters, may be characterized by the type 
of the pavement and its smoothness. The smoothness of a 
road varies in course of its use. The natural environment 
and meteorological conditions cause changes in road con-
dition (most frequently, in terms of cohesion and resist-
ance to movement) and the long-lasting quality. 

The modern society (in terms of civilization develop-
ment) is not prone to change its habits or plans because 
of the environmental conditions. In terms of road traffic, 
it should be understood as a permanent satisfaction of 
the need in mobility independently on the environmen-
tal conditions the maximum possible comfort and safety. 
Vehicle manufacturers try to satisfy the said need by of-
fering increasingly advanced technological systems to the 
market.

Upcoming technologies of autonomous vehicles re-
quire well-defined environmental perception (Tettamanti 
et  al. 2016). However, weather conditions can influence 
the output data of various sensors that is why sensor fu-

sion algorithms should be designed to evaluate environ-
mental information.

In the paper, both technologies that are offered in the 
market already and those being developed by scientists 
and researchers are reviewed. Technologies of semi-active 
and active suspensions and active braking systems were 
chosen for the analysis because these systems are directly 
responsible for ensuring the comfort and safety of driv-
ing. In the most advanced systems, laser scanning of the 
forefront road surface and analysis of images fixed by a 
video camera on the base of artificial intellect are applied. 
In addition, communication technologies, like the ones of 
the not-to-distant future with a potential of broad applica-
tion, are reviewed herein as well.

Section 1 of the paper is divided into three parts ac-
cording to the technologies under analysis and presents a 
review of the existing and being developed vehicle systems 
worldwide. In Section 2, the research works carried out 
by the authors and the systems being created by them are 
presented. At the end of the paper, the conclusions and the 
possible benefit of the reviewed systems for improvement 
of traffic safety are formulated.
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1. Review

In this section, the advanced vehicle technologies are di-
vided into three groups (Figure 1). For this purpose, the 
adaptation level according to the road properties identi-
fied upon applying different methods was chosen.

1.1. System real-time adaptation

Operation of systems capable to adapt themselves in real 
time is based on the correction of an operation mode of 
structural elements of the vehicle according to the param-
eters measured in real time. Such a system needs sensors 
and an Electronic Control Unit (ECU) that transforms the 
signals received from the sensors into the control signals 
(according to a mathematical algorithm). The sensors of 
this type systems measure the instantaneous parameters 
related to the operation of the same system. Such a prin-
ciple of operation shows the main limitations: the sys-
tem adapts itself according to the internal parameters of 
operation and with a delay. In addition, this principle of 
operation is universal enough, but never ensures the best 
possible result upon specific conditions.

In vehicles, passive suspensions are most widely used; 
however, vehicle manufacturers increasingly use semi-ac-
tive and active suspensions. Such suspensions ensure the 
driving comfort, positively impact the interaction between 
the wheel and the road; in addition, they improve safety 
on the vehicle on its braking. 

In literature, a semi-active suspension is analysed very 
frequently (Figure 2). The research works in this area are 
divided into two principal groups:

 – characteristics of the damping element;
 – control of a semi-active suspension.

A considerable share of scientists worldwide is involved 
in the investigation of these groups of semi-active suspen-
sions (Savaresi, Spelta 2009; Savaresi et  al. 2010; Mulla, 
Unaune 2013; Pei et  al. 2016; Rao et  al. 2010; Krauze, 
Kasprzyk 2016; Emam, Abdel Ghany 2012; Marzbanrad 
et  al. 2013; Kashem et  al. 2015; Aly, Salem 2013; Pepe, 
Carcaterra 2016; ZF Friedrichshafen AG 2011; Dąbrowski, 
Ślaski 2016).

A damping force in the dampers of a semi-active sus-
pension may be changed in two ways: by increasing or 
decreasing the hole for liquid flowing in the damper, or; 
by varying liquid flow resistance (Wong 2008). In a semi-
active system, two acceleration sensors are used: the first 
sensor is fixed to the unsprung mass (usually to the wheel 
hub or to the damper itself), the second sensor is arranged 
in the sprung mass, i.e. in the body of the vehicle. For 
each wheel of a vehicle, individual acceleration sensors are 
installed; however, sometimes only one body acceleration 
sensor is used for rear axle (ZF Friedrichshafen AG 2011). 
In addition, a system with the only acceleration sensor 
is being investigated as well (Savaresi, Spelta 2009). Ac-
cording to the obtained values of vertical accelerations, the 
control unit processes the data and sends a signal to the 
damper for changing its damping characteristics.

An active suspension differs from a semi-active sus-
pension in its ability to change both damping and stiffness 
(Mulla, Unaune 2013). Both types of suspension use accel-
eration sensors to measure the accelerations and the shifts 
of the sprung and unsprung mass. In an active suspension, 
a considerable energy input (about 5…10 kW) is required 
for changing the damping and stiffness, whereas in a semi-
active suspension – 10…20 W only (Savaresi et al. 2010).

Beyond adaptive suspensions, other vehicle systems, 
such as braking or traction control, shall be also adjusted 
upon considering the conditions required to ensure the 
safety of driving. Vehicle Anti-lock Braking System (ABS) 
is being permanently improved to ensure the best possible 
stability of the vehicle during intensive braking. Sliding – 
mode control (Sánchez-Torres et al. 2011), adaptive slid-
ing – mode control (Zhang et al. 2014), a different number 
of phases in ABS logic (Bauer 1999; Gerard et al. 2010), 
artificial neural network (Eneh, Okafor 2014) or other 
(Aly et al. 2011) technologies of improvement are usable 
to adapt braking force control upon considering the exist-

Figure 1. Groups of adaptation technologies  
for modern vehicle control

Figure 2. A semi-active suspension scheme (Wong 2008)
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ing road conditions. Control strategies include identifica-
tion of the critical wheel’s slip ratio, angular acceleration 
and it’s adapting to the existing road friction conditions. 
Although many algorithms are being improved upon 
striving for improving the braking efficiency on various 
road conditions, an optimum slip ratio in real time is be-
ing explored for improving lateral stability as well (Dinç-
men et al. 2010). Nevertheless, the most important task 
is accurate enough identification or the road conditions 
as soon as possible (Zheng et al. 2011); however, in the 
case of adaptation according to the parameters of a sys-
tem operating in real time, a delay takes place already, be-
cause the system will adapt itself only after a certain time 
of operation upon specific road conditions. An assessment 
of the road irregularities and ABS control adaptation are 
also important in cases of emergency braking on specific 
pavements (Ivanov et al. 2015; Van der Merwe et al. 2018; 
Žuraulis et al. 2018).

The other group of active vehicle braking systems in-
cludes Adaptive Cruise Control (ACC) and Autonomous 
Emergency Braking (AEB) systems. In most vehicles, ACC 
systems perform the longitudinal dynamics control func-
tion where the situation is identified by radars, cameras or 
other obstacle observance sensors and the braking system 
is activated automatically. Early generations of such sys-
tems only slowed down the vehicle or completely stopped 
it from the limited velocity (30, 50 or 70 km/h). The ap-
peared AEB systems intervened at a limited velocity as 
well; however, in course of improvement of the technolo-
gies, the systems became more sensitive, were activated 
at a higher initial velocity and ensured a higher intensity 
of braking that equalled or even exceeded the actions of 
the driver. In cases of intensive braking, the efficiency of 
braking highly depends on the road conditions – the type 
and the state of the pavement (Yi et al. 2002). On the base 
of the distance to the obstacle and velocity of its approach-
ing, the supplemental AEB system establishes the critical 
moment of the situation and intervenes automatically by 
intensive braking of the vehicle. In such a case, the road 
conditions are of great importance for deciding on the 
critical moment, because the minimum safe distance to 
another vehicle, for example, on dry asphalt or snowy as-
phalt differs considerably (Koglbauer et al. 2018). In such 
a case, an adaptation of the braking system in real time ac-
cording to the internal parameters of operation is insuffi-
cient and the system adaptation in advance is required. In 
this case, the critical braking moment shall be established 
both according to the position of the approaching obstacle 
and the real road conditions.

1.2. System adaptation in advance

The system adaptation in advance is mode advantaged, as 
compared to the system adaptation in real time. It’s archi-
tecture is based by preparation of the system in advance 
for future conditions. In this case, the algorithm receive 
the information required for adaptation in advance from 
the additional sensors and have at least the minimum time 

for the preparation. Here sensors of other type are used 
because the distance of the contrary direction is measured, 
so video cameras or laser scanning are used. Such systems 
of sensors can establish a higher number of parameters of 
the forefront road; however, in many cases, the sensors or 
the processing of the information fixed are considerably 
more complicated, as compared to the above-discussed 
systems operating in real time.

In literature, various principles of suspension control 
are discussed upon. The principle based on an assessment 
of the irregularities of the road surface prior to starting 
of movement of the vehicle on the surface is frequently 
referred to as “preview control” (Dąbrowski, Ślaski 2016; 
Çalışkan et al. 2016). Usually, this principle of control is 
applied for an active suspension and is used for improving 
the driving comfort (Nwokah, Hurmuzlu 2001). Göhrle 
et al. (2015) used a laser sensor fixed to the windscreen: it 
measured the road irregularities prior to starting of move-
ment of the vehicle on the surface under measurement. 
The obtained signal was used for improving the opera-
tion of the active suspension dampers. The authors faced 
problems related to vibrations of the sprung mass of the 
vehicle. While driving on irregularities of the road, the 
body of the vehicle vibrates together with the sensor fixed 
to the body. The other problem is filtering the signals re-
ceived from the acceleration sensors and the gyroscope 
because the measured signals are very noisy.

The delayed operation of the dampers affects the prin-
ciples of control that change the damping parameters in 
real time. The desirable values are reached after a certain 
period of time, not at the moment when they are required. 
One of the most important advantages of “preview con-
trol” principle of suspension control is the gained time for 
alteration of damping values of the damper.

Delays of a damper are divided into two principal 
groups (Więckowski et al. 2018):

 – a delay of a generated and transmitted electric pulse 
signal from the control module to the valve of the 
dampers and its activation;

 – a delay of alteration of the damping values of the 
damper.

Electric delay lasts for about 18 ms, and hydromechan-
ical delay (in the damper) – for about 55 ms (Figure 3). 
An alteration of damping values differs, if the damper op-
erates in compression and rebound modes. During com-
pression, a higher stiffness force of the spring resists, so it 
is calculated that the alteration takes about 67 ms. When 
the damper operates in the rebound mode, the damping 
force values are altered more rapidly  – for about 43 ms 
(Więckowski et al. 2018).

When the current strength starts changing, the damp-
ing force value starts changing as well. It is not necessary 
to wait for the moment when the current strength reaches 
the desirable value, so it is accepted that the total delay 
of the damper from the minimum lasts for about 0.055 s 
(Savaresi, Spelta 2009, Więckowski et al. 2018).
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The other fast developing area of forefront road iden-
tification is based on image processing from monocular 
and binocular (stereo) cameras for using the extracted 
data in Advanced Driving Assistance Systems (ADAS) 
(Krasner, Katz 2016; Prashanth et al. 2014) or self-driving 
vehicle systems (Yang et  al. 2018; Mahmud et  al. 2012; 
Milz et al. 2018). Monocular vision is usually used for de-
termining weather and illumination (Gimonet et al. 2015; 
Cheng et al. 2018), path and obstacle (Nadav, Katz 2016), 
road, line, road edge detection and recognition (Yang et al. 
2018; Van Hamme et al. 2013; Zhang, Wu 2009). Binocu-
lar vision can be efficiently used for object ranging, and 
usually shows better performance than monocular vision, 
especially in the task for creation of depth maps and point 
clouds from visual data, achieving results comparable or 
better than Light Detection And Ranging (LiDAR) (Smol-
yanskiy et al. 2018). 

Most image processing can be done using histograms, 
thresholding and other traditional image processing meth-
ods (Oliveira, Correia 2008), but currently emerging trend 
is the usage of Deep Neural Network (DNN) based meth-
ods for feature extraction, image matching and decision 
making (Smolyanskiy et  al. 2018; Meignen et  al. 1997). 
Huge speed improvements are shown using Graphics 
Processing Unit (GPU) processing in embedded systems 
such as Jetson TX2 (Smolyanskiy et al. 2018). Availabil-
ity of benchmark datasets such as Karlsruhe Institute of 
Technology and Toyota Technological Institute (KITTI) 

by Menze and Geiger (2015), Udacity (2016) promotes the 
development of even better processing methods for vari-
ous use cases, but also there are research on simulated/
synthetic data (Gimonet et al. 2015) and newly collected 
datasets such as Shanghai Automotive Industry Corpora-
tion (SAIC) (Yang et al. 2018). 

DNNs are susceptible to various physical-world at-
tacks, such as false objects, like signs, or perturbations, 
that can cause misclassification and incorrect recognition 
(Eykholt et  al. 2018), therefore development of DNN-
models that are not sensitive to image perturbations and 
learning more about correct positions of true objects on 
road is needed, that is the subject of functional safety 
(Rao, Frtunikj 2018). DNNs can be used for weather and 
illumination (Cheng et  al. 2018), road surface estima-
tion visual data (Naguib et  al. 2017). In addition, there 
are developments where visual methods are used for road 
distress, cracks and other road damage detection (Cafiso 
et al. 2016; Shen 2016; Kashem et al. 2015; Meignen et al. 
1997). We have not found research that is specializing on 
forefront DNN-based road surface type and condition 
prediction, therefore we began research in that direction, 
read more in Section 2.2.

1.3. System external informing

A system informing from external data sources is the most 
effective method of adaptation of the vehicle for forefront 
road conditions. In this case, an exact matching of the 
obtained to the desired road fragment and the predicted 
time of driving on it is of great importance. For data col-
lection and transmission, external stationary sources (such 
as road conditions measurement databases, measurement 
databases, meteorological stations and so on) or other 
vehicles may be used. So, the communication system of 
a vehicle (Vehicle-to-Everything  – V2X) can be associ-
ated with the road infrastructure (Vehicle-to-Infrastruc-
ture – V2I), other vehicles (Vehicle-to-Vehicle – V2V) or 
a specialized data network (Vehicle-to-Network – V2N). 
An advantage of such a conception is sufficient time for 
adapting systems of the vehicle; however, insufficient re-
liability of transmission and a need for special commu-
nication equipment should be identified as imperfections 
of the system. Because of their broad applicability, these 
systems are rapidly developed in the sector of autonomous 
vehicles.

V2X systems are based on various communication 
technologies and may be classified according to the type 
of communication:

 – the basic station – a communication centre (Virtual-
to-Physical – V2P; V2I);

 – a communication centre (V2V);
 – a network where communication centres are inter-
connected and transfer the data (mesh network) 
(V2V).

V2P systems are used to ensure a communication be-
tween the vehicle and pedestrians in order to warn the 
latter on the approaching vehicle, whereas a communica-
tion with the infrastructure (V2I) may be ensured by Ra-
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dio-Frequency IDentification (RFID) technology or low-
power transmission technology integrated in the surface 
of the road usable, for example, for observing the road 
edge or easier identification of the stop line (road signs) 
or by distant traffic information from the control system 
of city transport flows.

At present, it is often spoken that in future self-pro-
pelled vehicles, because of abundant sensors and large 
flows of data generated by them, should be provided with 
a communication system ensuring a higher data trans-
mission velocity; the most attention is paid to 5G mobile 
communication technologies; however, it is emphasized 
that for transport systems, a special network (separated 
from the general-purpose network) should be formed be-
cause a lower delay, as well as high safety and reliability, 
are of a greater importance for it.

LTE Direct is the autonomous long-distance De-
vice-to-Device (D2D) protocol introduced in 3GPP Re-
lease 12 specification (https://www.3gpp.org/specifications/
releases/68-release-12). This communication protocol will 
be used for direct communication between nearby LTE 
devices, therefore, measurement data from one vehicle 
will be available for other vehicles moving behind it that 
can use this data for comfort and safety systems adapta-
tion in advance. In addition, other kinds of V2X can be 
used for providing data about forefront road conditions.

2. Application cases for adaptation systems

2.1. Laser scanning preparation  
for suspension adaptation

Measuring the distance to the road surface enables to pre-
dict its irregularities; however, a proper result is obtained 
after completion of the required corrections of the signal. 
A laser distance sensor is mounted on the sprung mass, 
so its output signal measures the vibrations appearing be-

cause of stiffness and damping of the suspension as well 
as of inertia of the vehicle, not the real road surface. For 
processing a laser sensor signal, a compensation algorithm 
(Figure 4) had been developed (Surblys et al. 2018). The 
algorithm eliminates the following 3 parameters from the 
signal under measuring:

 – a vertical shift of the sprung mass in the point of the 
centre of gravity;

 – a vertical shift of the sprung mass in the laser sensor 
mounting position that is caused by the pitch oscil-
lation;

 – the laser sensor mounting position (for a sensor 
mounted at an angle).

For testing the developed algorithm, experimental 
tests had been carried out. During the tests, the vehicle 
was moving with a velocity of 30 km/h on 0.05 m high and 
0.35 m wide sinusoidal obstacle (traffic speed reduction 
element). Tests were carried out on the 60 m section. The 
road surface was a smooth paving. The following vehicle 
dynamic factors were recorded: body vertical acceleration, 
body pitch velocity and laser signal. Laser was mounted in 
front of vehicle, on the front bumper.

In Figure 5, the results of the tests with and without 
compensation are provided. The obtained curves show 
that the compensation algorithm reduces the vertical os-
cillations of the sprung mass and enables estimating the 
real road profile. The data were fixed on an acceleration 
of the vehicle as well, so the measured laser signal distin-
guished for oscillations of high amplitude at the beginning 
(Figure 5, the zone 1).

A real road profile is provided in Figure 6. The laser 
sensor had fixed a 0.067 m bump; after the compensation 
of the bump was 0.052 m (the real height of the bump is 
0.05 m). In addition, striking oscillations appeared after 
the vehicle wheels had overridden the obstacle were coun-
tervailed as well (Figure 5, the zone 2).

Figure 4. Laser sensor compensation for sprung mass dynamics (Surblys et al. 2018)

Figure 5. Estimating the road profile using a laser sensor when the suspension is set to minimum damping (Surblys et al. 2018)
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Laser-based measuring technologies present a suffi-
ciently reliable tool for provision of information the geo-
metrical properties of the approaching obstacle; however, 
a safe and appropriate application of sensors, precizity of 
their mounting and their prices are the issues of great im-
portance as well.

2.2. Image analysis for pavement state identification

One of these research areas is image analysis for forefront 
road surface identification. Emerging artificial intelligence 
methods of deep learning were selected for classification 
of 12 different road surface types:

 – ice;
 – snow wet;
 – snow dry;
 – gravel (dirt) wet;
 – gravel (dirt) dry;
 – cobble wet;
 – cobble dry;
 – concrete wet;
 – concrete dry;
 – asphalt wet;
 – asphalt moist;
 – asphalt dry.

DNNs require big datasets to learn from. Therefore, 
more than 250 thousand labelled images for road surface 
type dataset were collected and labelled. A typical car 
camera was used to collect 1920  ×  1080 pixels resolution 
video. This video was split into frames and frames taken 
during different seasons were collected. This way all kinds 
of weather conditions and road surfaces were gathered. 

A DNN AlexNet with changes as input image size and 
several other parameters was used. The total structure of 
the network is presented in Table 1.

This DNN was made of 5 convolutional layers and 
3 fully connected layers, all with Rectified Linear Units 
(ReLU) as the activation function. In order to reduce clas-
sifier dependence on separate pixels, the Dropout layers 
were used.

The dataset was formed by squeezing image frames 
into the 512 × 512 pixels size frame as input (Figure 7). 
This size was selected because 256 × 256 pixels size im-
ages had not enough details of the road texture. The DNN 
was trained on GPU workstation using CAFFE then con-
verted into TensorRT and tested on nVidia Jetson TX2 AI 
platform. This platform consumes only up to 15 W of 
power and provides up to 1 TFLOP of DNN calculations. 
It provided real-time video processing of 30 fps, at 20 ms 

processing per frame, that would mean about half meter 
latency at speed of 100 km/h. The road types were classi-
fied with up to 97.35% accuracy on the validation set and 
84% on the new data that was collected later. The accuracy 
and frequent classification mistakes made by the neural 
network were analysed and these aspects were found:

 – both the dry and wet concrete classes were identified 
as the best with less than 1% error. Such a small error 
rate can be achieved due to small variation between 
training, evaluation and testing data, as there was 
only one such kind of road in the dataset;

 – the dry, moist and wet asphalt detection were good, 
sometimes errors occurred due to dark conditions 
during the night or in tunnels. Also, some mistakes 
were found due to the variation of asphalt brightness 
and shadows under bridges;

 – the dry and wet gravel detection was good, most er-
rors occurred because there was an unclear boundary 
between the dry and wet gravel. Mostly the dry gravel 
is misclassified as the dry asphalt, and the wet gravel 
as the dry gravel;

 – the dry and wet cobble road detection was worse be-
cause of the vibration effect on the camera image, 
the images of that road often are too blurry to get 
enough details, and usually, it can look similar to the 
dry asphalt or gravel. In addition, this class has the 
least amount of samples in the current dataset. The 
dry cobble is misclassified as the dry asphalt and the 
wet cobble, and the wet cobble as the dry asphalt or 
wet snow;

Figure 6. Road profile when velocity is 30 km/h
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Table 1. Structure of DNN-based road type classifier

Layer Parameters
Convolution 1 96  ×  11  ×  11, stride 8 
Activation 1 ReLU
Pooling 1 MAX, 3  ×  3, stride 2
Convolution 2 256  ×  5  ×  5, stride 1, groups 2
Activation 2 ReLU
Pooling 2 MAX, 3  ×  3, stride 2
Convolution 3 384 × 3 × 3, stride 1
Activation 3 ReLU
Convolution 4 384  ×  3  ×  3, stride 1, groups 2
Activation 4 ReLU
Convolution 5 256  ×  3  ×  3, stride 1, groups 2
Activation 5 ReLU
Pooling 5 MAX, 3  ×  3, stride 2
Fully-connected 6 4096
Activation 6 ReLU
Dropout6 Ratio of 0.5
Fully-connected 7 4096
Activation 7 ReLU
Dropout 7 Ratio of 0.5
Fully-connected 8 12
Softmax –
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 – the dry and wet snow were identified satisfactory, 
there were cases in samples where only part of the 
road was covered in snow and other parts were as-
phalt, therefore some was misclassified as asphalt. It 
is planned to move such samples to asphalt samples;

 – the ice detection was generally bad because even for a 
human it is hard to visually discern between ice and 
wet asphalt. Therefore, ice detection will be removed 
in future revisions. 

Based on findings road type classification can be im-
proved by the better quality camera and additional exam-
ples of some road surface types. Moreover, the assump-
tion can be made, that accuracy can further be improved 
by detecting and extracting only road surface from the 
camera images. This way more surface information will be 
available in the same image size compared to the resized 
full image.

The output from this kind of system can be useful for 
Emergency braking, as from determined road state it can 
better predict Time To Collision (TTC) for its typical val-
ues of 0.8…2.5 s (Koglbauer et al. 2018). Different kinds 
of AEB and ACC systems are designed to work in some 
range of velocities and full or partly braking is chosen. 
AEB effectiveness can be improved by forefront knowl-
edge of driving conditions as this can also predict what 
road friction (coefficient m) can be expected in advance.

The data received from this system can be used for 
in advance prediction of ABS or Electronic Stability Pro-
gram (ESP) systems settings selection. For example, with 
the help of forefront road sensing, system’s thresholds 
variables for road friction (coefficient m), wheel angular 
accelerations A, +a, –a, could be selected in advance and 
response time and effectiveness improved as result.

On identification of forefront road condition, difficul-
ties most frequently are caused by non-uniform illumina-
tion and shadows. The dynamic range of a video sensor of 

the camera is limited and adjusting the image brightness 
requires a certain time; nevertheless, some details are lost 
in the darkest and brightest fragments of the image. In ad-
dition, if the image brightness varies, the task of identifi-
cation becomes more complicated, because the developed 
algorithm should ensure resistance to changes in illumi-
nation. Shadows of viaducts and bridges, as well as dark 
parts of tunnels, provide major difficulties as well: they 
may be mistaken for wet pavement. Therefore, shadow 
compensation methods should be applied in this sector 
in future.

The other complicated case is poor visibility in case 
of a mist, heavy rain, hail or snowstorm – in such cases, 
visible light spectrum cameras, as a human vision, cannot 
ensure a good identification of the pavement; however, it 
is possible to identify the type of the weather.

Conclusions

All vehicles technology progress leads to improvements in 
advanced driver assistance systems and also partly or fully 
autonomous vehicles. Vehicle suspension, active braking 
systems increase driving comfort and safety, but a different 
level of systems adaptation to road conditions can signifi-
cantly improve the desired vehicle performance. The in-
formation about road surface irregularities before vehicle 
cross it helps to eliminate electronic and hydromechanical 
delay, but vehicle body oscillations and sensor mounting 
should be taken into account before. Moreover, such kind 
of information can be effectively used in vehicle commu-
nication technologies to supplement road infrastructure 
database and to send direct messages for other vehicles.

As emerging artificial intelligence methods of deep 
learning can be successfully implemented for type of road 
surface classification, DNNs require big datasets to learn 
from. More than 250 thousand labelled images for road 

Figure 7. Example images from the collected dataset
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surface type dataset were collected and labelled for 12 dif-
ferent road surface types. Nevertheless, the method shows 
promising results as information about road type and its 
state expands the efficiency of vehicle active safety. As road 
sensing is based on image analysis, no complicated inter-
vention to vehicle construction is required except typical 
camera mounted as video registrator inside the vehicle.

However, the main risks and limitations for further 
development include:

 – response speed  – methods for faster that human 
driver performance should be investigated to enable 
better comfort and safety;

 – price – all new technologies are expensive and avail-
able only in luxury vehicles, that form a small part 
of all vehicles, therefore intelligent usage of cheaper 
sensors and processing should be developed;

 – Artificial Intelligence (AI) learning data – AI requires 
a lot of data to be collected and prepared for training, 
therefore lots of time and resources are needed;

 – cybersecurity  – all complex connected systems are 
potentially vulnerable to private data theft and re-
mote hijacking of vehicle control;

 – unpredictable obstacles – there are a lot of rare situ-
ations, therefore safety systems that can prevent the 
system from unpredicted behaviour should be pro-
vided;

 – user acceptance – it is important how these systems 
are marketed and if they truly are easy to use and 
useful for end-user;

 – certification – certification is important for all auto-
motive hardware and software, and there is a growing 
need to create certification methods for automotive 
systems based on artificial intelligence.
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