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Abstract. Limited-stop bus services are a highly efficient way to release more potential of the public transit system to meet 
travel demand, especially under constraints on vehicle fleet size and transportation infrastructure. This work first proposes 
a visualized fare table for the design of limited-stop bus services along a public transit corridor, along which many lines 
of public transit carry a heavy load of demand back and forth every working day. Based on this proposed fare table, a set 
of fare strategies and desired aims of fare policy, a differentiated fare structure is established to improve social equity and 
increase revenue. The nature of the structure can help travellers understand how to be charged between their origins and 
destinations (e.g. flat, time-based, stop-based or quality-based pricing) and then plan their trips efficiently. Secondly, a 
model is formulated to minimize the total social cost in designing a fixed demand limited-stop bus service system with 
a differentiated fare structure. Thirdly, numerical results are carried out with sensitivity analysis within three scenarios of 
differentiated fare structures. It is found that a differentiated fare structure has a great effect on passenger path choice be-
haviour and resulting optimal design of bus services. An attractive feature of this differentiated fare structure is that it could 
not only enhance the operator’s revenue and social equity but also reduce passenger transfers and social cost.

Keywords: public transit, limited-stop bus service, differentiated fare structure, social cost, environmental improvement.

Introduction 

Public transit plays a crucial role in meeting the need 
for individual mobility and environmental improvement. 
There has been a considerable increase in the number of 
urban resident trips and in travel distance in the past few 
decades, which arose from the continuous growth in both 
car ownership and urban area as well as rise in urban 
population. As a result of this growth in car trips, traffic 
congestion and transport pollution issues have turned out 
to be a global concern. In order to solve these issues, many 
policy makers, transportation planners, and researchers 
consider public transit an efficient way out. Transit routes 
with high demand (e.g., routes passing through a Central 
Business District (CBD) or resident area of great density) 
are generally seen as public transit corridors (Leiva et al. 
2010). Apparently, in practical operations, supply is not 
efficient to accommodate passenger demand spatially due 
to the use of common full-length services. The limited-
stop service scheme may be a highly efficient way to re-
lease more potential of the public transit system to meet 

needs of these routes, especially under the constraints on 
vehicle fleet sizes, land use, transportation infrastructure, 
etc. (Furth, Day 1985). Besides, this scheme is expected to 
reduce bus operational emissions because of the reduction 
in the number of “stops and goes”, which shall make a 
great contribution to environmental improvement, in par-
ticular air quality. The investigation in the existing litera-
ture has shown that the limited-stop service scheme can 
save a huge cost to the society (Leiva et al. 2010). In these 
research efforts, attention has been paid to consideration 
of capacity constraints, dwell time, fare collection systems, 
etc. (Tirachini, Hensher 2011; Tang et al. 2016). 

The fare structure of public transit has a great impact 
on traveler choices, e.g. whether to travel, when to travel, 
how to travel, etc. Therefore, in optimizing the design of 
limited-stop services, the fare structure is a key factor to 
capture. To determine it, we need specify or identify the 
most suitable fare policy, strategies, and enforcement tech-
nologies (e.g. types of fare payment and collection tech-
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nologies). Fleishman et al. (1996) illustrated an interac-
tion among these elements. Depending on specific needs 
and situations, transit agencies identify a set of goals to 
offer a guide of fare restructuring and technology devel-
opment. These goals can be categorized into four aspects: 
customer-related, financial, managerial, and political.  
A fare strategy is a fundamental component of the fare 
structure. Fare strategies can be grouped into two basic 
categories: flat and differentiated ones. The flat one re-
quires all passengers pay the same fare while the differen-
tiated fare strategy allows passengers to pay a fare depend-
ent on one or more factors, such as length of trip, time of 
day, quality of service, etc. The existing fare strategies may 
be further refined to eight categories below (Fleishman 
et al. 1996; Chien, Tsai 2007): 

1)  flat fare: passengers are charged the same amount 
of fare;

2)  distance-based or zonal fare: a fare is determined by 
the distance or amount of zones a trip covers;

3)  time-based fare: a fare depends on when to start and 
how long a trip lasts, e.g. whether to travel at peak 
time or whether a trip is long enough to extend to 
the peak time;

4)  quality-based fare: a fare is related to which ser-
vice a passenger receives, e.g. express, limited-stop, 
short-turn or local services;

5)  cost-based fare: a fare is a function of operating 
costs, e.g. air-conditioning cost, staff wages;

6)  route-based fare: a fare is associated with which 
zones a bus goes through, such as CBD, residential 
zones, work places, or tourist places;

7)  patron-based fare: a fare depends on types of pas-
sengers, such as students, senior citizens, or disa-
bled passengers; 

8)  market- or consumer-based fare: a fare is dependent 
on the frequency of use and willingness to repay, 
such as passes and discounted tickets.

The advantages and disadvantages of each of the 
above fare strategies have been discussed widely for years 
in terms of efficiency, convenience, and equity. Flat fare 
is recognized to be the simplest and most convenient, 
though it ignores equity. Alternatively, the differentiated 
fare can completely display social equity while its imple-
mentation requires the use of hi-tech collection systems, 
e.g. smart bus/strip card (Fleishman et  al. 1996). There 
is no doubt that a huge obstacle exists for us to adopt a 
differentiated fare in implementing public transit services. 
However, as the new technologies are less and less costly, 
they have become more applicable for use in collecting 
bus fare on board. The problem has become how to de-
velop easy-to-understand fare structures. Moreover, there 
are considerable studies on effects of a flat and a differen-
tial fare on revenues. Ling (1998) evaluated effects of flat 
and differential fare structures on passenger demand, rev-
enues, passenger-km, and consumer surplus. It is found 
that a differential fare structure may be able to bring out a 
positive effect on passenger demand and revenues. In the 

study of maximizing operator’s profit by Chien and Tsai 
(2007), an optimization model is developed for optimizing 
operating headway and differential time- and zone-based 
fare structures taking service capacity constraint into ac-
count. Results show that differential fare structures may 
achieve the higher profit, compared with a flat fare. Li et al. 
(2009) examined transit fare structures in consideration of 
monopoly and oligopoly market regimes with uncertainty. 
Borndörfer et al. (2012) discussed fare effects on passenger 
travel behaviour when four different objectives are estab-
lished and used, including the maximization of demand, 
revenue, profit and social welfare. In this study, distance-
based fare structure and single/monthly fare structure are 
considered. The results from these objectives indicate that 
distance-based fare structure is preferred by passengers 
with short travel distance. In addition, Tsai et al. (2013) 
also illustrated such significant impacts of distance-based 
fare on passengers’ travel behaviour by formulating a daily 
profit maximization problem for an intercity transit sys-
tem. In the recent study, in order to optimize fare, Zhang 
et  al. (2014) proposed a bi-level programming model 
taking account of the disturbance of unexpected effects 
and adverse weather conditions. Weather conditions have 
a great effect on walk times and travel comfort levels. It 
is found that different fare structures should be used in 
different kinds of weather conditions. Compared with a 
flat fare, the existing efforts indicate that the differential 
fare structure not only proves more potential in solving 
social equity concern, but also can gain a greater increase 
in operators’ revenues. To the best of our knowledge, most 
studies on a differential fare structure mainly focus on the 
design of all-stop services. This paper aims to investigate 
the effects of a differential fare structure on limited-stop 
service optimization and users’ path choices, and then as-
sist fare decision makers in determining an attractive fare.

One key contribution of this paper is to design a fare 
structure table. It shifts a differential fare structure from 
an abstract way into a visualized one. In the existing lit-
erature, it is found that one of the most difficult things 
for delaying the adoption of a differential fare structure is 
the difficulty for users to understand how to be charged. 
This may not be as important to passengers as transit op-
erators think it is, especially when new technologies, in-
cluding smart card and payment systems, help to facilitate 
the provision of various types of fare structures, but this 
perception obviously remains. This paper proposes a fare 
structure table to tackle this difficulty. The fare structure 
table is similar to a table of Origin–Destination (O–D) 
pairs, which shows a fare between each pair of all stops. 
Passengers could get this table by smart phone apps, In-
ternet, and platform messaging, and then plan their trips 
to minimize expected travel costs. Apparently, public tran-
sit operators could get an attractive fare structure table 
under the regulation of fare policy and various strategies. 
Thus, this fare structure table not only offers the users a 
way to understand the fare to pay quickly but also makes 
the operator able to establish an attractive differential fare 
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structure easily. It is interesting to investigate effects of this 
scheme on air quality and environmental improvement. 
To avoid complicating the current discussion on the new 
type of far structures, we will analyse environmental ef-
fects of such fare structures applied to limited-stop bus 
services in another piece of research work. 

Following this introductory section, Section 1 system-
atically illustrates the representation of a fare structure 
table and how to formulate a differential fare structure 
table based on given various fare strategies. Section 2 for-
mulates a model for optimizing limited-stop public tran-
sit services with a differential fare structure. We display 
a series of sensitive analysis by optimizing the proposed 
model in Section 3. Last section summarizes the findings 
in this paper and points out further research directions 
in this arena.

1. Representation of fare structure 

1.1. A basic fare structure table 

Fare is of considerable importance to bus operations and 
management as well as to passengers. A low fare may reduce 
revenue and attract more passengers, whereas a high fare 
may increase the revenue and reduce demand. Therefore, 
it is necessary to determine an attractive fare that benefits 
both users and operators or minimizes the total social cost. 
Compared with the pervious literature, this paper presents 
an abstract fare structure, in particular a complex and dif-
ferential fare structure, in a form of table that shows a new 
and visualized fare structure for the users and operator of 
public transit service, like a matrix of O–D pairs, where 
each origin or destination is a bus stop. This fare table 
consists of fares between each pair of all stops along a bus 
corridor, whether these two stops are successive or not. 
Suppose that there is a bus corridor with n stops, as shown 
in Figure 1. We define a value of fare uij for each pair (i, j)  
of all stops along this corridor. Table 1 gives a basic fare 

structure for this bus corridor. In a fare structure table for 
a limited-stop public transit service line, the value of each 
of those elements with a stop where the bus does not stop 
is assumed to be +∞.

In Table 1, uij may completely or partly differ from 
each pair of stops along the corridor in Figure  1. If the 
value of uij equals the value of uji, the resulting fare ta-
ble is a symmetrical one. If all values of a basic fare table 
are the same and constant, it means that the bus operator 
charges all travellers a flat fare, regardless of distance of 
travel, time of day, quality of service or trip route.

Clearly, if a line does not stop at a stop i, then the value 
of uij or uji is set to +∞ for all j ≠ i. Therefore, this table can 
be used for representation of a fare structure for a limited-
stop public transit service. 

It is noteworthy that the fare structure table of a flat fare 
strategy has the same constant value for all its elements. 
If there are multiple stops (denoted by s1, s2, ..., sk) be-
tween a pair of stops (i, j), the fare for travel between (i, j)  
is not necessarily the sum of these fares 

1isu , 
1 2s su , 

2 3s su , ..., 
ks ju   

but the value uij that is already given in the Table 1.

1.2. A differential fare structure table

If the elements of a fare structure table vary in accord with 
the aforementioned strategies, including distance-based, 
time-based, quality-based, cost-based, route-based, pa-
tron-based, and market-based strategies, the table defines 
a differential fare structure table. The choice of fare strate-
gies depends on purposes of a fare policy. For instance, in 
order to attract more passengers to use public transit in 
off-peak periods, the transit service planner may consider 
varied discounts to lower fare rates during off-peaks so 
that some users may be led from peak time to off-peak 
time. If a fare policy aims to increase the operator’s rev-
enues and achieve social equity, it is essential to have a 
comprehensive set of differentiable fare strategies in set-
ting bus fare rates. 

The structure of such tables enables travellers intuitive-
ly to understand how to be charged between their origins 
and destinations. For instance, in a stop-based fare table, 
elements of upper triangular show +< 1ij iju u , because the 
more stops are included within a trip the higher fare is 
required. New technologies, such as platform messaging, 
smart phone, and the Internet are available conveniently 
for showing this table to each public transit service user.

1.3. Discussion: one table for one line?

It is easy to have one table for each line. An advantage for 
doing so is that the planner or travellers can intuitively 
understand the fare structure once a line is picked up. The 
downside is that it occupies a lot of resources to cope with 
at least as many tables as the number of lines if the fare 
does not vary due to the difference in time of day.

A different way to handle this is that a fare structure 
table is specified for all pairs of stops in a network. Based 

Figure 1. A sample corridor with n stops

Table 1. A basic fare structure table for the corridor in Figure 1 

D
O 1 2 … i … j … n – 1 n

1 0 u12 … u1i … u1j … u1n–1 u1n

2 u21 0 … u2i … u2j … u2n–1 u2n

⋮ ⋮ ⋮ 0 … … … … … …

i ui1 ui2 ⋮ 0 … uij … uin–1 uin

⋮ ⋮ ⋮ ⋮ ∶ 0 … … … …

j uj1 uj2 ⋮ uji 0 … ujn–1 ujn

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 … …

n – 1 un–11 un–12 ⋮ un–1i ⋮ un–1j ⋮ 0 un–1n

n un1 un2 ⋮ uni ⋮ unj ⋮ unn–1 0

1 2 i j n–1 n
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on this, the planners may vary the fare for a specific pair 
of stops taking into account certain factors, such as time 
of day, distance between two stops, etc. The fare for a pair 
of stops along a line can also be a decision variable for the 
planners to optimize. 

2. Model formulation

The objective of this investigation is to minimize the total 
social cost for a bus corridor, which is defined as a sum 
of user costs and operator cost. The proposed model is 
primarily used for the planning and operations of limit-
ed-stop public transit services. To establish the objective 
function of this minimization problem, the following as-
sumptions are made:

1) the characteristics of a bus corridor and a set of 
feasible limited-stop service lines on it are given, 
including instance, station location, route zones, 
stop-spacing and length of it. In this study, a fixed 
O–D demand matrix is considered along a dedi-
cated corridor (Leiva et al. 2010; Tirachini 2007); 

2) although passengers randomly arrive at their own 
origin stops, the rates of their arrivals are assumed 
to be constant on average. Under the assumption 
that a passenger always chooses the best stop to 
transfer, passenger assignment reflects the existence 
of a set of attractive itinerary segments for each 
O–D pair that minimizes the expected travel time.

As discussed above, the social cost SC consists of op-
erator cost OC and user costs UC, which can be written as:

= +SC OC UC .  (1)

The operator cost is incurred by vehicle operations and 
transit lines. Thus, the operator cost OC for a set of lines 
L can be expressed as (Leiva et al. 2010):

( )
∈

= ⋅ + ⋅ ⋅∑ C l H l l
l L

OC R C R H f ,  (2)

where: L is a set of lines l serving the bus corridor; Cl is 
the round trip time of line l; Hl is the total length of line l 
in both directions; RC is the hourly average operating cost 
per vehicle; RH is the transit line operating cost per kilo-
metre per vehicle; fl is the frequency of line l and measures 
the number of buses sent out for line l per hour.

The total user cost is the sum of waiting time cost 
UCTW, in-vehicle time cost UCTV, transfer cost UCTT, and 
bus fare cost UCfare, i. e.:

= + + +TW TV TT fareUC UC UC UC UC .  (3)

The total waiting time cost UCTW for a user is his or 
her waiting time multiplied by the value of waiting time, 
and then the total user waiting time cost can be expressed 
as: 

∈ ∈

= ⋅ ⋅∑∑ w
TW s TW s

w W s S

UC V P TW ,  (4)

where: w
sV  is passenger flow for a pair w on route seg-

ment s; PTW is the value of waiting time savings for a user; 

TWs is waiting time on route segment s; S is a set of route 
segments on the corridor; W is a set of O–D pairs.

The stages of a passenger’s journey are called route seg-
ments (De Cea, Fernández 1993), each of which is defined 
as a fictitious link with a start node, an end node and a 
subset of attractive lines. The waiting time on route seg-
ment s, TWs, depends on bus service frequencies and can 
be modelled as follows:

∈

=
∑s s

l
l L

kTW
f

,  (5)

where: k is a parameter depending on the distribution of 
bus arrivals at each stop (when the bus arrival is Poisson 
distributed, k will be 1).

The in-vehicle travel time that a user experiences on a 
bus consists of the running time and all the dwell time at 
each intermediate stop visited by the bus. The in-vehicle 
time cost can be formulated as: 

∈ ∈

= ⋅ ⋅∑∑ w
TV s TV s

w W s S

UC V P TV ;  (6)

∈

∈

⋅ +

=
∑

∑

s s s
l l

l L
s s

l
l L

RT f ST

TV
f

;  (7)

+ ∈∈∈ ∈


⋅ ⋅= 



∑ ∑∑ ∑
,max

i
s

k
lw

s bk k
lw Wk Si P l L

f
V tST f

− ∈∈
∈


⋅ ⋅ 




∑ ∑ ∑i

k
lw

ak k
lw Wk S

l L

f
V t

f
,  (8) 

where: PTV is the value of in-vehicle time savings for a 
user; TVS is in-vehicle time on route segment s; s

lRT  is 
the running time for line l on route segment s; STs is dwell 
time on route segment s; w

kV  is passenger flow on route 
segment k; tb is the average boarding time per passenger; 
ta is the average alighting time per passenger; +

iS , −
iS  are 

two sets of route segments respectively departing and ar-
riving at stop i; Ps is the set of stops on route segment s, 
except the stop arrived at by route segment s.

Equation (8) is the sum of the bigger one of passenger 
boarding and alighting times at each stop along segment s 
because it is assumed here that the processes of boarding 
and alighting are simultaneous (with different doors for 
boarding and alighting) and that boarding and alighting 
flows are independent of each other. 

Transfer costs include the cost of time for passengers 
to walk from one stop to another for transfer and other 
costs to the passenger due to the transfer but bus fare and 
waiting time. θtrans is the value of the monetary penalty a 
user bears due to transfer. Tw is the total passenger flow for 
O–D pair w. The total transfer cost can be expressed as: 

∈∈

 −= θ ⋅ 
 
∑∑ w w

sTT trans
s Sw W

V TUC .  (9)



480 C. Tang et al. Optimizing limited-stop bus services along a public transit corridor with a differential fare structure

The fares that passengers pay for their whole trips de-
pends on the number of transfers and the bus fare to be 
paid for each segment of bus journey. It is also assumed 
that passengers pay full price, i.e. undiscounted bus fares 
regardless of boarding at an original stop or at a transfer 
stop. The bus fare cost can be written mathematically as: 

∈ ∈

= ⋅∑∑ w
fare s s

w W s S

UC U V ;  (10)

∈ ∈ ∈

= δ ⋅∑∑∑ ij
s s ij

s S i P j P

U U ,  (11)

where: Us is the fare cost on route segment s; Uij is a bus 
fare between stops i and j, which is determined on the 
basis of fare strategies and a basic fare uij; δ

ij
s  equals 1 if 

route segment s connects stops i and j, and 0 otherwise. 
Thus, the optimization problem of bus services can be 

formulated as an optimization model as follows: 

{ },
min

s
l l

s s
C l l

f f s S l L

RT fR
∈ ∈

 
  ⋅ +⋅  

∑∑

,max
i i

k k
l lw w

b ak kk k
l lw W w Wk S k S

i P l L l L l L

f f
V t V t

f f+ −∈ ∈∈ ∈
∈ ∈ ∈ ∈

 ⋅ ⋅ ⋅  +   

∑ ∑ ∑ ∑∑∑ ∑ ∑
 

 

∈ ∈ ∈

⋅ ⋅ + ⋅ ×∑ ∑∑ w
H l l s TV

l L w W s S

R H f V P

+ −∈ ∈∈ ∈∈ ∈ ∈ ∈

∈

 
⋅ ⋅ ⋅ ⋅ ⋅ +   

  +

∑ ∑ ∑ ∑∑ ∑ ∑ ∑
∑

,max
i i

s

k k
l lw w

s s b ak kk kl l l lw W w Wk S k Sl L i P l L l L
s

l
l L

f f
V t V tRT f f f

f

s S∈

 
 
 
 
∑∈ ∈ ∈

  
  ⋅ ⋅ +    
∑∑ ∑

1
w ss TW l

w W s S l L

V P f

∈∈ ∈ ∈

 −θ ⋅ + ⋅     
∑∑ ∑∑w ws wtrans s s
s Sw W s S w W

V T U V

k
l

k
l

l L

f

f
∈






∑
 

 (12)

subject to:

≤ ≤0 s
llf f , integer ∀ ∈l L , ∀ ∈s S ;  (13)

+∈ ∈

 =
− = − =


∑ ∑
-

, if ;
, if ;

0, otherwise,i i

w
w w
s s w

s S s S

T i O
V V T i D

{ }∀ ∈ 1, ...,i n , ∀ ∈w W ;  (14)

+ ∈∈
∈

⋅ τ ⋅ ≥ ⋅∑ ∑ ∑, ,
i

s
lw

l i q l s s
lw Ws S

l L

f
q f V

f

∀ ∈s S , ∀ ∈l L , ∀ ∈i P .                                           (15)

In this formulation, the objective function consists of 
four parts, which together defines the total cost to the op-
erator and the passengers. The first part represents vehi-
cle operating costs. The second one is the costs of transit 

line operations. The third one is in-vehicle time costs to 
passengers. The fourth one consists of waiting time costs, 
transfer costs, and fare costs.

In the above optimization model, the constraint set 
(14) is to ensure passenger flow continuity at each stop, 
and constraint (15) is set for the desired occupancy on the 
bus in order to maintain a comfortable average passenger 
load and eliminate the number of standees (if any). In ad-
dition, ql,i is the vehicle capacity of line l departing from 
stop i, τq is a safety margin factor for vehicle capacity and 
P is a set of all stops on a corridor. 

The model formulated above is a nonlinear integral 
model and we use the branch and bound algorithm cod-
ed in LINGO (https://www.lindo.com/index.php/products/
lingo-and-optimization-modeling) to solve it.

3. Numerical analysis 

Same as in Leiva et al. (2010), a sample dedicated bus cor-
ridor is 6.6 km long in both directions and consists of 10 
stops. A set of attractive bus service lines (23 lines) along 
the bus corridor is shown in Figure 2. The distance be-
tween two successive stops is the same and constant, and 
the running time between two stops is also presented in 
Figure 2. The O–D demand matrix in Table 2 represents 
the demand for the duration of one hour between each 
O–D pair along the corridor. According to the definition 
of a fare structure table defined in Subsection 1.1, we will 
consider a flat fare structure as a basic table, of which all 
elements but those on the diagonal are uij = $0.17. The use 
of such a flat fare structure not only simplifies the process 
of calculation, but also clearly shows how to formulate a 
differential fare structure table based on this. Table 3 rep-
resents parameter definitions and values. 

Figure 3 shows how a trial solution converges to the 
satisfactory solution.

3.1. Time-based fare structure 

Essentially, a time-based fare structure is one dependent 
on how much time a passenger may need while complet-
ing a trip or tour. This implies that travellers in the peak 
period may pay more than those who make their trips in 
the off-peak period. Implicitly, this may shift travel de-
mand from the peak time to the off-peak time. Consid-
ering time-based fare strategy, a differential fare between 
stops i and j in Equation (11), Uij, during transit opera-
tional time period t, can be formulated as follows: 

= λ ⋅t t
ij ijU u ,  (16)

where: t
ijU  represents a fare between stop i and stop j dur-

ing transit operation time period t; λt is a parameter as-
sociated with a basic bus fare uij during period t. 

Passengers sometimes may need to transfer once or 
more during their trips. Thus, there exists an additional 
fee associated with transfer. In this section, a transfer dis-
count is provided for passengers involved in transferring. 

https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
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A passenger who transfers need pay the full fare of his or 
her first route segment and is assumed only to pay trans-
fer fares for transfer route segments. This transfer fare 
is represented as the full fare of the transferred services 
multiplied by a transfer discount. Considering a transfer 
discount parameter π added in the Equation (10), the total 
fare costs are given as follows:

   
+
= ∈∈

= ⋅ +∑ ∑
i O

t w
fare s s

w Ws S

UC U V
+
≠ ∈∈

π⋅ ⋅∑ ∑
i O

t w
s s

w Ws S

U V
,   (17)

where: +
=i OS  is the set of route segments departing from 

the origin stop of a pair w; +
≠i OS  is the set of route seg-

ments departing from other stops except the origin stop 
of a pair w; the first part of equation is full fare costs for 
users, and the second part is transfer discount fare costs.

Figure 2. A corridor scenario (source: Leiva et al. 2010): a – normal services (short-turn and full-length);  
b – express services; c – limited-stop services
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Table 2. O–D trip demand matrix on the bus corridor (source: Tirachini (2007))

D 
O 1 2 3 4 5 6 7 8 9 10

1 0 600 189 166 63 45 341 606 726 395
2 3620 0 11 9 4 2 20 35 43 23
3 790 38 0 5 2 1 10 18 22 12
4 1585 75 82 0 1 0 3 4 4 3
5 282 13 14 14 0 2 13 24 28 16
6 187 9 9 9 8 0 13 22 27 14
7 263 13 13 13 12 9 0 11 14 8
8 2631 125 136 129 117 86 107 0 36 19
9 336 16 17 17 15 11 14 18 0 67

10 4425 211 229 218 198 144 179 232 200 0
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The optimal results on designing limited-stop services 
are shown in Figure  4, under a time-based differential 
fare structure. In Figure 4, the fare varies from off-peak 
time period to peak time period, which is expressed by 
a time-varying multiplier λt of the basic fare, including 
0.5, 1, 1.5, and 2. When a bus fare is less than the basic 
fare, normal services (lines 1…8) play a vital role in bus 
services. However, as the fare rises, limited-stop services 
(lines 9…23) become more and more important. When 
the fare is greater than a certain amount, the optimal set 
of lines tends to stabilize, since a high fare prevents pas-
sengers from transferring in their trips, which is showed 
at the point without transfer discounts in Figure 5. As a 
result, passenger travel behaviour remains invariant and 
thus the service network stays in equilibrium. 

As shown in Figure 5, we analyse impacts of time-based 
fares and transfer fares on passenger transfer behaviour. 
Three types of transfer discounts are considered, including 
no discount (π = 1), 50% discount (π = 0.5), and 100% dis-
count (π = 0). There are a great number of passenger trans-
fers at a low fare in Figure 5. As a result, users’ in-vehicle 
times and waiting times may increase because of addi-
tional boarding and alighting at bus stops due to transfers. 

The number of passenger transfers may gradually de-
cline as a discount of transfer fare decreases, as shown in 

Figure 5. Passengers will not transfer in their trips when 
a bus fare is more than $0.17 without transfer discounts. 
However, with the increasing discount of transfer fare, 
it may trigger passengers to transfer again, because low 
transfer costs could offset long waiting time or in-vehicle 
time costs incurred by direct services. The number of pas-
senger transfers increases up to the biggest if passengers 
have a 100% discount of transfer fare. In addition, there 
is a great fluctuation in the number of passenger transfers 
as transfer fare discounts change, when passengers are 
charged low fares. It indicates that passengers with low 
fares may have a higher perception of transfer fare dis-
counts than those passengers with high fares.

Table 4 displays optimal results in detail with consid-
eration of different transfer fare discounts. Total fare costs 
present a little change, though there is a great increase in 
the number of transfer passengers when transfer fare dis-
counts increase from 0 to 50%. This indicates that a gain 
in transfer fare discounts compensates for the transfer 
fare costs generated by the increased number of passen-
ger transfers. The total fare costs are the smallest at 100% 
transfer fare discount, because passengers in transferring 
achieve the greatest savings due to free transfer. The total 
social cost shows an increased trend as transfer fare dis-
counts rise. This is because extra waiting times and vehicle 
dwell times generated by the increased passenger transfers 
result in a great increase in other user costs and operating 
costs, and these increased costs are not offset by gains in 
transfer fare discounts. 

It presents a great change in service patterns as transfer 
fare discounts change, as shown in Figure 6. Based on  op-
eration distances, those bus lines on the corridor are divid-
ed two categories: short-turn services with short-distance 
operation, and full services with full-length operation. In 
Figure 6, line numbers from 2 to 16 are short-turn ser-
vices, while other lines are full-length services. The needs 
of line services present an increasing trend, especially in 
short-turn services, when transfer fare discounts increase. 
This indicates that short-turn services prove more profit-
able for meeting the increased needs of passenger transfers 
and minimizing the social cost for users and operator.

Figure 3. A solution convergence process corresponding  
to the 2nd column scenario in Table 4

Table 3. Parameter definitions and values

No Parameter Descriptions Value Unit
1 q capacity of bus 80 passengers
2 tb boarding time per passenger 2 s/pas
3 ta alighting time per passenger 1 s/pas
4 PTT value of in-vehicle time 1.5 $/h
5 PWT value of waiting time 3 $/h
6 θtrans monetary penalty 0.067 $/pas
7 RC hourly operating cost 6.185 $/bus h
8 RH operating cost of distance 0.375 $/bus km
9 τq safety margin factor of capacity 0.9
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3.2. Stop-based fare structure
A distance-based or zonal fare structure is used widely in 
most cities. A few cities also adopt a stop-based fare struc-
ture, such as Dalian in China. In this study, a stop-based 
fare structure is constructed on the basis of characteristics 
of the bus corridor and a given basic fare structure. In 
Equation (18), passengers only need to pay a fixed fare if 

their travel stops are no more than n stops. They will be 
charged an additional fee when traveling more than n stops. 
This additional fee is determined based on the number of 
stops on passenger trips. When a stop-based fare strat-
egy is adopted, a differential fare between stops i and j in 
Equation (11), Uij, during transit operational time period t,  
is expressed as:

 Figure 4. Optimal line frequencies with no transfer discounts under different times of day: a – 0.5 multiplier of a basic bus fare;  
b – a basic bus fare; c – 1.5 multiplier of a basic bus fare; d – 2 multiplier of a basic bus fare 

Figure 5. Effects of time-based fares with transfer discounts on 
the number of transfers
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Table 4. The results of different transfer discounts with a 0.5 
multiplier of basic bus fare

Transfer discounts

0% 50% 100%

Total social cost [$/min] 153.9496 157.3916 163.6306
Total user cost [$/min] 131.4145 133.0558 137.4549
Fare cost [$/min] 29.0847 29.5104 28.5361
Other user cost [$/min] 102.3298 103.5454 108.9188
The number of transfers 
[passengers] 395 1403 2906

Total operator cost  
[$/min] 22.5351 24.3358 26.1756

Running cost [$/min] 20.8597 22.5807 24.3196
Dwell time cost [$/min] 1.6754 1.7551 1.8560
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λ ⋅ − ≤= λ ⋅ + − ⋅β ⋅λ ⋅ − >

, if ;
, if ,

t
ijt

ij t ij t
ij ij

u j i n
U

u j i u j i n
  (18) 

where: t
ijU  represents a fare between stop i and stop j dur-

ing operational time period t; βij is a parameter of an ad-
ditional distance fee; i is a boarding stop; j is an alighting 
stop; λt is 0.5 and indicated a relationship between a basic 
fare and a fare during operation time period t; n is the 
maximum number of stops, which passengers may visit 
without additional distance fees (n = 4).

Using stop-based fares generates greater social costs 
and user costs, compared with the use of a flat fare, as 
shown in Figure 7. But there is a little change in operator 
costs, and even smaller than that generated by using a flat 
fare. This indicates that using stop-based fares can benefit 
operators to some extent. In addition, with the increase 
of the value of additional distance fee parameter βij, the 
number of lines using limited services keeps stable, though 
the whole service patterns have a great change in Figure 8. 
This change mainly takes place among lines with the use of 
short turn services. The changes in service patterns stem 
from passenger travel behaviour change. There is a great 
change in passenger transfer behaviour when the value of 
the additional fee parameter βij increases, as shown in Fig-
ure 9. The number of passenger transfers reduces first down 
to the minimum, and then increases. This indicates that 
service patterns integrated with a suitable stop-based fare 
can efficiently reduce the number of passenger transfers.

Figure 10 shows specific changes of passenger transfers 
as the value of βij increases. It is found that transfer O–D 
pairs are completely different in different scenarios. As 
shown in Figure 10a, without additional fees involved, only 
an O–D pair with a long travel distance from stop 1 to stop 
10 has a transfer. The travel route and transfer stop of this 
O–D pair w (1, 10) are displayed in Figure 11. While the 
value of βij increases to 0.05, passengers with a long travel 
distance might not transfer, e.g. those between O–D pair  
w (1, 10). There is a high fare on the route segment con-
necting stop 1 and stop 9, due to an additional fee required. 
In order to reduce fare costs, O–D pair w (1, 10) will give 
up transferring at stop 9. This indicates that additional fees 
are unprofitable for transfer O–D pairs with long travel 
distances. Additional fees may induce a few other O–D 
pairs with short travel distance to transfer, as shown in 
Figure 10b, though the total number of passenger transfers 
presents a reduced trend. Interestingly, when the value of 
the additional fee parameter βij increases up to more than 
0.05, passengers with long distance transfer again (see 
Figure 10c and Figure 10d), and the number of passen-
ger transfers gradually increases, as indicated in Figure 9.  

Figure 6. Frequencies of optimal lines with three transfer fare 
discount scenarios: a – 0% discount for transfer; b – 50% 

discount for transfer; c – 100% discount for transfer 
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Figure 7. Optimal results of a flat fare and stop-based fares
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This stems from the fact that additional fees for passengers 
with long trips to pay for are more than transfer fares, 
so that passengers tend to transfer in their trips. Accord-
ingly, in public transport operations, more extra services, 
such as infrastructure and staff services, may be provided 
for the increased transfer passengers, though this is not 
explicitly noted in the objective function. A beneficial  
stop-based fare determined by fare makers should present 

a great trade-off between passenger transfers and service 
efficiency.

3.3. Quality-based fare structure

In this paper, different feasible line services are used in 
the corridor, including normal, express, and limited-stop 
services. Compared with normal services, express and 
limited-stop services have shorter travel times because of 
visiting less stops. In order to present social equity, differ-
ent fares should be offered for these lines based on their 
provided service levels. It is reasonable that passengers pay 
more for using lines with greater service levels indicated 
by the non-trivial savings of travel times. According to a 
given basic fare structure, the quality-based fare function 
may be formulated as followes:

= λ ⋅ + ⋅θ ⋅λ ⋅t t l l l t l
ij ijlU u N u ,  (19)

where: t
lU  is a bus fare of line l at period t; λt is set to 

0.5 and indicates a relationship between a basic fare and 
a fare at time period t; l

iju  is a basic bus fare associated 
with line l connecting origin stop i and destination stop j;  
θl is a parameter of additional fee related to line l for sav-
ing travel times; Nl is the number of stops that line l skips 
at period t. The more stops line l skips, the greater fare 
line l has.

Figure 8. Frequencies of optimal lines for different values of βij: a – βij = 0; b – βij = 0.05; c – βij = 0.1; d – βij = 0.2
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Figure 9. The number of passenger transfers  
for different values of βij
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According to Equation (19), the quality-based fare on 
segment s in Equation (11), Us, during operational time 
period t, is expressed as:

∈

∈

⋅

=
∑
∑

t s
l l

l Lt
s s

l
l L

U f

U
f

,  (20)

where: t
sU  represents a fare on segment s during transit 

operational period t.
Table 5 displays the characteristics of feasible lines.
Figure 12 shows the optimal results with five scenarios 

respectively corresponding to θl = 0.1, 0.2, 0.3, 0.4, 0.5. In 
this study, the parameter of additional service fee θl has 
the same value for all lines in the same scenario. For in-

stance, θl equals 0.1, regardless of express, limited-stop, or 
normal lines. The bus fares of lines with no skipped stops 
are fixed. We divide all lines into two types: normal servic-
es that do not skip stops from original to destination, and 
skipped services. As shown in Figure  12, lines 1…9 are 
normal services while the other lines 10…23 are skipped 
services. When the value of additional fee θl increases a 
little, some passengers use bus lines with skipped services, 
such as lines 18, 19, 20, 22 and 23 in Figure 12a. How-
ever, with the increase in the additional fee, the number 
of passengers using skipped services decreases. When the 
value of θl is more than 0.4, only normal services are pro-
vided for passengers. Due to high fares, there are no pas-
sengers to use skipped services, and thus skipped services 
are abandoned, as shown in Figure 12d and Figure 12e. It 
indicates that normal services prove more profitable than 
skipped services, when a high additional service fee is re-
quired. In addition, the more stops a line skips, the easier 
it is given up by passengers. Since such line charges pas-
sengers more, so that passengers might give it up when 
they face a trade-off between bus fare and other costs (e.g. 
waiting time cost, in-vehicle time cost, transfer cost, etc.). 

Figure 10. A change of O–D pairs transfer with the increment of βij: a – βij = 0; b – βij = 0.05; c – βij = 0.1; d – βij = 0.2

Figure 11. Transfer route of O–D pair (1, 10) under βij = 0 
(corresponding to Figure 10a)
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For instance, line 19 that skips ten stops, and lines 22–23  
with six stops to skip, respectively, are removed first, as 
shown in Figure  12b. In Figure  12c, there is only line 
20 with four skipped stops left with a higher value of θl. 
Therefore, it presents that fare decision makers should 
construct an attractive quality-based fare under practical 
operation conditions, in case all skipped services are aban-
doned due to a high quality-based fare.

As the value of the additional service fee parameter θl 
increases from 0 to 0.2, the number of passenger transfers 
gradually reduces, as shown in Figure 13. It presents that a 
little increase in the additional service fee can restrain pas-

sengers from transferring in their trips. When the value of 
parameter θl is between 0.2 and 0.4, the number of pas-
senger transfers rapidly increases up to the greatest. This 
is because, as indicated in Figure 12a–c, passengers may 
give up some skipped services, and thus turn to transfer 
in order to minimize their travel costs with the increas-
ing value of parameter θl. In addition, it is found that 
the number of passenger transfers becomes a constant, 
when the value of θl is more than 0.4. This demonstrates 
that the passenger travel behaviour may not change if the 
value of an additional service fee increases beyond a great  
threshold.

Figure 12. Optimal line frequencies for different values of θl: a – θl = 0.1; b – θl = 0.2; c – θl = 0.3; d – θl = 0.4; e – θl = 0.5
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of a flat or a differential fare strategy. Apparently, a differ-
ential fare strategy shows a great potential for achieving 
social equity and revenue growth. Moreover, with the lat-
est available technologies (e.g. smart bus card, automated 
collection system), a differential fare strategy has become 
feasible for the public transit service market. In this paper, 
we transform a hidden and complex fare into a visual-
ized and easy–to-understand fare table or matrix so that 
we can obtain varied differential fare tables on the basis 
of a given fare policy, a set of fare strategies, and a set 
of desired objectives with the support of available latest 
technologies. In the optimization of limited-stop public 
transit services, it is found that a differential fare structure 
has a great effect on passenger transfer behaviour and the 
option of bus service patterns. 

In a time-based fare structure, the optimization of bus 
services indicates that, in order to minimize the total social 
cost, more limited-stop services shall be provided to im-
prove the level of service when a high bus fare is charged 
during the peak time. In considering different discounts 
of transfer fare, it is found that a gap in the numbers of 
passenger transfers with high and low fares decreases as 
transfer fare discounts reduce. Passengers may not be will-
ing to transfer in their trips if there is a high fare and 
no reasonable discount for transferring. Thus, during the 
peak time, the operator should provide more limited-stop 
services if they want to improve the revenue by charging 
a high fare. Moreover, it will not result in a great change 
in passenger demand. 

The stop-based fare structure is also investigated in 
this paper. The passenger path choice behaviour is very 
sensitive to an additional fee due to more stops. This pre-
sents a great change in service patterns and the number of 
passenger transfers. This change mainly takes place among 
lines using short turn services. The number of passenger 
transfers first declines, and then increases with the growth 
of an additional fee. This is because passengers with long 
travel distance try to have no or less transfers in their trips 
when an additional fee increases. However, when this fee 
increases and is more than a threshold so that the incre-
mental fare is greater than a transfer fare, the passengers 
with long travel distance will tend to take a transfer. This 
offers transport planners and decision makers a way to 
influence passenger transfer behaviour and improve the 
level of bus services. 

In this paper, a set of feasible bus services is taken as an 
input in the optimization problem for a public transit cor-
ridor. Based on the qualities of bus services, a differential 
fare structure is constructed. With the increasing value of 
an additional service fee generated by travel time savings, 
the number of passenger transfers falls down and the use 
of skipped services presents a reduced trend. When this 
value increases beyond a threshold, all skipped services 
are abandoned due to high fares. Meanwhile, the number 
of passenger transfers increases up to the maximum. It 
demonstrates that a suitable quality-based fare helps to 
reduce the number of passenger transfers.

In the modern multi-modal urban transportation 
system, the contribution of applying this differential fare 

Figure 13. The number of passenger transfers  
for different values of θl
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Table 5. Characteristics of feasible lines

Transit 
line

Number 
of skipped 

stops

Number 
of visiting 

stops
Length

Running time
(excluding 

dwell times)
1 0 20 6.6 39.6
2 0 18 5.87 35.2
3 0 16 5.13 30.8
4 0 14 4.4 26.4
5 0 12 3.67 22
6 0 10 2.93 17.6
7 0 8 2.2 13.2
8 0 6 1.47 8.8
9 0 4 0.73 4.4

10 2 4 1.47 5.8
11 4 4 2.2 8.8
12 6 4 2.93 11.8
13 8 4 3.67 14.6
14 10 4 4.4 17.6
15 12 4 5.13 20.6
16 14 4 5.87 23.4
17 16 4 6.6 26.4
18 4 14 6.6 33.8
19 10 10 6.6 30.2
20 4 16 6.6 35.2
21 8 12 6.6 31.6
22 6 14 6.6 34.2
23 6 14 6.6 34.2

Concluding remarks

Fare plays a vital role in traveller choice decisions on the 
use of public transit. An attractive set of fare rates can not 
only improve the operator’s revenue and social equity, but 
also better match supply and demand on the public transit 
service market. A great deal of the literature has contrib-
uted to the identification of advantages and disadvantages 
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structure to limited-stop bus services mainly results from 
two aspects. One is that it may drive more travellers to 
leave their cars and turn to public transit services because 
of a higher level of the transit service. The other is that the 
reduction in the number of “stops and goes” significantly 
decreases transport emissions while vehicles are accelerat-
ing. A quantitative analysis of this in a multi-modal sys-
tem is an ongoing piece of our research work.

Further research may extend the proposed technique 
to model limited-stop bus services with elastic demand 
and provision of information on bus arrivals. Bus fares 
are usually so low in many cities that travellers may not 
be really sensitive to the change in bus fares in short term, 
but a change in the bus fare may have a long term effect. 
By contrast, travellers are more sensitive to the change in 
journey times (either bus dwell or running time or service 
access time) because of the increasing value of time sav-
ings in particular in the urban area. Generally, the demand 
for public transit services is a function of fare, varied trip 
times and their reliability, as well as other factors affect-
ing service levels. Limited-stop services most definitely 
offer a way to reduce journey times and improve service 
reliability. In addition, as mobile and intelligent devices 
that can help travellers check when a target bus arrives 
have become more and more common, personalizing bus 
services is growing to be a feasible way to drive more and 
more travellers to leave their cars at home and take public 
transit services. A differential fare structure shall be part 
of the scheme of public transit service personalization. 
Therefore, it is timely to carry out research on these issues.
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