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Abstract. This paper aims to optimize fares and transfer discounts for public transit service along a bus-subway corridor 
with the consideration of effects of uncertainty in travel times and difference in stop spacing between bus and subway ser-
vices on passenger behavior. The former factor is captured by the reserved time in travel cost and the latter one produces 
some passenger Origin–Destination (O–D) pairs along the corridor that can not be served by one mode only. This problem 
is formulated as a bi-level program, of which the upper level maximizes the social welfare and the lower-level capturing 
traveler choice behavior is a variable-demand Stochastic User Equilibrium (SUE) assignment model. A Genetic Algorithm 
(GA) is applied to solve the bi-level program while the Method of Successive Averages (MSA) is adopted to solve the 
lower-level model. A series of numerical experiments are carried out to illustrate the performance of the model and solu-
tion method. Numerical results indicate that the implementation of transfer discounts may be of great benefit to the social 
welfare and that the uncertainty in travel time and the difference in stop spacing play an important role in determining 
optimal fares and transfer discounts for the service along a bus-subway corridor.

Keywords: transfer discount, uncertainty in travel time, stop distance, bi-level program, public transit corridor.

Introduction

In the past decade, a public transit system composed of 
bus and subway services has been advocated as an efficient 
and preferred way to meet ever-increasing urban travel 
demand and relieve traffic congestion in metropolitan cit-
ies around the world. The comprehensive effectiveness of 
such a combined transit system depends not merely on a 
reasonable design of its topology and timetable but also 
on an optimal transit fare structure for it, including fares 
and transfer discounts. As a flexible instrument, the fare 
structure may influence passenger behavior directly and 
the operator’ revenue ultimately. It is widely acknowledged 
that the higher fare may lead to the lower ridership. On 
the other hand, the low fare may result in a high subsidy 
from the government if the service sustains. In addition, 
the transfer pricing policy can also have a significant influ-
ence over passenger behavior. Therefore, optimizing fares 
and discounts of transfer fees between different lines and 
different services is a fundamental problem for the author-

ity or operator to run a public transit system. This paper 
considers a combined bus and subway service in parallel 
along a traffic corridor, which is called a bus-subway cor-
ridor hereafter, and aims to find the optimal fare structure 
for the corridor given the travel demand and timetable.

The optimization of transit fare structure is well in-
vestigated in the literature on transportation economics 
(Kocur, Hendrickson 1982; Yang, Kin 2000) and network 
equilibrium (Lam, Zhou 2000; Zhou et al. 2005; Watling 
2006). The relevant research may be traced back to the 
1970s, such as Nash (1978) and Glaister and Collings 
(1978), which proposed to treat the setting of a fare struc-
ture as an optimization problem. Originally, Nash (1978) 
and Glaister and Collings (1978) respectively used an 
elasticity based function and a linear demand function to 
capture the influence of travel costs on passenger behav-
ior without regard to externalities (e.g. congestion). Spiess 
and Florian (1989) proposed a new assignment model for 
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transit networks as an alternative way to find optimal 
strategies for public transit service. Li et al. (2009b) con-
sidered the optimal transit fare structure under different 
market regimes with uncertainty in a network. Tirachini 
et al. (2014) concerned multimodal pricing and optimal 
design of urban public transport with a focus on the in-
terplay between traffic congestion and bus crowding. Kad-
doura et al. (2015) found a range of values for the optimal 
fare and headway, due to the randomness in user behav-
ior that is inherent to an agent-based approach. De Palma 
et al. (2015) derived the optimal time-table and the opti-
mal prices considering crowding in public transport and 
its implications for pricing, seating capacity choice and 
optimal scheduling. There is also a great deal of effort put 
into consideration of capacity constraints, dwell time, fare 
collection systems, etc. (Tirachini, Hensher 2011; Tang 
et  al. 2016). Some work in the literature focuses on the 
issue of coordinated pricing for different modes in a city. 
Li et al. (2009a) optimized a bus-rail transit system with 
feeder bus services under different market regimes. Wang 
et al. (2014) considered demand uncertainty and bounded 
rationality in optimizing the transit fare in an urban trans-
portation system with public transit service and private 
cars. Lu et al. (2015) enhanced the insights into pricing 
mechanism for subway and parking and corresponding 
mode choice behavior along the corridor with elastic de-
mand. Tang et al. (2017) offered an approach to integrated 
optimization of bus line fare and operational strategies in 
a public transit corridor with elastic demand and Tang 
et al. (2019) optimized limited-stop bus services with a 
differential fare structure, which is carried out in a public 
transit corridor with bus service only. However, there is a 
paucity of the optimization of the fare structure that in-
cludes fares and transfer discounts of the services offered 
in a bus-subway corridor. Moreover, these existing investi-
gations only considered the passenger Origin–Destination 
(O–D) pairs that can be served or covered by either bus 
or subway services directly. Generally, the stop spacing is 
the distance between two successive stops along a tran-
sit service line. Actually, the stop spacing often differs for 
bus and subway services along a combined bus-subway 
corridor. It means that there are some added groups of 
passenger O–D pairs that can not be served only by one 
of the two services directly. These pairs can be served by a 
combined bus-subway service with transfer. Thus, the dif-
ference in stop spacing of the two services should be taken 
into account in optimizing fares and transfer discounts for 
a bus-subway corridor.

In addition, the travel time of either of the two transit 
modes is normally uncertain and variable due to conges-
tion and other random factors. In order to analyze passen-
ger choice behavior under stochastic travel times, Noland 
and Polak (2002) and Shao et al. (2006) built a logit model 
based on the random utility theory. Fujii and Kitamura 
(2004) and Avineri (2006) integrated the travel behavior 
mechanism and the cumulative prospect theory to simu-

late passenger behavior under varied uncertain factors. 
Yao et al. (2014) presented a transit network optimization 
method, in which the travel time reliability on the road 
was considered. A robust optimization model was for-
mulated to take into account reliable transit service with 
stochastic travel time. Yao et al. (2015) formulated gener-
alized route travel costs with the uncertainty of link travel 
time and the uncertainty of waiting time at a bus stop and 
in-vehicle congestion costs for the bus mode. Ehrgott et al. 
(2015) and Chen et al. (2017) considered the travel time 
uncertainty faced by travellers when choosing among al-
ternative routes. Due to the distinct operational circum-
stances of bus and subway services, the levels of influence 
due to uncertainty may differ significantly between the 
two services. Thus, this paper also considers the influence 
of uncertainty in travel time of mode on passenger behav-
ior and transforms it into an objective component of the 
travel cost by defining it as a reserved time in trip, just as 
the uncertainty effects on a transit network are measured 
by a function of the standard deviation of travel times on 
transit links in Li et al. (2009b). 

The optimization of fare structure can be based on dif-
ferent objectives (Li et al. 2009b; Borndörfer et al. 2012; 
Tang et al. 2016, etc.). Whatever the forms of an objective 
are, the passengers’ response to the fare pricing is the key 
part in all these investigations and is captured by means 
of a multinomial logit-based Stochastic User Equilibrium 
(SUE) model. However, the multinomial logit model has a 
drawback in dealing with the “common segment” of alter-
native paths. To avoid this, we choose the Path-Size logit 
model, for further details of which the reader may refer to 
Frejinger and Bierlaire (2007) and Ramming (2002). 

The key aim of this work is to confirm advantages of 
optimizing the whole fare structure, especially transfer 
discounts, along a combined bus-subway service corridor. 
The other aim is to analyse impacts of consideration of 
new passenger O–D pairs and uncertainty in travel time 
of mode on the optimal fare structure. The two intellec-
tual merits differentiate this work from Liu et al. (2017). 
Another intellectual merit of this work is the integration 
into the optimization model of difference in stop spac-
ing between bus and subway services and the influence 
of uncertainty in travel time of each mode on passenger 
behavior. The demand along such a corridor is served by 
bus service only, subway service only or their conbined 
service. Therefore, the O–D pairs along the corridor can 
be classified into three types according the transit service 
they receive. 

Following this introduction, Section 1 describes the 
representation of a bus and subway corridor and lists 
basic assumptions of this investigation. Section 2 defines 
the components of the travel cost that impact passenger 
behavior. Section 3 presents model formulation and so-
lution algorithm. Section 4 provides a set of numerical 
experiments to illustrate the applications of the proposed 
models. This paper closes with some concluding remarks.
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1. Preliminaries 

1.1. Assumptions 

The paper considers a corridor ( ),G N L  composed of a 
bus line and a subway line, as shown schematically in Fig-
ure  1, where N is the set of nodes n and L is the set of 
segments connecting each pair of adjacent nodes. Let W 
be the set of O–D pairs, w represent an O–D pair, and M 
be the set of paths for passengers. The bus line serves all 
O–D pairs along the corridor, and the subway only can 
serve part of the O–D pairs, because the gaps between 
two subway stops are usually larger than those for the bus 
service. In addition, there is usually a walking distance for 
passengers to transfer at a stop when this transfer takes 
place from the bus line to subway or vice versa. 

Before proceeding, let us make some basic assump-
tions as follows:

 – transit line – the distance between two successive sta-
tions of the subway line is twice as much as for the 
bus line. Each service has a constant frequency, and 
the average vehicle operating speed of each service is 
given and invariable;

 – passenger – all passengers are assumed to be homoge-
neous, i.e., they have an identical value of time. There 
are four alternative paths for a passenger to complete 
her/his travel, namely, bus direct path, subway direct 
path and mode-combined. With regard to transfers, 
passengers are also assumed never to use one mode 
for twice in a trip, which means they can transfer 
once only.

1.2. Classification of O–D pairs 

According to Section 1.1, transit O–D pairs in the bus and 
subway corridor are classified into three types in terms of 
their alternative paths as shown in Table 1.

Type one is those O–D pairs of which both the origin 
and destination nodes are served by both bus and subway 
lines, e.g. O–D pair ( )+, 4n n  and ( )+, 2n n  in Figure 1. 
They can complete their trips by four alternative paths, 
namely, bus direct path, subway direct path, combined 
bus-subway transfer path or combined subway-bus trans-
fer path if only one transfer is allowed. 

Type two is those O–D pairs which are served directly 
by bus service, but no direct subway service whereas the 
combined service is not a seasonable choice, e.g. O–D pair 
( )+ +1, 2n n  and ( )+ +2, 3n n  in Figure 1. 

Type three is those O–D pairs of which both the ori-
gin and destination nodes are served by bus lines while 
only one of the end nodes is served by subway service, e.g. 
O–D pair ( )+, 3n n  and ( )+ +1, 4n n  in Figure 1. In addi-
tion to the bus direct path, a passenger between an O–D 
pair of this type may take an alternative combined transfer 
path (bus-subway or subway-bus transfer path, dependent 
on which end node of the O–D pair is connected to the 
subway service). 

Contrasting with the existing literature, types two and 
three of O–D pairs are termed added O–D pairs. It is note-
worthy that only type one of O–D pairs exist if the stop 
gaps for bus and subway services are the same and both 
services share their stops.

2. Travel cost 

Transit passengers make their path choice decision based 
on the travel costs of all alternatives. There are several ba-
sic components in the travel cost, e.g. walking time, wait-
ing time, in-vehicle travel time, in-vehicle crowding dis-
comfort, reserved time, fares and/or transfer cost, which 
are respectively defined as follows.

Walking time. This is the time it takes a passenger to 
enter and leave a subway station. This part of the journey 
is mainly done on foot or by walking although the lift or 
elevator may be used from time to time. Therefore, we 
term the part of journey time walking time. The walking 
time at a bus station Tw is disregarded here. In addition, 
a transit passenger also needs some time, TTr, to stations 
between two service lines. 

Waiting time. The average waiting time TWm a pas-
senger spends at a station of transit mode m (b  =  bus, 
s = subway) can be calculated by:

g
= m

m
m

TW
f

, { }∈ ,m b s ,

where: fm is the service frequency of mode m; the pa-
rameter gm depends on the distribution of transit vehicle 
headway and passenger arrival time. With an assumption 

Figure 1. A bus and subway corridor

O n n + 1 n + 2 Dl n + 3 n + 4l + 1 l + 2l – 1

s s

b b b b

Table 1. Classification of O–D pairs

O–D 
pairs

Transfer 
node

Origin Destination
Direct 
path

Transfer 
pathSubway 

line
Subway 

line
Type 
one

yes yes yes bus, 
subway

bus-subway, 
subway-bus

no yes yes bus, 
subway

–

Type 
two

no no no bus –

Type 
three

yes yes no bus subway-bus
no yes bus bus-subway

no no no bus –
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of a uniform distribution of passenger arrival and a con-
stant transit vehicle headway, the value of gm is set to 0.5 
(Lam, Morrall 1982).

In-vehicle travel time The average in-vehicle travel time 
′L

mT  by mode m can be calculated in the following man-
ner:

′

′∈
∑= i

i

lL
m

ml L

d
T

V
, { }∈ ,m b s ,

where: ′L  is the set of travel segments, ′∈il L ; 
il

d  is the 
length of each segment; Vm is the average vehicle operat-
ing speed of mode m.

In-vehicle crowding discomfort. According to Spiess and 
Florian (1989), the in-vehicle crowding discomfort cost is 
measured in terms of generalized time units, and can be 
expressed in the form of Bureau of Public Roads (BPR) 
type function with regard to the mean vehicle travel time, 
passenger volume, and vehicle capacity on the line. Con-
sidering the different automobile structure of two modes, 
an analogical uniform type function is applied to measure 
the cost of in-vehicle crowding discomfort l

mUC  in mode 
m through segment l, which can be expressed as:

( )( )( )= η + η ⋅ − ⋅ ⋅0 1 max 0,l l l
m m m m m m mUC v f k T , 

{ }∈ ,m b s ,

where: η0
m reflects the baseline discomfort level of mode 

m through segment l when the vehicle is empty; η1
m  is the 

positive calibrated parameter of the in-vehicle discomfort 
function; l

mv  is the passenger flow using mode m on seg-
ment l; km is the vehicle capacity of mode m; l

mT  is the 
in-vehicle travel time by mode m on segment l.

Reserved time. Transit passengers may suffer from the 
delay caused by the uncertainty attributed to the operat-
ing environment of a transit mode or random factors. For 
the same transit mode, if the travel distance has a greater 
length, it is more difficult for a passenger to master the 
uncertainty level, which means the passenger may bear 
more delay. For a certain travel length, if the transit mode 
chosen by a passenger is easier to be interfered by uncer-
tainty the passenger may bear more delay. Considering the 
uncertainty that may appear during passengers’ trip, they 
have a rough measure of the travel time (in-vehicle travel 
time) prepared for trips. Normally, the difference between 
the rough measure and the actual measure of in-vehicle 
travel time is defined as a reserved time in passenger’s trip. 
In the analysis, the reserved time ′L

mTR , is captured by a 
function with regard to the in-vehicle travel time ′L

mT , on 
the set of segments ′L , by mode m, i.e.:

( )′ ′= r − ⋅1L L
m m mTR T ,

{ }∈ ,m b s ,

where: ( )r >1m  is the parameter used to roughly measure 
the delay of mode m, from which is suffered by a pas-
senger.

The travel cost w
MU  of direct path ( ),s b  for each pas-

senger between an O–D pair w can be expressed as:

==  =
1
2

, ;
, ,

w
M

u M sU u M b
∀ ∈w W ,

where:
= a ⋅ + a ⋅ + a ⋅ +1 1 2 3

wL
s su Tw TW T

∈

a ⋅ + a ⋅ + a ⋅∑4 5 3
w

w

L l
s s s

l L

p TR UC ;

= a ⋅ + a ⋅ + a ⋅ +2 2 3 4
wL

b bbu TW T p

∈

a ⋅ + a ⋅∑5 3
w

w

L l
b b

l L

TR UC ,

where: the coefficients a are the reciprocal substitution 
factors between each cost component that is used to con-
vert different quantities to the same unit. In this paper we 
set a3 to 1.0; a1 is the ratio of the value of walking time 
to the value of in-vehicle travel time, a2 is the ratio of 
the value of waiting time to the value of in-vehicle travel 
time, a4 is the reciprocal of the value of in-vehicle travel 
time, and a5 is the ratio of the value of reserved time to 
the value of in-vehicle travel time. Besides, Lw is the set of 
segments between O–D pair w; wL

sT  and wL
bT  are the in-ve-

hicle travel times of the subway direct path and bus direct 
path, respectively; wL

sTR  and wL
bTR  are the corresponding 

reserved times for each direct path, respectively; ps and 
pb are the fares of subway and bus services, respectively.

It is assumed that, there are two transfer paths: bus-
subway c1, and subway-bus c2, whose travel cost w

MU  , for 
each passenger between an O–D pair w can be expressed 
as follows:

( )= a ⋅ + +1
w
MU Tw TTr

( ) =a ⋅ + + +  =
1 1

2
2 2

, ;
, ,s b

u M cTW TW TP u M c
∀ ∈w W ,

where:

∈ ∈

 +
= a ⋅ +  

 
∑ ∑

1, 1,
1 3 w w

c s c b

l l
s b

l L l L

UC UCu

( ) ( )a ⋅ + a ⋅ ++ +1, 1, 1, 1,3 5
w ww w

c s c b c s c bL LL L
s sb bT T TR TR

( )a ⋅ + l ⋅4 b s sp p ;

∈ ∈

 +
= a ⋅ +  

 
∑ ∑

2, 2,
2 3 w w

c s c b

l l
s b

l L l L

UC UCu

( ) ( )a ⋅ + a ⋅ ++ +2, 2, 2, 2,3 5
w ww w

c s c b c s c bL LL L
s sb bT T TR TR

( )a ⋅ + l ⋅4 s b bp p ,

where: the term TP is the transfer penalty, which accounts 
for the resistance a passenger suffers from changing the 
service in addition to the walking time (Tong, Wong 
1999); 1,

w
c bL  , 1,

w
c sL  and 2,

w
c bL , 2,

w
c sL  are the sets of bus line 

segments and subway line segments in each transfer, re-
spectively; lb and ls are the transfer discounts of the two 
services, respectively.
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3. Model formulation 

The problem refers to the situation where the whole bus 
and subway corridor is operated by the single operator 
with an objective to maximize the total social welfare of 
the transit system. As such, the transit operator deter-
mines the fares and transfer discounts of the two services. 
Furthermore, the operator’s decision must be influenced 
by the passenger behavior, and the operator should also 
seek for the reasonable decision on the fare structure in 
order to attract more passengers. For this purpose, the 
model to be proposed includes two levels: the upper level 
aims to maximize the social welfare and the lower-level is 
a variable-demand SUE assignment model.

3.1. Upper sub-model

The objective of social welfare includes consumer surplus 
and producer profit. Although the subsidy can be pro-
vided by the authority, it is not considered in the paper. 

The consumer surplus is the total benefits all con-
sumers obtain from exchange, which can be represented 
by 

∈ b∑ w

w W

g
 , measured in time units following Williams 

(1977) and Evans (1987). The parameter ( )b > 0  reflects 
the demand sensitivity to the expected travel cost. gw is the 
total resultant passenger demand between O–D pair w, 
which is assumed to be elastic and is specified as a nega-
tive exponential function with respect to the expected 
travel cost Ew, i.e.:,

( )= ⋅ −b ⋅0 exp ,w w wg g E

∀ ∈ ,w W
                                                             

(1)

where: 0
wg  is the initial potential passenger demand be-

tween O–D pair w; according to the random utility theory, 
the expected travel cost Ew can be measured by the fol-
lowing formula (Sheffi 1985; Ben-Akiva, Lerman 1985; 
Oppenheim 1995): 

( )( )= − ⋅ −q⋅
q ∑1 ln exp ,w

w MM
E U

{ }∈ 1 2, , ,M b s c c ,
                                                   

(2)

where: the parameter ( )q > 0  describes the variation of 
passenger perception on travel cost in the path choice de-
cision. In accordance with the discrete choice theory, q ≥ b 
must hold (Ben-Akiva, Lerman 1985).

The producer profit F is the total revenue that is gen-
erated from passenger fares minus the total operating 
costs, which can be expressed as:

( )(
∈

F = ⋅ + ⋅ + ⋅ + l ⋅ +∑ 1
w w w

b s s b s sb c
w W

h p h p h p p

( )) ( )⋅ + l ⋅ − ⋅ + ⋅
2

,w
s b b s s b bch p p R C R C

                   
(3)

where: w
bh , w

sh , 1
w
ch  and 2

w
ch  are, respectively, the passenger 

demand of bus direct path, subway direct path and two 
transfer paths for O–D pair w; Cb and Cs are the operating 

costs per vehicle hour of bus and subway service, respec-
tively; Rb and Rs are respectively the number of vehicles 
for bus and subway service, which can be given by:

= ⋅ ;b b bR f CT
= ⋅ ,s s sR f CT                                                         (4)

where: CTb and CTs are the cycle journey times for the bus 
and subway services, respectively.

Then the objective function of social welfare SW can 
be represented as:

( ) ∈= +
a ⋅b

∑
4

max ,
w

w W

g

SW p 

( )(
∈

⋅ + ⋅ + ⋅ + l ⋅ +∑ 1
w w w

b s s b s sb c
w W

h p h p h p p

( )) ( )⋅ + l ⋅ − ⋅ + ⋅
2

w
s b b s s b bch p p R C R C

where:
≥ 0bp , ≥ 0sp ;

≤ l ≤0 1b , ≤ l ≤0 1,s ;
                                             

(5)

( ) ( )= l l, ; ,, b s b sp pp   is the vector of decision vari-
ables. 

3.2. Lower-level sub-model 

The lower-level sub-model reflects the passengers’ re-
sponse to the given fare structure. Considering the clash 
between the Independence from Irrelevant Alternative 
(IIA) property of multinomial logit formulation and the 
common segments among the four alternative paths in the 
paper, a Path-Size Logit model (Ben-Akiva, Lerman 1985) 
is applied here, in which the probability w

MP  that path M 
is chosen between O–D pair w is defined by:

( )
( )

⋅ −q ⋅
=

⋅ −q⋅∑
exp

,
exp

w w
M Mw

M w w
M M

M

PS U
P

PS U

∀ ∈ ,w W { }∈ 1 2, , , ,M b s c c
                                     

(6)

where: w
MPS  is the added term to the travel cost of alterna-

tive paths, which can be expressed by:

∈

 +
= ⋅  + δ 
∑ ∑

1 ,
M

l l
m mw

M w w
M M lMl L

M

t u
PS

T UC

∀ ∈ ,w W  { }∈ , ,m b s
 

{ }∈ 1 2, , , ,M b s c c
                  

(7)

where: l
mt  and l

mu  are respectively the in-vehicle travel 
time and in-vehicle crowding discomfort on segment l of 
mode m; δ =1lM  if line segment l is on path M between 
O–D pair w, and δ = 0lM  otherwise; w

MT  and w
MUC  are the 

total in-vehicle travel time and in-vehicle crowding dis-
comfort on path M, respectively; LM is the set of segments 
of each mode on path M. 

Then, the passenger flow w
Mh  on path M can be com-

puted by:
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= ⋅ ,w w
M w Mh g P

∀ ∈ ,w W  { }∈ 1 2, , , ,M b s c c
                                   

(8)

where: gw can be obtianed by Equations (1) and (2). Hen-
ce, the passenger flow on segment l of mode m, l

mv , can 
be expressed by:

∈

= ϕ ⋅∑∑ , ,l l w
m m M M

w W M

v h

∀ ∈ ,l L  { }∈ , ,m b s
 

{ }∈ 1 2, , , ,M b s c c
                     

(9)

where: ϕ ,
l
m M  is a binary variable that equals 1 if the seg-

ment l of mode m is on path M and 0 if it is not. 

3.3. Solution algorithm

Considering the complexity of the bilevel optimization 
problem, a Genetic Algorithm (GA) with double-point 
crossover is adopted to solve the bi-level program while 
the Method of Successive Averages (MSA) (Sheffi 1985) is 
selected to solve the lower-level model. 

The following algorithm is used to solve the previously 
formulated bi-level model:

 – step 1 – initialization. Choose the values of relevant 
parameters in GA, including the population size, the 
maximum generation NG, the probabilities of per-
forming crossover and mutation; select the range of 
variables pm, lm; save ng = 1 for the loop time; 

 – step 2 – computation. Calculate the travel cost of each 
path, the path choice probability and the path pas-
senger flow for each chromosome; count the objec-
tive function of each individual chromosome ( )SW i  ; identify the maximum and minimum objective 
function values of population saving as SWmax and 
SWmin; define the feature of each individual chromo-
some as ( ) − minSW i SW ;

 – step 3 – operation. Perform selection, reproduction, 
crossover and mutation procedures; 

 – step 4 – verification. Terminate the operation when 
the loop time reaches the maximum generation 
(n = NG), and output the data. Otherwise, let ng = 
ng + 1 and go to step 2.

Where the following MSA procedure is employed to 
complete the computation in the aforementioned step 2:

 – step 1 – initialization. Perform a stochastic network 
loading procedure based on a set of initial travel cost 
U. Then generate a set of passenger flow on the four 
paths HA. Set n = 1; 

 – step 2 – update. Set ( ) ( )( )=n nU U HA ;
 – step 3 – direction finding. Perform a stochastic net-
work loading procedure based on the current set of 
path travel costs Un and then yield an auxiliary pas-
senger flow pattern ( )nHB ; 

 – step 4  – move. Set the new flow pattern as 
( ) ( ) ( ) ( )( )+   ⋅ 

 
= + −1 1 n n n nHA HA HB HA

n
;

 – step 5 – convergence criterion. If the convergence is at-
tained, stop. Otherwise, set n = n + 1 and go to step 2.

4. Numerical experiments and analysis
This section is to present a series of numerical experi-
ments to illustrate the application and performance of the 
proposed model in handling different scenarios. 

4.1. Data input 

The sample corridor is shown in Figure 2. It consists of 
15 nodes, one bus line that serves all nodes, one subway 
line that serves part of the nodes, and a bi-directional pas-
senger demand matrix given in Table 2. The O–D pairs in 
dash area of Table 2 are type one O–D pairs. The distances 
between two successive stops of bus and subway lines are 
assumed to be 0.6 and 1.2 km, respectively. Each service 
line has its own stations. The walking time at a subway 
station Tw is set to 0.06 h. The walking distance to transfer 
is assumed to be uniform in the whole corridor and meas-
ured by transfer walking time TTr equal to 0.1 h. Other 
parameter values for the numerical experiments are given 
in Table 3. The values used for capacities, operating costs, 
average operating speeds and frequencies of vehicle for the 
two services are displayed in Table 4. 

4.2. Analysis of numerical results 

4.2.1. Effects of reserved time on the optimal fares 
We first explore the effects of the uncertainty, which is 
measured roughly by passengers, reserved time in a trip, 
referring to type one O–D pairs in Table 2. For this pur-
pose, it is necessary to consider three scenarios, which are 
described as follows: 

 – first scenario: optimize fares of the bus and subway 
two services when the reserved time is unconsidered;

 – second scenario: capture passenger flow shares among 
different paths under the condition that fares of bus 
and subway services inherited from the first scenario; 

 – third scenario: optimize fares of the two services con-
sidering the reserved trip. 

None of the three scenarios involve the optimization 
of transfer discounts, which means the transfer discounts 
for the two services lm equals 100%. The results of the 
first example are displayed in Table 5. Considering the 
first and second scenarios, the fares of bus and subway 
services are the same in the two scenarios. With the same 
travel length, the presence of reserved time in the second 
scenario can make a higher travel cost of all alternative 
paths than in the first scenario. The travel cost of bus di-
rect paths in the second scenario is higher than that of 

Figure 2. Bus and subway corridor 
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transfer paths or subway direct paths, which results in a 
lower passenger demand share on bus direct paths, a high-
er passenger demand share on subway direct paths and the 
same share on the two transfer paths in the second sce-
nario comparing with the first scenario. Furthermore, the 
effects of on the reserved time also lead to a lower optimal 
fare of bus service and the same optimal fare of subway 
service in the third scenario comparing with the optimal 
fares in the first and second scenarios. Considering the 
second and third scenarios, the relevant time components 
of all alternative paths are the same in the two scenarios. 
In the SUE, the reduced fare components of travel cost of 
bus direct paths and transfer paths must be equilibrated by 
the increased in-vehicle crowding discomfort, which can 
be evidenced by the increased passenger demand shares 
of both bus direct paths (2.2%) and transfer paths (1.3%) 
in the third scenario comparing with the second scenario. 
Therefore, Table 5 indicates that the reserved trip time for 
transit service varies inversely with the optimal fare of ser-
vice. In other words, the optimal fare of a transit service 
is lower if the service is disturbed by uncertain factors 
more often.

4.2.2. Effects of transfer discounts 

We now look at the benefit of transfer discounts to the 
social welfare, and the effects of transfer discounts on pas-
senger demand shares among all alternative. Still type one 
of O–D pairs in Table 2 are used for this investigation. For 
this purpose, it is also necessary to consider three sce-
narios, which can be described as follows:

 – first scenario: optimize fares of bus and subway ser-
vices with original transfer cost (i.e. transfer discount 
lm equals 100%); 

 – second scenario: optimize transfer discounts of bus 
and subway services with the given fares inherited 
from the first scenario; 

 – third scenario: optimize fares and transfer discounts 
of bus and subway services integrally. 

The results from the second experiment are displayed 
in Table 6. Considering the first and second scenarios, the 
fares of bus and subway services are the same. With the 
optimization of transfer discounts in the second scenario, 
the relevant time and fare components of travel cost of bus 

Table 2. Potential demand matrix in transit corridor [pax/h]

 O
D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 419 1786 236 1448 223 1474 198 1465 165 1497 164 1601 132 1575
2 300 0 272 480 426 350 376 454 552 312 384 250 232 240 262
3 1150 349 0 521 1799 258 1955 248 3074 182 2522 176 2159 89 3163
4 212 225 406 0 412 300 292 279 283 261 288 250 167 190 160
5 1946 275 2879 332 0 229 1390 267 1579 213 1272 206 1427 181 334
6 161 141 300 335 160 0 214 200 216 235 246 250 222 200 210
7 1456 171 2280 261 1201 193 0 215 1393 231 1546 234 1505 272 1564
8 100 170 150 132 200 210 189 0 211 160 194 200 267 220 236
9 2233 419 2210 236 1323 223 1345 198 0 204 1183 230 1451 218 1638

10 340 358 286 440 466 350 379 503 386 0 356 310 251 286 295
11 1584 218 2959 521 1774 258 1452 248 1322 221 0 271 1147 222 1414
12 250 300 312 352 409 296 296 281 262 361 271 0 260 357 351
13 1575 151 2286 317 1448 229 1484 267 1650 261 1318 295 0 362 1604
14 160 182 260 262 200 200 173 208 162 190 170 165 162 0 180
15 1645 135 1932 141 1550 205 1284 215 1140 205 1276 152 1272 201 0

Table 3. Values of parameter

Parameter a1 a2 a3 a4 a5 gb gs b q rb rs η0
b η1

b η0
s η1

s

Value 1.2 2.0 1.0 0.125 0.8 0.5 0.5 0.6 3.5 1.2 1.1 0.5 0.1 0.1 0.02

Table 4. Characteristics of bus and subway services

Mode Bus Subway
Vehicle capacity km [pax/veh] 120 600
Operating cost Cm [¥/veh-h] 80 900
Average operating speed Vm [km/h] 10 30
Frequency fm [veh/h] 60 20

Table 5. Results of first experiment

Scenario Reserved 
time

Fare pm [¥] Direct share 
[%]

Transfer 
share 
[%]Bus Subway Bus Subway

First unconsi-
dered 1.0 2.4 42.6 44.6 12.8

Second considered 1.0 2.4 40.6 46.6 12.8
Third considered 0.6 2.4 42.8 43.1 14.1
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and subway direct paths are fixed, but the fare components 
of travel cost of bus-subway transfer paths are changed 
due to the optimal transfer discount. Thus, in SUE, the 
reduced fare components of travel cost of transfer paths 
must be equilibrated by the increased in-vehicle crowd-
ing discomfort in travel cost of these paths. Correspond-
ingly, the in-vehicle crowding discomfort is reduced. The 
changes can be illustrated by the increased passenger de-
mand shares of transfer paths and the reduced passenger 
demand shares of direct paths in the second scenario com-
paring with the first scenario. In addition, the optimiza-
tion of transfer discounts can also benefit the passenger 
demand and social welfare, which increase by 84 pax/h 
and 115 ¥/h, respectively. 

Comparing with the fares and transfer discounts in the 
first and second scenarios, the optimal fares in the third 
scenario are increased, and the resulting transfer discounts 
are reduced. Based on the fixed relevant time components 
of travel cost in all three scenarios, the increased relevant 
fare components of travel cost of direct paths and reduced 
fare components (fares and transfer pricings) of travel cost 
of transfer paths must make the passenger demand share 
of direct paths reduced and the share of transfer paths in-
creased in the third scenario. Furthermore, the changes of 
passenger demand share of bus direct paths are more than 
those of subway direct paths due to the more increased 
fares of subway. For example, the optimal fare of subway 
service in the third scenario increases by 0.3 ¥, and the 
fare of bus service only increases by 0.1 ¥ comparing with  
that in the second scenario, which results in a lager re-
duced value (3.5%) in the passenger demand share of sub-
way direct paths and a smaller reduced value (0.1%) in the 
passenger demand share of bus direct paths, respectively. 
Obviously, the social welfare in the third scenario can ben-
efit from the integrated optimization of fares and transfer 
discounts in spite of the reduced passenger demand.

Table 7 displays the detailed changes in the passen-
ger demand share of transfer paths in the given demand 
matrix. The transfer share in the first and third scenarios 
are shown as example. With the increasing travel length, 
the advantage of transfer paths over bus direct paths rises 
in terms of travel time. Therefore, the passenger demand 
shares of transfer paths increase with the travel length in 
both scenarios. With the same travel length, the passenger 
demand shares of transfer paths in the third scenario are 
higher than in the first scenario in term of the benefit of 
transfer discounts that are applied in the third scenario. 
The difference in demand share between the two scenarios 
can range from 5 to 8%, which shows that it is essential to 
adopt transfer discounts in an integrated transit corridor 
with aim to encourage more transfers. 

4.2.3. Effects of added passenger O–D pairs considering 
the different stop distances of two services 
We explore the interplay of passenger behavior among 
different O–D pair types, and further effects on the op-
timization of fare structure in the third experiment. For 
this purpose, we also look at three scenarios, which are 
designed as follows:

 – first scenario: optimize fare structure without differ-
ence in stop distance, which means only type one 
O–D pairs (dash area in Table 2) are considered; 

 – second scenario: capture passenger demand shares 
among different paths considering the difference in 
stop distance between bus and subway services based 
on the fare structure inherited from the first scenario; 

 – third scenario: optimize fares and transfer discounts 
of bus and subway services considering the difference 
in stop distance between the two services. 

The results from the third experiment are displayed 
in Table 8. Comparing with those from the first scenario, 
the added O–D pairs in the second scenario, namely, type 

Table 6. Results of second experiment

Scenario
Fare pm [¥] Discount lm [%] Direct share [%] Transfer  

share [%]
Demand 
[pax/h]

SW 
[¥/h]Bus Subway Bus Subway Bus Subway

First 0.6 2.4 100 100 42.8 43.1 14.1 68700 1015539
Second 0.6 2.4 100 87 42.7 42.5 14.9 68784 1015654
Third 0.7 2.7 30 50 42.6 39.0 18.4 68375 1016110

Table 7. Changes in passenger demand share of transfer path [%] in second experiment: third scenario/first scenario

O
D 1 3 5 7 9 11 13 15

1 – 0/0 21/16 23/18 26/20 30/23 33/25 35/27
3 0/0 – 0/0 21/16 23/18 26/20 30/23 33/25
5 21/16 0/0 – 0/0 21/16 23/18 26/20 30/23
7 23/18 21/16 0/0 – 0/0 21/16 23/18 26/20
9 27/20 23/18 21/16 0/0 – 0/0 21/16 23/18

11 30/23 26/20 23/17 21/16 0/0 – 0/0 21/16
13 33/25 30/23 26/20 23/18 21/16 0/0 – 0/0
15 35/27 32/25 30/23 26/20 23/18 21/16 0/0 –
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two and three O–D pairs cause in-vehicle overcrowding 
of both services, which are illuminated by increased high-
est loading degree in bus and subway lines (increased by 
2.9 and 4.1%, respectively). The effects of the added O–D 
pairs on passenger behavior of three types and passenger 
demand shares among several alternative paths are elabo-
rated in the following analysis. 

Passengers of type two O–D pairs must complete their 
trips by bus direct paths. The travel costs of bus paths in-
crease with passengers’ travel length. Thus, the travel ra-
tio of type one O–D pairs decreases with travel length, 
e.g. travel ratio for O–D pairs (2, 1), (2, 4), (2, 6), (2, 8),  
(2, 10), (2, 12) and (2, 14) in Figure 3.

Passengers of type three O–D pairs can complete their 
trips by bus direct paths and transfer paths. The travel ra-
tio of type one O–D pairs decreases with travel length. Ac-
cording to the assumption of transfer path in Section 1.1,  
the superiority of transfer paths increases with travel 
length comparing with bus direct paths, which result in 
an increasing transfer share and a decreasing bus direct 
share with the increasing travel length. Figure 4 shows the 
change in travel ratio, bus direct share and transfer share 
for type two O–D pairs (1, 4), (1, 6), (1, 8), (1, 10), (1, 12) 
and (1, 14) as example.

Types two and three O–D pairs added in the second 
scenario increase the passenger flow on bus line directly, 
which must lead to more in-vehicle crowding discomfort 
in the travel cost of bus direct paths. Thus, type one O–D 
pairs in the second scenario have a lower bus direct share 
comparing with the first scenario. More passengers of this 
type O–D pairs are likely to choose subway direct paths. 
Figures 5 and 6 show the different path shares for type one 
O–D pairs in the first and second scenarios, respectively. 
This shows that the subway direct path share has a signifi-
cant rise, which is consistent with the results in Table 8 in 
which the passenger flow of subway direct path increases 
by 1405 pax/h. In addition, comparing with the first sce-

nario, the increased passenger flow of bus direct paths in 
the second scenario results from the added passenger de-
mand of types two and three, and the increased transfer 
paths share in the second scenario is caused by the added 
transfer flow of type three and transfer flow of type one 
O–D pairs based on the decreased travel ratio (from 73.4 
to 60.3%). Therefore, considering the difference in stop 
distance between bus and subway lines, the passenger be-
havior of added O–D pairs interacts with type one O–D 
pairs significantly, which imply that the difference in stop 
distance can not be ignored, otherwise the overcrowding 
may appear in transit vehicles.

Furthermore, the overcrowding in transit vehicles in 
the second scenario also may forebear from the higher 
optimal fares in the third scenario. As shown in Table 8, 
subject to the capacity of transit vehicles, the fares of bus 
and subway services rise to a level similar to transfer dis-
counts. Comparing with the second scenario, the higher 
fares not only result in a lower travel ratio, but also change 
the passenger demand shares among different paths. For 
example, with the close gap of fares between the two ser-
vices, the superiority of cheaper fares for bus direct paths 
falls down comparing with subway direct paths, which 
results in a decreased passenger flow in bus direct paths 
and increased passenger flow in subway direct paths, as 
shown in Table 8. 

4.2.4. Sensitivity analysis of passenger  
demand of added O–D pairs 
We carry out a sensitivity analysis of the impacts on opti-
mal fares and transfer discounts of bus and subway servic-
es of varying the passenger demands of added O–D pairs 
(types two and three O–D pairs). The passenger demands 
of added O–D pairs in Table 2 are marked as Q*. We opti-
mize the fare structure with the variable Q*, i.e. 80, 60 and 
40% of Q*. The results are displayed in Table 9. 

Table 8. Results of third experiment

Scenario
Fare pm  

[¥]
Discount lm  

[%]
Passenger flow  

[pax/h] Transfer share  
[%]

Highest loading 
degree [%] Travel ratio 

[%]
Subway Bus Subway Bus Subway Bus Subway Bus

First 2.7 0.7 50 30 26687 29126 18.4 100.1 98.2 73.4

Second 2.7 0.7 50 30 28092 36898 18.9 104.2 101.1 60.3
Third 5.3 5.3 50 50 32718 31656 9.5 100.1 100.0 53.6

Figure 3. Travel ratio for passengers of type two O–D pairs  
in second scenario

Figure 4. Travel ratio and paths shares for type three O–D pairs 
in second scenario
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As shown in Table 9, as the passenger demand of 
added O–D pairs decreases, both the fares of the two ser-
vices and the transfer discount fall whereas the difference 
in fare between subway and bus services rises. Therefore, 
the passenger demand of added O–D pairs may have an 
indirect impact on the fare and transfer discount of the 
subway service and directly affect the bus service. 

Table 9. Results of sensitivity analysis

Q*
Fare pm [¥] Discount lm [%]

Subway Bus Subway Bus

80% 4.7 4.5 60 50

60% 4.6 4.0 40 30

40% 4.0 3.0 40 20

Concluding remarks

This paper has formulated a bi-level program to optimize 
the fare structure (including fares and transfer discounts) 
along a bus-subway corridor with an objective of maxi-
mizing the social welfare. The two important factors have 
been considered in this optimization problem. One is the 
uncertainty in travel time of mode, which is due to the 
unstable operational environment of transit modes and/or 
random factors. The degree of travel time uncertainty dif-
fers from mode to mode even though they run along the 
same corridor. Thus, the influence of uncertainty in travel 
time on passenger behavior is formulated as a reserved 
time in the optimization model proposed in this paper, 
which is one of the intellectual merits of this work.

The second factor is the difference in stop spacing be-
tween bus and subway services. In a bus-subway corridor 
with different stop distances of the two services, passen-
gers complete their trips by different sets of alternative 
paths. For example, some O–D pairs can be served by 
direct bus paths, some by direct subway paths and some 
by those paths combining subway and bus services. Thus, 
O–D pairs in such a corridor can be classified into three 
types. Type one O–D pairs are consistent with the travel 
groups in the existing literature, which does not focus on 
the difference in stop spacing between different mode ser-
vices, and types two and three O–D pairs proposed in this 

paper are the newly added travel groups due to the stop 
spacing difference issue.

Numerical experiments have been designed to explore 
the four issues: effects of reserved time on optimal fares, 
effects of transfer discounts, effects of difference in stop 
distance between bus and subway services and sensitiv-
ity analysis of passenger demand of the two newly added 
types of O–D pairs. Here is a list of new findings:

 – the consideration of reserved time in a trip has a 
significant impact on the optimal fares of bus and 
subway services. If a service is more easily disturbed 
due to uncertain factors then the more reserved time 
shall be required in a trip by this service and the op-
timal fare of it will be lower;

 – the introduction of transfer discounts of corridor 
transit services is of great benefit to the social wel-
fare and transfers;

 – type two O–D pairs have to choose the direct bus 
paths while the type three O–D pairs are likely to 
choose bus direct paths for short distance travel and 
mode-combined paths for long distance travel. The 
newly-added passenger O–D pairs share a certain ra-
tio of capacity of bus service, which leads to a lower 
bus direct share of type one O–D pairs comparing 
with no consideration of the difference in stop spac-
ing between bus and subway services. More type one 
passengers are likely to choose subway direct paths. 
In addition, these changes result in an increased bus 
and subway fare because of the increased congestion 
in bus and subway lines in the end. The observed 
passenger behavior indicates that it is of utmost im-
portance to consider the difference in stop spacing 
between bus and subway services while optimizing 
public transit fare structures for different mode ser-
vices along a corridor;

 – the newly added types of O–D pairs have a direct 
impact on the optimal fare of bus service and have an 
indirect impact on the fare of subway service. 

The major challenge in this investigation is how to as-
sign the reasonable values of parameters accurately when 
we implement the case study on real-life road networks. 
Some stated preference surveys are needed, and it is neces-
sary to consider the heterogeneity of passengers. Although 
these difficulties exist, the essential ideas of the paper are 
still valuable to the optimization of fare structure for a 
bus-subway corridor.

Figure 5. Paths share for type one O–D pairs in first scenario Figure 6. Paths share for type one O–D pairs in second scenario
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A possible extension of this research would be to di-
vide passengers into groups with different trip purposes 
and ages because the desired travel comfort, waiting time 
and fare cost vary for different groups. An ongoing piece 
of our research is to design an applicable fare structure for 
groups with different purposes and/or ages along a bus-
subway corridor.
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