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Abstract. Predicting the duration time of incidents is important for effective real-time Traffic Incident Management 
(TIM). In the current study, the k-Nearest Neighbor (kNN) algorithm is employed as a nonparametric regression ap-
proach to develop a traffic incident duration prediction model. Incident data from 2008 on the third ring expressway 
mainline in Beijing are collected from the local Incident Reporting and Dispatching System. The incident sites are 
randomly distributed along the mainline, which is 48.3 km long and has six two-way lanes with a single-lane daily 
volume of more than 10000 veh. The main incident type used is sideswipe and the average incident duration time is 
32.69 min. The most recent one-fourth of the incident records are selected as testing set. Vivatrat method is employed 
to filter anomalous data for the training set. Incident duration time is set as the dependent variable in Kruskal–Wal-
lis test, and six attributes are identified as the main factors that affect the length of duration time, which are ‘day first 
shift’, ‘weekday’, ‘incident type’, ‘congestion’, ‘incident grade’ and ‘distance’. Based on the characteristics of duration time 
distribution, log transformation of original data is tested and proven to improve model performance. Different dis-
tance metrics and prediction algorithms are carefully investigated. Results demonstrate that the kNN model has better 
prediction accuracy using weighted distance metric based on decision tree and weighted prediction algorithm. The 
developed prediction model is further compared with other models based on the same dataset. Results show that the 
developed model can obtain reasonable prediction results, except for samples with extremely short or long duration. 
Such a prediction model can help TIM teams estimate the incident duration and implement real-time incident man-
agement strategies.
Keywords: traffic incident management; duration prediction; nonparametric regression approach; k-nearest neighbor; 
influence factors.
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Introduction

Traffic incidents represent an important component of 
non-recurrent traffic congestion (Kwon et  al. 2006). 
According to estimates reported by the National Traf-
fic Incident Management Coalition (NTIMC 2006), 
approximately one-quarter of all congestion in the US 
roadways is caused by traffic incidents, and blocking a 
freeway lane for a minute because of an incident results 
in four minutes of travel delay after incident clearance. 

For more than two decades, many Traffic Incident 
Management (TIM) programs have been implemented 
in numerous areas and cities in the US under the co-
operative work of transportation, public safety, and pri-
vate sector professionals to clear traffic incidents safely 
and quickly (Owens et al. 2010). TIM has become a key 
solution to non-recurrent traffic congestion problems 

(Schrank et al. 2012). For an advanced incident manage-
ment system, accurate and real-time prediction of inci-
dent duration is essential for traffic operators to provide 
timely information to travellers, particularly those ap-
proaching the incident scene, through various traveller 
information systems and traffic control measures. 

In China, traffic incidents have also become a main 
cause of non-recurrent traffic congestion. However, 
rough estimation is often performed by traffic operators 
in most traffic control centres. Such estimations mainly 
depend on the working experience of the traffic opera-
tors, and the predictive accuracy may be poor for em-
ployees who lack professional skills. Therefore, develop-
ing a convincing prediction model for traffic incident 
duration remains essential.

This study aims to investigate an applicable model 
to predict traffic incident duration as soon as the traffic 



23 S. Wang et al. Application of nonparametric regression in predicting traffic incident duration

management centre obtains initial information from the 
reporter of the incident. Data on 3744 traffic incidents 
in the third ring expressway mainline in 2008 were col-
lected from the Incident Reporting and Dispatching 
System (IRDS) in Beijing. The third ring expressway 
is a ring-shaped urban expressway in the city of Bei-
jing, which connects a number of city nuclei areas and 
large residential districts. The present study focuses on 
the main road of the expressway, which is 48.3 km long 
with six two-way lanes. The design speed is 80 km/h 
and the single-lane daily volume is approximately 10000 
veh. Around 60 ramps are placed in two directions, and 
a minimum space of 36 m is placed between on or off 
ramps. A nonparametric regression model, k-Nearest 
Neighbor (kNN) model, was proposed to predict traf-
fic incident duration. The prediction performance and 
reliability of this algorithm were tested on the basis of 
the selected traffic incident dataset. Traffic incident du-
ration is defined in this study as the time from when the 
incident information was obtained to when the incident 
scene was cleared.

1. Literature Review 

Several methods have been implemented in the past few 
decades to develop models for predicting traffic incident 
duration. Most of these methods can be classified into 
the following categories: 
1)  Linear regression. To develop a series of truncated 

linear regression models, Khattak et al. (1995) exam-
ined 109 accidents that occurred in 1989 and 1990 
in Chicago area freeways. Their research established 
a time sequential procedure for predicting traffic 
incident duration. Garib et  al. (1997) developed a 
Multi-Linear Regression (MLR) model to estimate 
incident duration. This incident duration prediction 
model (with an adjusted R-square of 0.81) showed 
that incident duration can be predicted by the num-
ber of lanes affected, number of vehicles involved, 
truck involvement, time of day, police response time, 
and weather conditions. Khattak et al. (2012) applied 
Ordinary Least Squares (OLS) regression to estimate 
traffic incident duration. Dynamic models were then 
constructed based on data from the Hampton Roads 
area in 2006. A representative OLS model for incident 
duration prediction was found to have an R2 of 0.255.

2)  Machine learning regression methods. Boyles et  al. 
(2007) developed a probabilistic model based on a 
naive Bayesian classifier; this model was proven su-
perior to standard linear regression models in pre-
dicting traffic incident duration. Wei and Lee (2007) 
established an adaptive procedure to predict traffic 
incident duration, including two artificial neutral 
network-based models; the Mean Absolute Percent-
age Errors (MAPEs) of these prediction models are 
mostly under 40%. Yang et  al. (2008) presented a 
new prediction model based on the Bayesian deci-
sion model to estimate traffic incident duration. 
Compared with most existing methods, the proposed 
model was suitable for incomplete data and exhib-

ited better theoretical prediction accuracy. Zhan et al. 
(2011) used the M5P tree algorithm for lane clearance 
time prediction. The developed model achieved bet-
ter prediction results than the traditional regression 
and decision tree models. Kim and Chang (2011) em-
ployed a hybrid model to develop a primary estima-
tion system in which they combined rule-based tree 
model, multinomial logit model, and naïve Bayesian 
classifier. Wu et al. (2011) employed support vector 
regression to predict traffic incident duration and 
obtained high accuracy. He et  al. (2013) proposed 
a hybrid tree-based quantile regression method that 
incorporated the merits of both quantile regression 
modelling and tree structured modelling. 

3)  Survival analysis. Chung (2010) applied survival anal-
ysis to develop a model for predicting traffic incident 
duration based on data from Korea in 2006 and 2007. 
The estimated parameters for the prediction model 
demonstrated temporal stability. Qi and Teng (2008) 
divided the incident management process into several 
stages and developed a hazard-based regression model 
for each stage with different variables to improve the 
accuracy of prediction. Kang and Fang (2011) applied 
survival analysis to develop the Weibull Accelerated 
Failure Time (AFT) duration prediction model with 
nearly three-year traffic incident data on an express-
way in Zhejiang Province, China, from 2006 to 2008. 
The model prediction accuracy is acceptable with the 
MAPE measurement. Wang et al. (2013) applied the 
AFT models to predict traffic incident duration; the 
log-logistic distribution produced the best fit for the 
data from the freeway records maintained by Chinese 
policemen.

4)  Nonparametric regression. Nonparametric regression 
is a form of regression analysis in which the result of 
regression is not in a predetermined form. The regres-
sion model is constructed on the basis of information 
derived from the data. Nonparametric regression has 
been applied in various fields, including prediction 
of traffic flow (Huang et  al. 2011; Lam et  al. 2006; 
Oswald et al. 2000) and of traffic incident duration 
(Smith, K., Smith, B. L. 2002; Boyles et al. 2007; Wei, 
Lee 2007). 

kNN is a nonparametric method employed main-
ly for classification according to the closest training 
examples in the feature space (Tan et  al. 2005). This 
methodology can also be used for regression if the tar-
get attribute is continuous instead of discrete. Lv et al. 
(2009) applied kNN in real-time highway traffic accident 
prediction and found that this method outperforms the 
conventional C-means clustering method. Oswald et al. 
(2000) discussed the use of nearest neighbor regression 
in real-time systems and provided general guidelines for 
optimizing computation speed and data structure. kNN 
is one of the simplest machine learning algorithms. As 
a type of instance-based learning, kNN is adaptive to 
various tasks in the field of transportation.

Smith, K. and Smith, B. L. (2002) employed the data 
on 7396 freeway accidents in Virginia to develop a kNN 
nonparametric regression model. A new distance metric, 

http://en.wikipedia.org/wiki/Feature_space
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instead of the traditional Euclidean distance, was used to 
provide a different weight factor for each independent 
variable. The straight average of the clearance time of 
each neighbor was calculated to generate the predicted 
value. The mean prediction error was the main criterion 
in determining the neighbor size. Approximately 49.6% 
of the test accidents were within 15  min of the actual 
time, and the average error was approximately 20 min. 

Wen et al. (2012) established a new method to de-
termine the weights of attributes. In the traffic incident 
duration prediction algorithm, the duration of events 
with a smaller distance weighs more. Error ≤  15 min 
is used as the accuracy index in calculating the optimal 
value of k. When the error is not more than 15 min, lost-
load incident has 75.66% accuracy, breakdown incident 
has 67.25% accuracy, and accident has 84.94% accuracy. 

Valenti et al. (2010) developed an appropriate dis-
tance metric based on the number of matching inde-
pendent variables between past and current incidents. 
The prediction value is obtained by weighing the con-
tribution of kNNs. The error between the predicted and 
actual incident durations averages over 17 min.

For the traffic incident duration prediction model 
development based on the kNN algorithm, only a few 
previous studies have provided an in-depth discussion 
on data preprocessing. The present study implemented 
data preprocessing techniques, including data filtering 
and data transformation, to exclude outliers and im-
prove model performance. Meanwhile, previous studies 
mainly employed a user-specified single definition of 
distance metric and prediction algorithm. The current 
study focuses on further statistical analysis to find the 
optimal combination of distance metric and prediction 
algorithm for the specific dataset. 

2. Data Description 

The 2008 data employed in this study were obtained 
from the IRDS in Beijing. The original data in the IRDS 
contain all incident events that occurred on all types of 
roads in the metropolitan area of Beijing. Thus, consid-
ering the geographic characteristics and traffic condi-
tions of each road is important. However, specific in-
formation on each road is currently unavailable from 
the system. Several previous studies (Qi, Teng 2008; He 
et al. 2013) have shown that different roads have differ-
ent effects on traffic incident duration time. Therefore, 
the incident data on the third ring expressway mainline 
were selected for further study on model development 
to exclude the influence of road characteristics. The total 
length of the study road is 48.3 km and the road has six 
two-way lanes. The mean value of lane width is 3.75 m 
and the shoulder width is 2.5 m.

Fig. 1 shows the distribution pattern of traffic inci-
dent duration time. The statistical analysis demonstrates 
that incident duration distribution is right skewed (skew-
ness = 4.325). The mean value and standard deviation 
are 32.69 and 34.42 min, respectively. Approximately 
90.0% of the incidents lasted less than 60 min, whereas 
4.3% of the incidents lasted longer than 90 min.

In the original data obtained from the IRDS, each 
record has the same set of attributes, including the geo-
graphical information of the incident scene, incident 
characteristics, and temporal characteristics. To apply 
the distance metric mentioned in the following sections, 
all independent variables should be nominal attributes. 
The continuous variable (the distance variable) was di-
vided into several groups to make all attributes nominal. 
Detailed information on the attributes is listed in Table 1.

Table 1. Variable Kruskal–Wallis test results

Variable name Value p-value

Te
m

po
ra

l

Peak hour
1 – peak hour (7:00–9:00 am 
       and 5:00–7:00 pm); 
0 – nonpeak hour

0.194

Day first 
shift

1 – 10:00 p.m – 6:00 a.m;
0 – 6:00 a.m – 10:00 p.m <0.001

Weekday 1 – weekday; 
0 – weekend 0.002

Season 

1 – spring; 
2 – summer; 
3 – autumn; 
4 – winter

0.822
In

ci
de

nt

Incident 
type

1 – sideswipe; 
2 – rear-end crash
3 – include pedestrian or bike
4 – hit object; 
5 – rollover; 
6 – others

<0.001

Police
0 – solved by drivers involved 
       in incident;
1 – solved by polices 

0.100

Congestion

0 – under non-congestion 
       traffic condition;
1 – under congestion traffic
       condition

<0.001

Incident 
grade

1 – include damaged vehicles,
       no casualties;
2 – include injured people,  
       no death;
3 – include death 

0.006

Number 
of vehicles 
involved

1 – one or two; 
0 – more than two 0.137

Taxi 1 – incident involve taxi; 
0 – no taxi 0.208

Bus 1 – incident involve bus; 
0 – no bus 0.152

Truck

1 – incident involve  
       small truck;
2 – incident involve large
       truck;
0 – no truck

0.088

G
eo

gr
ap

hi
c

Distance

The distance from the incident 
scene to the central Beijing:
1 – less than 5 km; 
2 – 5–6 km;
3 – 6–7 km; 
4 – 7–8 km;
5 – more than 8 km

<0.001
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3. Model Development 

According to the basic concept of the kNN algorithm, 
the first step of modelling should establish the training 
sample dataset. Calibration of the distance metric is then 
required to measure the degree to which the given test 
sample is similar to each training sample. When kNN is 
used for regression, the property value of the test sample 
would be the average (or weighted average) of its kNN. 

Several performance measures can be applied to 
evaluate prediction model development. The main mea-
sures of effectiveness include the Mean Absolute Error 
(MAE), MAPE, and Root Mean Squared Error (RMSE). 
Smith, K. and Smith, B. L. (2002) indicated that as a sup-
plementary means, the percentage of predictions within 
a certain tolerance of their actual incident duration can 
be useful in predicting the duration of traffic incidents. 
These evaluation indices are calculated with the optimal 
value of neighbor size as:

0
1

N

pi i
i

t t
MAE

N
=

−
=
∑

;  (1) 

0

01

N
pi i

ii

t t
t

MAPE
N

=

−

=
∑

;  (2)

( )20
1

1 N

pi i
i

RMSE t t
N =

= −∑ ,  (3)

where: tpi is the predicted value of traffic incident dura-
tion; t0i is the actual value of traffic incident duration for 
the ith incident record; N is the total number of testing 
samples.

3.1. Division of Training and Testing Set
The total population of incident records on the third 
ring expressway mainline in 2008 was collected based on 
types such as fender bender, severe traffic crash, or vehi-
cle on fire. Several studies (Wu et al. 2011; Demiroluk, 
Ozbay 2011) randomly selected the testing samples to 
examine the effectiveness of the prediction model. How-
ever, for a real-time TIM system, the goal of modelling 
is to predict the duration of the present case based on 
knowledge of history incident records in Beijing. Thus, 
the testing samples were selected in a chronological 
manner as in other studies (Lin et al. 2004; Kim et al. 
2008). 

In this study, the most recent one-fourth of incident 
records (936 records) were selected as testing samples 
for model evaluation and the earlier three-fourths (2808 
records) as training samples to establish the historical 
database. The main incident type used is sideswipe for 
both the testing and training sets.

3.2. Filtering Anomalous Data
Before the next phases of model development, the ex-
treme values in the training set should be excluded to 
reduce the effect of outliers. The Vivatrat method can 

be a useful tool to address anomalous values, which has 
been applied in processing injurious road crash rates 
(Dell’Acqua et al. 2013). In this study, the procedure is 
outlined as follows:

 – dividing the samples into six groups by crash 
type;

 – calculating the mean and deviation of duration 
time for each group of samples, and ordering the 
groups that increase the mean value of duration 
time; and

 – calculating the representative dispersion Sr for 
each group as follows:

   
( )1 1 1 1

1min , ,
2r i i i i i iS S S S S S S+ − + −= + + + ,       (4)

where: 1iS + , iS  and 1iS −  represent the standard 
deviation of the (i +1)th, ith, and (i–1)th groups, 
respectively.

 – For each group, the samples with duration time 
outside the range of i rASµ ±  are removed, 
where iµ  is the mean of the duration time for 
the ith group. The value of A is set as 2.5.

3.3. Data Transformation
The typical right-skewed distribution pattern of incident 
duration time is consistent with the results of several rel-
evant studies (Wang et al. 2013; Zhan et al. 2011; Valenti 
et al. 2010). However, modelling techniques often have 
difficulties dealing with data with a wide value range. 
For the data used in this study, most of the samples 
are located in the time interval of 20 min to 40 min, 
as shown in Fig.  1. The duration time of the selected 
nearest neighbors may be concentrated in a certain time 
interval, which might compromise the prediction accu-
racy. Thus, a certain type of data transformation may 
help make the data more applicable to the developed 
model. Previous studies (Garib et al. 1997; Valenti et al. 
2010) that utilized multiple linear regression to predict 
traffic incident duration applies log transformation to 
induce symmetry and meet the normal distribution as-
sumption. In the present study, log transformation of the 

Fig. 1. Distribution of traffic incident duration
Duration [min]
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dependent variable (incident duration time) was tested. 
Fig.  2 illustrates the relatively uniform distribution of 
the duration time after log transformation, which might 
mitigate the potential problems resulting from a right-
skewed duration distribution with wide data range. The 
transformed data are compared with original data in 
Section 4.3 to validate the effect of the transformed data 
on prediction results and to investigate their influence 
on prediction performance.

3.4. Distance Metric
The core of the kNN algorithm lies in the approach to 
determine the kNNs. One of the most prevalent means 
to measure distance is Euclidean distance. However, this 
measure is mainly applied to data with continuous varia-
bles. According to the dataset employed in this study, all 
attributes are nominal for each incident record obtained 
from the IRDS, as listed in Table 1. Thus, several dis-
tance metrics suitable for nominal attributes are further 
examined. For nominal attributes, the simplest distance 
metric is the overlap metric (Li, C., Li, H. 2010). Never-
theless, this measure of distance remains rough because 
it does not consider the additional information provided 
by the nominal attribute values, which may be helpful 
in generalization (Wilson, Martinez 1997). Therefore, in 
the present study, attribute weighted overlap metric was 
adopted as follows:

( ) ( ) ( )( )1 2 1 2
1

, ,
n

i i i
i

d x x w a x a x
=

= δ∑ ,  (5)

where: n is the number of attributes; ( )1ia x  and 
( )2ia x  are the values of the ith attribute of incident re-

cord x1 and x2, respectively; ( ) ( )( )1 2,i ia x a xδ  is 0 if 
( ) ( )1 2i ia x a x=  and 1 otherwise; wi is the weight of the 

ith attribute. 
Smith, K. and Smith, B. L. (2002) defined weight 

factor wi for each attribute based on the absolute dif-
ference in the means of different groups of samples for 
the particular attribute. With the attribute season as an 
example, the total population of incidents is divided into 

four groups (spring, summer, autumn, and winter). If 
incident sample x1 occurred in spring and x2 occurred in 
summer, then the absolute difference between the mean 
of incident duration time for all incidents in spring, T1, 
and that for all incidents in summer, T2, would be cal-
culated as the weight factor for attribute season between 
x1 and x2:

2 1iw T T= − .  (6)

Wen et al. (2012) proposed a similar approach in 
which ( )2 1 1 2max / , /T T T T is calculated as weight factor 
wi:

( )2 1 1 2max ,iw T T T T= .  (7)

The two methods discussed are easy to understand 
but they consider only the mean value of the incident 
duration for different groups in the distance metric. A 
more elaborate attribute weighting method considers the 
degree to which a particular predictive attribute depends 
on the values of other attributes. 

A decision tree can be employed for classification 
and regression, with the resulting model presented in 
the form of a tree structure. The decision tree as an inde-
pendent prediction technique has been used in attribute 
selection (Ratanamahatana, Gunopulos 2003) and attri-
bute weighting (Hall 2007) for naive Bayes algorithm. 
Based on the method employed by Hall (2007), in this 
study, the weight of each predictive attribute is inversely 
related to its degree of dependency on other attributes. 
After an ensemble of unpruned C4.5 decision trees is 
constructed, the minimum depth in which an attribute 
was tested at the built decision trees was used to weigh 
that attribute: 

1

1N

j j
i

d
w

N
=

=

∑
,  (8)

where: N is the number of bagging iterations; dj is the 
minimum depth in which the ith attribute was tested at 
the decision tree in the jth iteration. 

N is tested from 10 to 50. For each given N, the 
fraction of input data to sample with replacement from 
the input data for growing each new tree are tested from 
10% to 100%. The attribute weight is determined by the 
ensemble of trees, which obtains the minimum mean 
square error for the training set.

For wi in this study, three methods were compared 
based on the same dataset to select the best one to apply.

3.5. Prediction Algorithm
In a typical kNN algorithm, two samples are usually as-
sumed to have a high degree of similarity if the distance 
between them is small. Let tp be the predicted incident 
duration time of the given test sample p and 1 2, ,..., kt t t  
be the duration time of the k neighbors. The distance 
between test sample p and the k neighbors is written 
as 1 2, ,..., kd d d . The predicted value is calculated by the 
straight average algorithm [Equation (9)] or weighted 

Fig. 2. Distribution of traffic incident duration after log 
transformation

log [duration]
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average algorithm [Equation (10)]:

1

k

i
i

p

t
t

k
==
∑

;                                                      (9)

1

k

p i i
i

t W t
=

=∑ ,                                                  (10)

where: iW  is the weighting factor for the ith neighbor. 
Typically, the influence of each neighbor is determined 
by its distance, 1/ p

i iW d= , a method known as inversed 
distance weighting. However, in actual modelling, the 
distance between the testing sample and the neighbor is 
sometimes equal to zero because all independent vari-
ables are nominal attributes. To obtain reasonable pre-
diction results, a non-zero smoothing parameter δ was 
assigned in this study as follows:

( )

( )1

1

1

p
i

i k

p
i i

d
W

d=

+ δ
=

+ δ
∑

,                                        (11)

where: δ and p were set as 0.5 and 1.0, respectively, based 
on the rule of thumb. The predictive results between 
straight average and weighted average were compared 
in this study.

3.6. Optimal Value of k
The selection of neighborhood size k can significantly 
influence the prediction result. A small value of k may 
result in a large variance, and the predictive result can 
be compromised by abnormal values in the dataset. 
Conversely, with a large value of k, the developed model 
tends to include cases that are actually far from the test 
sample and therefore makes the neighbors hardly repre-
sentative of the test sample. Thus, an appropriate value 
of k is required to achieve balance. In this study, the op-
timal value of k is determined through empirical testing 
of the model. More specifically, for each k from 1 to 100, 
the prediction results of the testing set are obtained from 
the k nearest neighbors in the training set. The overall 
MAPE for the testing set is then calculated. We assume 
that the optimal value of k reaches the minimum overall 
MAPE. 

4. Results 

In the current study, the training set is used to deter-
mine the main influencing factors of the incident dura-
tion time and to calculate the attribute weights for the 
distance metric. Moreover, models with different dis-
tance metrics and prediction algorithms are measured 
separately against the testing set to find the optimal 
model specification.

4.1. Data Filtering

According to the methodology introduced in Section 
3.2, the residual range of duration time for each inci-
dent type is calculated and presented in Table 2. A total 
of 3.28% of the original training set samples (92 records) 
are excluded, and the remaining data are included in the 
historical database to predict the duration time of the 
testing set.

4.2. Attribute Selection
As a large number of independent variables can be iden-
tified from the available incident data, determining the 
relationship between the value of each attribute and in-
cident duration is an essential task. Statistical analysis 
indicated that the two basic assumptions of normality 
and homogeneity of variances requested by the ANOVA 
test cannot be met for all variables. Therefore, the non-
parametric Kruskal–Wallis test was performed to iden-
tify the statistically relevant variables for predicting inci-
dent duration. With the level of significance set to 0.05, 
six independent variables were found to be statistically 
significant. The variables and corresponding Kruskal–
Wallis test results are shown in Table 1. Consistent with 
the expected results, the p-values exhibited the following 
significant attributes: ‘day first shift’, ‘weekday’, ‘incident 
type’, ‘congestion’, ‘incident grade’ and ‘distance’. The re-
sults in the following sections include all of these six 
variables.

4.3. Log Transformation Versus Original Data
To study the influence of data transformation on the pre-
diction result, we first examined the effect of log trans-
formation on the dependent variable (incident duration) 
before developing other parts of the model. Equation (6) 
was employed for the distance metric, and Equation (9) 
was used to generate the prediction value. 

Table 2. Range of incident duration time for each indicent type

Incident type Mean Standard 
deviation Sr

Residuals range  
for duration time

Remaining 
sample size

Removed  
sample size

Rollover 87.22 101.29 53.46 [–46.45, 220.88] 10 1

Hit object 71.87 77.33 53.46 [–61.79, 205.53] 48 5

Others 71.50 29.60 44.63 [–40.08, 183.08] 5 1

Include pedestrian or bike 54.71 59.67 37.23 [–38.37, 147.80] 19 1

Sideswipe 32.24 33.99 29.84 [–42.35, 106.83] 2502 81

Rear-end crash 28.77 25.68 25.68 [–46.45, 92.97] 132 3
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Table 3 demonstrates the divergence of prediction 
accuracy between the results before and after log trans-
formation of incident duration. The transformed data 
are superior to the original data in all of the four mea-
surements applied in this study, with a decrease of 8.58% 
in MAPE and a decrease of 1.59 min in MAE, which 
can be considered as a significant improvement. As an 
effective and helpful procedure in data preprocessing, 
log transformation was applied in all of the subsequent 
sections of this paper.

Table 3. Prediction results before and after log transformation 
of duration time

Optimal k MAE MAPE RMSE Err < 15 min

Before 5 16.66 62.38% 28.05 56.64%
After 53 15.17 53.80% 27.78 73.18%

4.4. Distance Metric and Prediction Algorithm 
Three approaches to the distance metric and two to the 
prediction algorithm are discussed in this study. Con-
sidering the possibility of potential correlation of the 
distance metric and prediction algorithm, we combined 
different approaches to examine the prediction perfor-
mance. For each combination, the optimal value of k is 
determined and prediction accuracy is calculated. For 
the attribute weights based on bagging decision trees in 
Equation (10), the minimum square error for the train-
ing set is reached with 25 bagging iterations and a sam-
pling fraction of 50%. 

Table 4 shows the prediction results of these com-
binations. The optimal values of k with combinations 
1, 2, and 5 are significantly larger than the remaining 
combinations, thereby requiring additional computing 
time for practical application. The six combinations 
produced similar results in performance measurements. 
Generally, the mean average errors are approximately 
15 min, and the mean average percentage errors are 
around 50%. Since none of the combinations are supe-

rior to others in all of these measurements, MAE and 
MAPE are given more consideration. The comparison 
of MAPE and MAE shows a slight difference. Combina-
tion 6 [Equations (8) and (10)], which is slightly better 
than the others in MAPE and MAE, has been retained 
for result analysis.

4.5. Result Analysis 
The overall MAPE is 50.12% for the final model. Typi-
cally, a prediction model with its MAPE between 20% 
and 50% is capable of reasonable forecasting. If MAPE 
is larger than 50%, the forecasting is inaccurate (Lewis 
1982). A careful examination of the results of different 
duration ranges reveals that the prediction model can 
provide reasonable prediction accuracy for incidents 
with duration between 15 and 60 min. However, for in-
cidents with duration longer than 60 min or shorter than 
15 min, the model hardly provides convincing results 
(Table 5). Thus, similar to the model in the previous 
study by Valenti et al. (2010), the present model cannot 
address extreme values in an acceptable manner. 

The percentage of records within a given tolerance 
of prediction error was used as an evaluation index, as 
shown in the first three columns of Table 7. Approxi-
mately 3.4% of the total number of incidents has a pre-
diction error larger than 1 h. These outliers cannot be 
effectively treated by the developed model. One possible 
explanation is the absence of several potential indepen-
dent variables. For instance, the duration of a specific 
traffic incident can vary depending on the attitude of 
the drivers involved. The difference in the experience 
and knowledge of incident response personnel can also 
contribute to the divergence of traffic incident duration. 
Some important details in predicting the incident dura-
tion of outliers may be absent because of the relatively 
brief information provided by the system at the initial 
stage.

The kNN algorithm with model specification em-
ployed by Smith, K. and Smith, B. L. (2002) and stepwise 
MLR were also tested based on the same dataset used in 
this study. Table 6 demonstrates the model performance 

Table 4. Prediction results with different distance metrics and prediction algorithms

No Distance Prediction Optimal k MAE MAPE RMSE Err < 15 min

1 Equation (6) Equation (9) 53 15.17 50.26% 27.78 73.18%

2 Equation (6) Equation (10) 87 15.18 50.39% 27.60 72.40%

3 Equation (7) Equation (9) 35 15.22 50.25% 27.86 73.08%

4 Equation (7) Equation (10) 35 15.18 50.28% 27.77 72.86%

5 Equation (8) Equation (9) 87 15.20 50.16% 28.01 73.82%

6 Equation (8) Equation (10) 35 15.15 50.12% 27.92 72.86%

Table 5. Prediction results for incidents lasting longer than 60 min or shorter than 15 min

Incident duration Count Number of prediction with MAPE > 0.5 Percent of prediction with MAPE > 0.5
<15 min 226 201 88.94%
>60 min 79 73 92.41%
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for records with different incident durations. The other 
two models show similar overall prediction performance 
as the kNN model. The developed kNN model exhib-
its superiority in predicting incidents that last less than  
30 min, which is reflected in the improvement in MAE, 
RMSE, and MAPE for the first two groups.

Table 7 indicates the difference in the measurement 
of ‘percentage of records within a given tolerance of pre-
diction error’. Compared with the MLR model and the 
previous model (Smith, K., Smith, B. L. 2002), the kNN 
model performs more effectively in measuring predic-
tion error less than 5, 10, and 15 min.

In other studies, Zhan et al. (2011) applied the M5P 
algorithm to predict incident duration. Seventy-eight 
percent of the total incidents were predicted with less 
than 30 min of prediction error. Chung (2010) employed 
the AFT metric model; 61% of the total incidents had a 
prediction error less than 15 min and 85% had a predic-
tion error less than 30 min. In the present study, 72.9% 
and 89.4% of the total incidents have prediction errors 
less than 15 and 30 min, respectively (Table 7).

Generally, the model developed in this study can 
serve as an effective tool for traffic management teams to 
obtain a timely estimation of incident duration once the 
incident is reported by drivers or the police to the traffic 
control centre. System operators can implement further 
measures, such as traffic guidance and traffic control, to 
minimize the negative effects of incidents.

Conclusions

The kNN algorithm was applied in this study to develop 
a prediction model of traffic incident duration based on 
3744 incident data on the third ring expressway main-
line. The data were recorded by the IRDS in Beijing, 
China. 

Anomalous data are filtered from the training set 
by Vivatrat method. Six attributes are determined as the 

main influencing factors of traffic incident duration time 
by Kruskal–Wallis test, which are ‘day first shift’, ‘week-
day’, ‘incident type’, ‘congestion’, ‘incident grade’ and 
‘distance’. Log transformation of original data is tested, 
which showed significant improvement.

Results demonstrate that the combination of 
weighted distance metric based on the decision tree and 
weighted prediction algorithm exhibits the best predic-
tion accuracy. Overall, the developed model can obtain 
reasonable prediction results except for incidents that 
last shorter than 15 min or longer than 60 min. The 
model in this study is superior to the MLR model and 
kNN model developed by Smith, K. and Smith, B. L. 
(2002) in predicting incidents that last less than 30 min.

The study road is characterized by small ramp spac-
ing and high traffic volume. The main incident type is 
sideswipe and the average duration is 32.69 min. The 
final model, which is determined based on specific data 
in this study, is optimized through data filtering, data 
transformation, and selection of optimal distance metric 
and prediction algorithm. The procedure of model de-
velopment could provide a reference for further research 
on the application of kNN in incident duration time pre-
diction with a different dataset. 

Additional information, such as feedback from the 
involved drivers and the traffic police at the scene, may 
improve the prediction performance of the developed 
model. Moreover, the combination of the prediction re-
sults of different types of nonparametric techniques may 
lead to better model performance. Future studies could 
integrate different prediction methods to improve pre-
diction accuracy.
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Table 6. Prediction results for incidents with different duration ranges

Incident duration Count kNN Model by Smith MLR
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

0–15 226 10.32 10.74 100.96% 12.20 12.79 118.23% 12.15 13.15 117.82%
15–30 373 4.31 5.36 21.05% 5.19 6.69 26.71% 5.57 6.73 27.26%
30–60 258 17.35 19.45 41.28% 16.25 17.28 35.39% 16.31 18.21 38.22%

60–120 64 54.10 56.32 67.57% 51.08 53.39 63.69% 49.45 52.55 61.88%
>120 15 153.14 161.67 84.64% 150.29 159.18 82.87% 146.53 134.49 80.80%
Total 936 15.15 27.92 50.12% 15.39 27.21 54.63 15.38 27.00 55.37%

Table 7. Percent of records within a given tolerance of prediction error

Prediction error
kNN Model by Smith MLR

Count Percent Count Percent Count Percent
≤5 min 264 28.2% 236 25.2% 241 25.7%

≤10 min 523 55.9% 473 50.5% 485 51.8%
≤15 min 682 72.9% 658 70.3% 668 71.4%
≤30 min 837 89.4% 845 90.3% 844 90.2%
≤60 min 901 96.6% 904 96.6% 905 96.7%
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