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Abstract. The paper gives special attention on long distance passenger transport and specific emissions related to dif-
ferent transport modes, particularly road and air transport sector. The goal of this research is creation and selection of 
appropriate methodology for modelling the cost estimation of GHG emissions in road and air transport sector for Re-
public of Serbia as well as the application of the methodology regarding to detailed calculation by transport mode and 
sub modes. Input data for road transport sector refer to the 2013 and include road and traffic conditions on the road 
network. Input data for air transport sector are related to the 2014 and international airport ‘Nikola Tesla’ Belgrade as 
the main hub point with the highest recorded number of aircraft operations in the Western Balkan countries. The ob-
tained results reveal that, due to realized transport volume, diesel cars have the largest share of the costs of GreenHouse 
Gas (GHG) emissions within the passenger long distance road transport. Cost estimates of CO2 emissions in the air 
transport sector shows that A319 aircraft type have the major share in total costs. The reasons are twofold: first, a high 
level of Landing and Take-Off (LTO) emission factor for CO2 and second, largest number of LTO cycles.
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Introduction 

Over the last couple of decades all industry segments 
have been interested in a negative impact it has on the 
environment, especially transport industry as the big-
gest polluter. Road transport has been considered as 
the largest polluter because of a huge number of ve-
hicles. Nevertheless, air transport takes a special place 
because of its high altitude movement regimes (Nešić 
et  al. 2015). Since the transport sector is a significant 
drive force of economic development of each country 
and that the precondition for that is infrastructure pro-
vision, it is important to understand the importance of 
modal split and environmental preconditions of certain 
transport mode (Galanis, Eliou 2014; Török 2014; An-
drejszki et al. 2014b).

GreenHouse Gas (GHG) emissions of the transport 
sector (including indirect emissions from electricity gen-
eration) increased by almost two and a half times, from 
2.9 Gt CO2eq worldwide in 1970 to 7.1 Gt CO2eq in 
2010 (IEA 2012; JRC/PBL 2013; IPCC 2013). Only two 
transport modes recorded an increase in the share of 

total transport sector GHG emissions for the observed 
period. These are road transport and international avia-
tion. In 2010 the highest share of GHG emissions had 
road transport, even 72.06%, while international and 
domestic aviation together recorded a share of 10.62% 
(IEA 2012; JRC/PBL 2013; IPCC 2013).

In the EU, that appears as a world leader in the 
fight against climate change, GHG emissions from the 
transport sector was less than 1.2 Gt CO2eq in 2012. 
Both, freight and passenger transport significantly con-
tribute to the CO2 emissions. In 2010, freight transport 
amounted to 42%, while passenger transport accounted 
for around 58% of the CO2eq transport emissions (EEA 
2014). The long-distance transport contributes to a ma-
jor share of global energy use and GHG emissions. This 
is confirmed by the fact that freight and passenger long-
distance transport demand together account for up to 
75% of GHG transport emissions (EEA 2014). Factors 
that have influence on long distance transport, especial-
ly air transport, are economic situation, infrastructure 
availability, population’s growth, migrations, transport 
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service development, transport price, technological pro-
gress and secondary homes. Some of them have already 
been investigated by (Andrejszki et al. 2014a).

The paper is focused on contemporary methodolo-
gies for modelling the cost estimation of GHG emissions 
in two dominant transport modes related to long dis-
tance transportation, road and air transport. Data selec-
tion and obtained results are reflecting emissions and 
external cost of GHG in Serbian transport sector. Ser-
bia is chosen as non EU country with respect to overall 
traffic flows by crossing corridors (road) and hub air-
port (international airport ‘Nikola Tesla’ Belgrade) as 
the main hub point with the highest recorded number 
of aircraft operations in the Western Balkan countries. 
Therefore, proposed research is divided upon following 
chapters on: literature review – chapter 1; methodology 
for modelling estimation of GHG emission costs in road 
and air transport sector – chapter 2; cost estimation of 
GHG emissions in road and air transport, case study of 
Serbia – chapter 3 and conclusions.

1. Literature Review

In the literature, we can find numerous studies, which 
deal with assessments and projections of GHG emissions 
from transport, especially from road transport. What is 
common to many of these studies is that they reveal that 
if no action is taken, CO2 emissions will continue to in-
crease and road transport will retain the largest share in 
the total CO2 emissions from transport. Both, passen-
ger (Peng et al. 2015) and freight road transport (Hao 
et al. 2015) are analysed in these studies. In addition, in 
many of these studies authors proposed different mitiga-
tion measures and assessed their effectiveness in GHG 
reduction (Yan, Crookes 2009; Bakker, Huizenga 2010; 
Kaplanović, Mijailović 2012; Török et al. 2014; Chavez-
Baeza, Sheinbaum-Pardo 2014).

In order to assess and compare the environmental 
performance of vehicles, researchers have developed dif-
ferent vehicle environmental rating methodologies. Ba-
tista et al. (2015) present several methodologies, which 
are used in the world. They usually include air pollut-
ants, but some of them also include GHG and noise as 
impact categories. Bickert et al. (2015) have calculated 
and compared private costs, as well as emissions and ex-
ternal costs of CO2eq in the production and operation 
phases of small electric and combustion engine vehicles. 

Alonso et al. (2014) analysed air transport traf-
fic and CO2 emissions in the EU countries and found 
that distances between 500 and 1,000 km has more CO2 
emissions than larger distances. On the other side, Loo 
et al. (2014) in their study examined the impacts of hub-
bing activities in air transport on CO2 emissions. They 
estimated and compared CO2 emissions of two airports, 
Athens International Airport and the Hong Kong Inter-
national Airport, at the airport, airspace and flight lev-
els. In order to raise capital from the airline sector to 
invest in GHG emissions reduction projects Arul (2014) 
proposed four methodologies to monetize variations in 
load factor and GHG emissions per passenger-mile of 
airlines.

According to all the previously mentioned, it is 
quite clear that special attention must be paid to the as-
sessment of emissions and external costs of GHG in the 
road and air transport. These data are very important 
for determining economic policy instruments whose 
implementation limits the negative impact of road and 
air transport on the environment in the field of global 
warming. 

2. Methodology for Modelling Estimation of GHG 
Emission Costs in Road and Air Transport Sector

This chapter describes methodology for modelling the 
cost estimation of GHG emissions in road and air trans-
port sector as two dominant modes in long distance 
passenger transport. Fig. 1 briefly describes evaluation 
methodology for road transport considering transport 
volume on the selected road network.

GHG emissions cost (CO2, CH4, N2O) per year for 
the whole road network is obtained by summing the 
costs of GHG emissions by individual road sections ac-
cording to the formula Eq. (1):

( )
( ) ( ) ( )( )( )GHG , GHG

1 ,
GHGCOST UCOST € ,

n

FCi i j j kk i j
FC f EF

=
= ⋅ ⋅ ⋅  ∑∑  

(1)

where: i  – vehicle category (passenger car, bus, light 
truck, medium truck, heavy truck and articulated truck); 
j – type of GHG (CO2, CH4 or N2O); k – characteris-
tic road section; ( )iFC  – fuel consumption of i-th vehi-
cle categories per year on the k-th road section [litres 
apropos in kilograms]; FCf   – correction factor of fuel 

Fig. 1. Step approach to GHG emissions cost evaluation on the road network
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consumption (for passenger cars and freight vehicles); 
( )GHG ,i jEF   – emission factors of j-th type of GHG for 

i-th vehicle category [grams GHG per kilograms of fuel]; 
( )GHGUCOST j  – unit costs of j-th type of GHG [€ per 

tonne]. 
Data of road sections conditions and Annual Aver-

age Daily Traffic (AADT) data represent an input into 
the methodological step approach shown in Fig. 1, based 
on which it is possible to determine the operating speed 
on the k-th road section of the road network. Deter-
mination of operating speed is based on the Bureau of 
Public Roads (BPR) formula by which to determine the 
travel time on the road section, depending on different 
parameters that are relevant for a specific type of road 
section (Highway Capacity Manual 2000; Dell’Acqua 
et al. 2011). Fuel consumption of the i-th vehicle cat-
egory on the k-th road section, per annum, is given by 
Eq. (2):

( ) ( ) ( ) ( )AADT 0.01 365i i i kFC FC L′= ⋅ ⋅ ⋅ ⋅  [litres apro-
pos in kilograms],  (2)

where: ( )iFC′   – average fuel consumption of the i-th 
vehicle category per 100 km of travel distance [li-
tres/100 km); ( )kL  – length of the k-th road section [km].

The average fuel consumption of motor vehicles 
( )iFC′  is obtained by using HDM model. Based on the 

formed pairs ‘fuel consumption-speed of the i-th vehi-
cle categories’ in the form of a polynomial of the sec-
ond degree, it is obtained functional dependence of fuel 
consumption than the speed of the i-th motor vehicles 
categories, Eq. (3):

( ) ( )( )2100 op opi i
FC a b V c V′ = ⋅ + ⋅ + ⋅  [lit/100 km],  (3)

where: a, b, c – regression parameters for characteristic 
terrain type and International Roughness Index (IRI) of 
the i-th road section.

Thus defined fuel consumption ( )iFC  does not take 
into consideration the mutual influence of vehicles in 
the traffic flow, so it needs to be corrected by using of 

correction factors fFC. Values of correction factors of in-
creasing fuel consumption due to the change at the de-
sign speed to operating speed, were obtained using the 
matrix of the speeds from the literature (Kuzović 1994). 
GHG emissions factors of motor vehicles ( )GHG ,i jEF  
expressed in grams of GHG/kilograms of fuel, adopted 
on the basis of air pollutant emission inventory guide-
book (EEA 2013; Domanovszky 2014) issued by the 
European Environment Agency. Maibach et al. (2008) 
recommend the following central values of unit costs of 
CO2 emission: for 2010 – 25 €/tonne CO2, for 2020 – 40  
€/tonne CO2, for 2030 – 55 €/tonne. Depending on year 
of research and forecasting of GHG emission costs in 
the future, interpolation method is possible to determine 
the costs of CO2 emission costs. Emission cost of CH4 
and N2O are obtained based on Global Warming Poten-
tial (GWP) of CH4 and N2O compared to CO2, which 
are 25 and 298 respectively for a 100-year perspective 
(IPCC 2007). That is, UCOSTCH4 = UCOSTCO2·25 € and 
UCOSTN2O = UCOSTCO2·298 €.

On the other hand, CO2 emissions from the avia-
tion have the most important influence on global cli-
mate caused by its longest atmospheric lifetime. From a 
macro perspective, the global aviation sector currently 
accounts for about 2% of the world CO2 emissions. For 
this reason, the most challenging task being undertaken 
by Committee on Aviation Environmental Protection 
(CAEP) is the development of the CO2 emissions cer-
tification standard for aircraft. The estimation of cur-
rent and future progress toward the achievement of 
global environmental goals considering the CO2 trends 
was undertaken by CAEP. As depicted in Fig. 2 (ICAO 
2013), it includes various categories of mitigation meas-
ures: aircraft-related technology development, improved 
air traffic management and infrastructure use, and alter-
native fuels, assuming that 1 kg of jet fuel burned gener-
ates 3.16 kg of CO2.

The aviation-related activities are sources of a va-
riety of air pollutants that can have potentially negative 
impact on human health and the environment. Depend-

Fig. 2. CO2 emissions trends from international aviation (2005–2050)
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ing on the required level of accuracy and confidence of 
the results and availability of the supporting data, an 
emissions inventory at a given airport can be evaluated 
at the three different levels of complexity, i.e. by simple, 
advanced or sophisticated approach (ICAO 2011).

According to the Simple Approach, aircraft engine 
emissions can be estimated for all relevant emissions 
species (CO2, HC, NOx, CO and SO2) using the follow-
ing methodology proposed by ICAO. For each aircraft 
type, the number of Landing and Take-Off (LTO) cycles 
of that aircraft (over the assessment period) should be 
multiplied by the corresponding Emissions Factor (EF) 
for each of the pollutant species and then the values for 
all the aircraft should be added for obtaining the amount 
of total emissions [kg] for each pollutant (ICAO 2011) – 
Eq. (4):

kgEmission of species X  
=

( )

( )
of aircraft  

all aircraf

for species 

Number of LTO cycles

.

×∑ Y
t

XEF
  

(4)

GHG emissions cost in air transport sector ob-
tained by Eq. (5):

( )

Air

GHG,Air

tonne

Emission of species GHGGHGCOST
1000

UCOST € .j

  



=

 

×
  (5)

3. Cost Estimation of GHG Emissions in Road  
and Air Transport Sector, Case Study of Serbia

Based on the presented methodology, in this chapter es-
timation of GHG emissions cost in road and air trans-
port sector in Serbia is conducted. 

3.1. Cost Estimation of GHG Emissions  
in Road Transport
When collecting data about road sections conditions an 
updated database that was used for making a General 
master plan for transport in Serbia is used. The road net-
work, which is investigating the GHG emissions costs in 
this paper, encompasses approximately 7000 km of roads 
of the Republic of Serbia: public roads of the IA, IB, II 
categories, and a smaller number of local road sections. 
Data of the AADT for each of the 302 road sections were 
obtained on the basis of traffic counting conducted by 
the Public Enterprise ‘Roads of Serbia’ for the year 2013 
(Roads of Serbia 2014), so that the complete analysis of 
GHG emissions cost carried out in 2013.

For the calculation of operating speeds, follow-
ing data are used: (Newton 2009): 1 bus = 1.75 pas-
senger car, 1 light truck = 1.50 passenger car; 1 me-
dium truck = 1.50 passenger car; 1 heavy truck = 2.00 
passenger car; 1 articulated truck = 3.00 passenger car. 

Also, the coefficients α and β are adopted according to 
(Newton 2009) and amounts for: motorway (α = 0.45, 
β = 4); urban road (α = 0.5, β = 2.5); rural road (α = 0.8, 
β = 1.5).

The average fuel consumption of motor vehicles 
( )iFC′  are based on the Eq. 3. Regression parameters 

a, b and c for each vehicle category are taken from re-
search (Ivković et al. 2011) and are given for a total of 
twelve combinations of terrain type and values of IRI 
for road sections (terrain type: flat, hilly, mountain; IRI: 
2.5, 8.12). 

Data of pollutant emission factors according to 
(EEA 2013) are given for the 21 EU countries. The cal-
culation of the average values of GHG emissions as a 
function of fuel consumption shows little difference be-
tween the 21 surveyed countries. The adopted values of 
average unit GHG emission factors are shown in Table 1.

Table 1. Unit GHG emission factors of motor vehicles  
[gr of GHG/kg of fuel]

Vehicle category N2O CH4 CO2

Passenger car – gasoline 0.206 0.71 3176
Passenger car – diesel 0.087 0.06 3137
Passenger car – LPG 0.089 0.32 3017
Bus 0.050 0.41 3137
Light truck 0.040 0.09 3137
Medium truck 0.045 0.18 3137
Heavy truck 0.051 0.27 3137
Articulated truck 0.051 0.27 3137

As the cost estimate of GHG emissions is done for 
the year 2013, adopted value of the unit emission cost 
of CO2 is obtained by interpolation relative to the val-
ues for 2010 and 2020, ie. UCOSTCO2 = 29.5 €. Bearing 
in mind the GWP values for CH4 and N2O for a 100-
year perspective, the adopted values of the unit emis-
sion costs of CH4 and N2O are UCOSTCH4 = 737.5 € 
and UCOSTN2O = 8791 €. Realized traffic volumes on 
the observed road network per vehicle categories are 
given in Table 2. 

Table 3 shows the of GHG emission costs in the 
whole road network. The total value of GHG emission 
costs amounts to 68 million €. 

As the volume of GHG emission costs of all vehi-
cles categories affected by two key indicators which are 
realized traffic volume and unit GHG emission factors, 
in Fig. 3 are shown the specific GHG emission costs per 
100 km travel distance of different vehicle category.

According to the Fig. 3, it can be concluded that the 
lowest cost per 100 km travel distance are typical for die-
sel passenger cars regarding of all three GHG (0.000160 
€/100km for CH4; 0.002981 €/100km for N2O; 0.360776 
€/100km CO2). 

Table 2. Realized traffic volumes on the observed road network [×106 veh·km]

Passenger  
car – gasoline

Passenger 
car – diesel

Passenger 
car – LPG Bus Total 

Passengers
Light 
truck

Medium 
truck

Heavy 
truck

Articulated 
truck

Total 
freight Total

2661 3757 1408 309 8136 127 352 555 749 1784 9921
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3.2. Cost Estimation of GHG  
Emissions in Air Transport
Table 4 summarizes the data regarding aircraft/engines 
combinations, i.e. fleet mix that operated at the Belgrade 
airport ‘Nikola Tesla’ on 1 February 2014, as well as the 
corresponding number of the LTO cycles. Additional in-
formation in conjunction with emissions factors for five 
pollutant species for each of the listed aircraft, together 
with associated fuel flow rates, are obtained from the 
ICAO Engine Emissions Databank (EASA 2015). Costs 
of pollutants are based on defined values set by Thom-
son Reuters Point Carbon from June 2013. This paper 
presents base values, which were calculated using the 
average prices. (EUROCONTROL 2015) recommended 
values are provided for CO2 and air pollution emissions. 
For monitored year, obtained results are provided in ta-
ble 4 (for example, 4.4 €/tonne CO2; 4.5 €/kg NOx, etc.).

The results of applying the abovementioned equa-
tion to the considered case of Belgrade airport on a giv-
en day is presented in Fig. 4. This figure shows distribu-
tion of the emissions values for each of the pollutant 
species by aircraft type and the total values for each of 
the pollutant species emitted during one day operations 
at Belgrade airport, respectively. As it can be seen from 
this figure, engine emissions from aircraft Airbus A319 
mostly influence the local air quality in the airport vicin-
ity. However, this result was expected, bearing in mind 
the dominance of this aircraft type at the airport, which 
is also a novelty in the fleet of the national airline.

According to data on emissions of pollutants by 
27 different aircraft (Rypdal 2002) and taking into ac-
count the GWP of CH4 and N2O we can conclude that 
their share in total costs of GHG emissions are less than 
2.5%. For this reason, these species of GHG were not 
considered.

Table 3. Total GHG emission cost of different vehicle categories on the observed road network [€/year]

Passenger  
car – gasoline

Passenger  
car – diesel

Passenger  
car – LPG Bus Light 

truck
Medium 

truck
Heavy 
truck

Articulated 
truck

CH4 57439 6018 15981 18662 940 5394 20332 36783

CO2 10222602 13554638 6026742 5642366 1256775 3755427 9567079 17308191

N2O 197590 112023 52980 26971 4776 16054 46350 83854

Fig. 3. Specific GHG emission cost per vehicle category
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Table 4. Aircraft engine emissions

Aircraft type Engine type
LTO Emissions factors/airplane [kg/LTO/aircraft] Fuel consumption 

[kg/LTO/
aircraft]

Number of LTO 
cycles (1 February 

2014)CO2 HC NOx CO SO2

A319 CFM56-5A5 1153.4 0.297 4.367 3.175 0.365 365 20

B737-300 CFM56-3-B1 1238.72 0.418 3.595 6.517 0.39 392 11

ATR72 PW127F 310 0.145 0.91 1.165 0.1 100 9

Embraer 195 CF34-10E5 957.48 0.848 2.836 6.761 0.155 303 4

B737-800 CFM56-7B26 1393.56 0.361 6.149 3.533 0.44 441 2

Fokker 100 TAY Mk650-15 1194.48 0.717 2.875 6.921 0.38 378 1

A320 CFM56-5-A1 1216.6 0.285 4.506 3.093 0.385 385 9

Embraer 175 CF34-8E5 761.56 0.018 2.222 2.065 0.155 241 1

Embraer 190 CF34-10E5 957.48 0.848 2.836 6.761 0.155 303 2

Bombardier Q400 PW120 320 0 0.755 1.12 0.1 100 1
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Table 5 shows CO2 emission costs for different air-
craft types.

Analysing the achieved daily traffic expressed in 
LTO cycles at Belgrade airport ‘Nikola Tesla’ we can 
notice that the A319 aircraft are the largest source of 
CO2 emissions costs. The reasons are twofold: first, high 
level of LTO emission factor for CO2 and second, largest 
number of LTO cycles.

Table 5. CO2 emission costs for different aircraft types

Aircraft type Engine type
Emission cost of CO2  

for total 
LTO for 1 February 2014 [€]

A319 CFM56-5A5 101.50
B737-300 CFM56-3-B1 59.95
ATR72 PW127F 12.28
Embraer 195 CF34-10E5 16.85
B737-800 CFM56-7B26 12.26
Fokker 100 TAY Mk650-15 5.26
A320 CFM56-5-A1 48.18
Embraer 175 CF34-8E5 3.35
Embraer 190 CF34-10E5 8.43
Bombardier 
Q400 PW120 1.41

Conclusions

The conclusions of this research are as follows:
 – The main source of GHG emissions in the transport 
sector of the Republic of Serbia is road transport 
mode. This is in the line with the current situation and 
trends in the EU. The total cost of GHG emissions of 
passenger vehicles at the level of long distance trans-
port amounts to 36 million €. One of the causes of this 
situation is the average vehicle age of 16 years (RTSA 
2015). Therefore, road transport gives the greatest op-
portunities for reducing of negative environment ef-
fects using various technological, economic, planning 
and other mitigation measures.

 – Methodology presented in the paper (especially in 
road transport mode) takes into account the differ-

ent road and traffic conditions of individual road sec-
tions such as: terrain type, IRI, the number of lanes 
on the carriageway direction, hourly capacity of the 
road sections, mutual influence of vehicles in the traf-
fic flow, operating speed. In addition to conventional 
road vehicles, with determination of the relevant fuel 
equivalent, this methodology could be applied to new 
technical and technological solutions of road vehicles.

 – The methodology used in the air transport sector al-
lows the assessment of costs of GHG emissions taking 
into account the number of LTO cycles and emission 
factors specific for aircraft types.

 – The paper shows that in road and air transport sec-
tor, CO2 has a dominant contribution in total costs of 
GHG emissions (about 98%). 

 – Of all vehicles categories, passenger cars have the big-
gest share of the GHG emission costs (53%), of which 
the largest share is typical for diesel cars (38%) due 
to the largest realized traffic volume. The buses have 
the lowest contribution (16%). In the case of freight 
vehicles, largest GHG emission costs are typical for 
articulated trucks (54% of all commercial vehicles). 

 – The lowest cost per 100 km travel distance are typical 
for diesel passenger cars regarding of all three GHG 
(0.000160 €/100  km for CH4; 0.002981 €/100  km 
for N2O; 0.360776 €/100  km for CO2). The highest 
value of specific GHG emission costs have articu-
lated trucks for N2O (0.011187 €/100  km) and CO2 
(2.309087  €/100  km). For gasoline passenger cars is 
characteristic the bigger deviation of N2O emission cost 
to CH4 and CO2 emission costs by observing the equiv-
alent variations in the case of other vehicle categories.

 – On the main hub point in the Serbia, Belgrade airport 
‘Nikola Tesla’, total daily traffic amounted to 60 LTO 
cycles. Over 80% of the total daily traffic refers to only 
4 aircraft types (A319, B737-300, ATR72, A320) among 
which A319 aircraft recorded highest percent (~ 33%).

 – According to presented traffic volume, the total daily 
costs of CO2 emissions amounted to nearly 270 €. 
These costs would be 7 times higher if the adopted 
unit costs of CO2 emissions applied from the road 
transport sector. A319 aircraft is the largest sources of 
these costs, with share of almost 38%. 

Fig. 4. Distribution of the LTO emissions factors by aircraft type
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