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Abstract. The identification of contributory factors to crash frequencies observed in different highway facilities can 
aid transportation and traffic management agencies to improve road traffic safety. In spite of the strategic importance 
of the national Portuguese road network, there are no recent studies concerned with either the identification of con-
tributory factors to road crashes or Crash Prediction Models (CPMs) for this type of roadway. This study presents an 
initial contribution to this problem by focusing on the national roads NR-14, NR-101 and NR-206, which are located in 
Northern region of Portugal. They are two-lane single carriageway rural roads. This study analysed the crash frequen-
cies, Average Annual Daily Traffic (AADT) and geometric characteristics of 88 two-lane road segments. The selected 
segments were 200-m-long and did not cross through urbanized areas. The fixed length of 200 meters corresponds to 
the road length used in Portugal to define a critical point. Data regarding the annual crash frequency and the AADT 
were available from 1999 to 2010. Due to the high number of zero-crash records in the initial database, the data 
were explored to identify the best statistical modelling approach to be adopted. The Generalized Estimating Equations 
(GEE) procedure was applied to 10 distinctive databases formed by grouping the original data in time and space. The 
results show that the different observations within each road segment present an exchangeable correlation structure 
type. This paper also analyses the impact of the sample size on the model’s capability of identifying the contributing 
factors to crash frequencies. The major contributing factors identified for the two-lane highways studied were the traf-
fic volume (expressed in AADT), lane width, vertical sinuosity, and Density of Access Points (DAP). Acceptable CPM 
was identified for the highways considered, which estimated the total number of crashes for 400-m-long segments for 
a cumulative period of two years.
Keywords: crash contributory factors; generalized estimating equations; crash prediction models; two-lane highways; 
longitudinal data.
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Introduction

The increasing number of traffic crashes in rural and 
urban roadways has created the need to develop strate-
gies to help highway agencies reducing these events. The 
World Health Organization (WHO 2013) revealed that 
more than 1.2 million people die and 50 million peo-
ple are injured on the world’s roads every year and in 
Portugal, these figures for 2011 were 689 and 42162, re-
spectively, for a country with a population of 10562178. 

Properly registered and analyzed road crash data 
allows for the identification of the areas or sites where 
safety measures have a greater potential for success and 

effectiveness (Thomas et al. 2003). The definition of ef-
fective safety measures, which are chosen to cope with 
the necessary reduction of road traffic crashes in a given 
roadway facility (segment or intersection), benefits from 
knowledge regarding estimates of the facility’s expected 
crash frequency along with the contribution of facility’s 
physical and operational characteristics to the expected 
safety performance. The common approaches that are 
used to provide current and future safety performance 
estimates of roadway segments or intersections are his-
torical crash data, statistical models based on regres-
sion analysis, before-after studies, and expert judgments 
(Harwood et al. 2000).
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Crash Prediction Models (CPMs) are important 
tools in promoting traffic safety in different roadway fa-
cilities. They can provide accurate estimates for the total 
crash frequency for a location per unit of time, which is 
usually a function of the roadway’s traffic and geomet-
ric characteristics. However, the interpretation of a CPM 
coefficient as the true effect of an incremental change in 
an associated roadway feature is not usually satisfactory 
(Harwood et  al. 2000; Hauer 2004). According to the 
referenced authors, this situation can arise due to prob-
lems such as (i) the cause-effect assumed between some 
roadway characteristics and crashes may not always be 
true; (ii) the presence of a strong correlation among the 
model’s independent variables; and (iii) the lack of im-
portant explanatory variables in the model, which causes 
the coefficient of one or more variables in the model to 
represent the unavailable variable rather than their own 
effect. Even with these limitations, the analysis of the 
signs and the identification of the relative significance 
of the independent variables presented in the model can 
lead to important insights regarding the major contribu-
tory factors to road safety. 

The development of CPMs is based on random, dis-
crete, nonnegative, and highly over dispersed data. Ad-
ditionally, in some cases, the available data may present 
temporal or spatial correlations, which impose specific 
statistical considerations for the model development 
(Wang, Abdel-Aty 2006). A comprehensive analysis of 
the data and the methodological issues regarding the 
development of analytic approaches to study the factors 
related to road crashes can be found in the work of Lord 
and Mannering (2010). Additionally, some modelling 
difficulties imposed by databases with many records of 
zero crashes have caused the usage of different statistical 
modelling approaches for CPM development, which are 
not easy to justify from a traffic engineering perspec-
tive (Lord et al. 2005a, 2007). When the use of these ap-
proaches cannot be justified and the database is formed 
by temporal and/or space-related data, it is possible to 
develop the CPM based on aggregated number of crash 
observation through some time period or given space. 
However, the impact of this aggregation on the identifi-
cation of the significant explanatory variables to the ob-
served crash frequency need to be further investigated.

Due to the intrinsic characteristics of crash data, 
CPMs are commonly developed using the Poisson and 
negative binomial regression models (Joshua, Garber 
1990; Poch, Mannering 1996; Milton, Mannering 1998; 
Lord, Bonneson 2007; Gomes et  al. 2012). The form 
of the CPM usually consists of the product of the ex-
posure measures’ powers multiplied by an exponential 
term related to the other explanatory variables. Models 
containing additive terms have also been referred to in 
the literature, where the additive component aims to ac-
count for the influence of hazard points (Hauer 2004; 
Caliendo et al. 2007). The model without the additive 
term, which is the focus of this work, allows for coef-
ficient estimation using the Generalized Linear Model 
(GLM). Other modelling approaches can be found in 

the literature, as is the case of the generalized additive 
models (Zhang et al. 2012).

An important issue related to the model’s parame-
ters is whether one can assume that the parameters vary 
across observations. For the purpose of crash frequency 
modelling, it is usually assumed that they are constant 
from year to year (fixed-parameters models), as referred 
to by Lord and Persaud (2000) in a study regarding a 
comparative analysis between fixed-parameters and ran-
dom intercepts models (only the intercept varies across 
years and the other parameters remain fixed). They in-
dicate some advantages of the latter models especially 
for applications as before-and-after studies and traffic 
crashes trend analysis. Other papers on investigating 
random-parameters models can be found in the litera-
ture (Anastasopoulos, Mannering 2009, 2011; El-Basy-
ouny, Sayed 2009; Anastasopoulos et al. 2012; Venkata-
raman et al. 2013). Although this modelling approach 
is promising, for the purpose of the present paper only 
fixed-parameters model will be considered.

The crash records can be grouped by taking into 
account the period of the observation (usually, but not 
necessarily, the year) or clustered according to some 
spatial or other characteristics observed at a specific 
time period (see the work of Wang, Abdel-Aty 2006). 
The observation within these groups may or may not be 
statistically independent from each other, but the groups 
are independent among themselves. The existence and 
type of correlation within the groups of data that form 
the entire database is extremely relevant when determin-
ing the complexity of the parameters’ estimation using 
different model types.

Observations in a group present a temporal corre-
lation when the data are collected over successive time 
periods for the same sample element and could, there-
fore, share unobserved effects. For example, the crash 
frequency data present temporal correlation when the 
same roadway facilities (segments or intersections) are 
observed over time. In this case, each subject of analysis 
constitutes a group, and the repeated observations made 
at different years are the elements of that group and form 
longitudinal crash data (panel data).

When the data within groups are not correlated, 
the GLM can be applied. In that case, the research of the 
effect of the data grouping factor (e.g. space or time) on 
the response variable may be done by including dummy 
variables in the model (Wooldridge 2010). For the case 
of longitudinal data, the procedures for estimating the 
parameters are derived from the GLM procedure. For 
non-Gaussian outcomes, the procedures may be separat-
ed into a marginal model family, which are the General-
ized Estimating Equations (GEE) (Lord, Persaud 2000; 
Lord et al. 2005a; Wang, Abdel-Aty 2006; Lord, Mahla-
wat 2009), as one example, and a random-effects family, 
a Generalized Linear Mixed Model (GLMM) that is a 
more complex family of models (Vangeneugden et  al. 
2011). The latter procedure will not be considered in 
the present work.

The GEE procedure was developed by Liang and 
Zeger (1986) as an extension of the GLM for the analy-
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sis of longitudinal data when the primary focus of the 
analysis is the dependence on the model’s response to 
the explanatory variables. The GEE can be applied for 
both Gaussian and non-Gaussian response variables and 
is a general method for analyzing clustered data where 
the following are true (Halekoh et al. 2006): (i) observa-
tions within a cluster may be correlated; (ii) observa-
tions in separate clusters are independent; (iii) a mono-
tone transformation of the expectation is linearly related 
to the explanatory variables; and (iv) the variance is a 
function of the expectation. Regarding the correlation 
among the observations in a given cluster, the GEE al-
lows for different choices including the non-correlation 
condition.

The main objective of this study is to identify the 
factors that contribute to fatal and injury crash fre-
quency for road segments on Portuguese national roads 
NR-14, NR-101 and NR-206, which are located in the 
Northern region of Portugal. 

Additionally, this study aims at analysing the im-
pact of different database structures in time and space 
on the factors identified. The type of correlation within 
the data related to each road segment will also be evalu-
ated using the GEE equations procedure for modelling 
the longitudinal data. It is expected that the identifica-
tion of the correlation type (other than the ‘independ-
ent’ correlation) may call other modellers’ attention for 
the fact that this data characteristic must be evaluated in 
advance to the selection of the method to estimate the 
coefficients of CPMs.

Several studies designed to predict accident fre-
quency in two-lane single carriageway rural roads can 
be found in the international literature (Harwood et al. 
2000; Cafiso et  al. 2010; Dinu, Veeraragavan 2011). 
However, applying them to realities different to that in 
which their results were obtained, in this case, the roads 
of Portugal, would not be recommendable.

The importance of studying crashes to improve 
road safety in the Portuguese northern national road 
system is justified by the fact that these roads serve a 
high concentration of cities and industrial zones. De-
spite its importance, recent studies concerning the pro-
motion of road safety in those roads are scarce. Among 

these studies, the work of Gomes and Cardoso (2012) 
must be highlighted. These authors studied the impact 
of low-cost engineering measures on the decrease of ac-
cidentalness in some stretches of a multilane national 
road, the NR-6. As for the identification of contributory 
factors for road crashes in Portuguese road system, the 
main focus of recent studies made in the country has 
been on the elements of urban roads (Couto, Ferreira 
2011; Gomes et al. 2012; Gomes 2012).

Taking into account the theoretical aspects previ-
ously addressed and to reach its objectives, the study 
described in this paper started with the complete char-
acterization of the two-way highway road segments to 
be analysed. Following, the CPM model formulation and 
assessment is described, as well as the major results of 
the study are presented and discussed. Finally, the sum-
mary and conclusions of the research are presented.

1. Data Description

The initial traffic crash database includes the number 
of fatal and injury crashes, volume and geometric char-
acteristics data on two-lane 200-m-long highway road 
segments belonging to sections of highways located in 
Northern region of Portugal. This fixed length of 200 
meters corresponds to the road length used in Portugal 
to define a critical point. None of the segments selected 
for the study has intersections or has stretches that lies 
within the area of influence of intersections. The area 
of influence of an intersection was defined as a circle 
of radius 76 meters with its centre at the intersection in 
accordance with the criteria adopted by the Crash Pre-
diction Module – CPM (FHWA-TFHRC 2003). Thus, all 
the accidents unnecessary in this paper refer to occur-
rences in road segments only. The data are available for 
the years 1999 to 2010, and do not include pedestrian 
and cyclist crashes. The highways and respective links 
considered are presented in Table 1.

In Portugal, according to the National Author-
ity for Road Safety (Autoridade Nacional de Segurança 
Rodoviária), the analysis of critical safety points for 
two-lane highways must be based on 200-m-long road 
segments (ANSR 2009). Therefore, the links considered 
were divided into 200-m-long fixed segments for which 

Table 1. Road 200-m-long segments considered for the CPMs development

NR Link Length studied(a) [km]
Number of segments

Influenced by road junctions(b) Studied [m]
200 400 600

14 Braga–Famalicão 17.60 75 13 4 0

101
Braga–Guimarães 17.60 66 22 8 4
Braga–Vila Verde 8.80 39 5 1 1
Guimarães–Felgueiras 17.80 61 28 11 5

206
Famalicão– Guimarães 19.20 81 15 6 2
Guimarães–Fafe 6.40 27 5 2 1
Total 89.40 349 88 32 13

Notes: (a) considers only two-lane extensions not located within urban areas; (b) 200-m-length segments presenting road junctions 
or containing part of a given road junction approach.
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the geometric characteristics, traffic flow (expressed in 
Average Annual Daily Traffic  – AADT) and number 
of crashes from the years 1999 to 2010 were registered. 
Some segments of these links were not included in the 
sample studied because they present one or more char-
acteristics that do not fit the purpose of this study. These 
characteristics are the following: (i) more than two-
lanes; (ii) cross through urbanized areas; and (iii) con-
tain road junctions or portions of junction approaches 
(with roadways for accessing cities or with interchanges 
for the national expressway system). Because of these 
criteria, only eighty-eight 200-m-long segments are 
present in the initial (more disaggregated) database, as 
shown in Table 1. To study alternative spatial variations 
on crash data collection reference (by means of defining 
different lengths for the segments considered), the origi-
nal 200-m-long segments were grouped into consecutive 
units of 2 or 3 segments, which formed 400-m-long or 
600-m-long segments, respectively. As shown in Table 1, 
the sample size with this grouping strategy turned out to 
be very small, especially for the case of the 600-m-long 
segments, which will not be considered in this paper.

1.1. Geometric Characteristics
For the purpose of this study, the following geometric 
characteristics of each segment were considered:

 – Lane Width (LW);
 – Shoulder Width (SW);
 – Lateral Offset (LO);
 – Rate of the length in horizontal tangent per total 
segment length (RSL) calculated by:

  

( )
,irRSL

SL
= ∑   (1)

where: ri is the length of straight line i (tangent 
in horizontal alignment); SL is the length of the 
segment considered;

 – Horizontal Sinuosity (HS), calculated by:

  

( )
,iHS

SL

Ω
=

∑
  (2)

where: Ωi is the road alignment curvature at the 
horizontal curve i (in degrees); SL is the length 
of the segment considered;

 – Rate of the length in vertical tangent per total 
segment length (RTL) calculated by:

  
,i

t
RTL

SL
= ∑

 
 (3)

where: ti is the length of straight line i (tangent 
in vertical alignment); SL is the length of the seg-
ment considered;

 – Vertical Sinuosity (VS), calculated by:

  

( )
,iVS

SL

∆
=

∑
  (4)

where: ∆i is the algebraic difference in grades (in 
percentage) observed at the sag or crest vertical 
curve i;

 – Density of Pedestrian Crossings (DPC), which 
is defined as the number of pedestrian crossing 
facilities per segment; 

 – Density of Access Point (DAP), which is calcu-
lated as the number of accesses to private proper-
ties (and/or to secondary roadways without exits) 
per segment.

The geometric data were collected in the field, 
and some statistics related to the observed values for 
the 200-m-long segments are presented in Table 2. It 
is important to highlight that these characteristics were 
treated as initial explanatory variables for the observed 
crash frequency for each road segment.

Table 2. Descriptive statistics of the segments’  
geometric characteristics

Variables Units Mean
Standard 
Deviation 

(SD)
Min Max

LW m 3.66 0.18 3.05 4.23
SW m 0.74 0.56 0.10 3.45
LO m 2.32 1.14 0.60 5.68
RSL 0.62 0.26 0.04 1.00
HS degree/m 300.01 280.46 0.00 1491.50

RTL 0.85 0.31 0.00 1.00
VS %/m 4.63 8.20 0.00 25.35

DPC nº/segment 0.15 0.35 0.00 1.00
DAP nº/segment 4.01 2.93 0.00 15.00

1.2. Traffic Data
The traffic data considered for the model development 
were the AADT per road segment considering each year 
of the twelve years in the crash database (from 1999 
through 2010).

The AADT was estimated for each year based on 
the traffic counts available in the Portuguese Roadway, 
EP (Estradas de Portugal), database for the highways 
studied for the years 2003 to 2008. Besides these data, 
a direct estimate was made for the volume of traffic in 
those highways for the year 2011 using an adaptation of 
EP’s own methodology, made available by the company 
for the conduct of the research. The historical series for 
each highway for the period between 1999 and 2010 was 
obtained through a trend analysis made with the avail-
able annual data.

To estimate the AADT of each highway in 2011 and 
also to attain the historical series for all portions in the 
time period between 1999 and 2010, specific 14-hour 
counts made in 2011 at 31 locations, covering the road-
way extensions in this study were also considered (10 of 
these locations belong to the set of locations considered 
by the EP database).

To determine AADT’s historical series for each seg-
ment, 19 out of 31 collection points were put into place 
in sites that precede the 200 meters segments (whether 
they’re isolated and successive) belonging to differ-
ent stretches of the studied NR’s (9 points in NR-101, 
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5 points in NR-206 and 5 points in NR-14). For each 
point, the AADT was estimated for 2011 and the pro-
portion of that volume was calculated with respect to 
the AADT of the NR in which it was included (it was 
estimated for that same year). This proportion was con-
sidered to be constant in all years of the studied period 
and it was then used to estimate the AADT in the point 
for each year from the correspondent highway’s AADT. 
With the historical series of those 19 points, the histori-
cal series of AADT for all the studied road segments 
were obtained. The AADT of each segment was esti-
mated based on the AADT data of the closest (located 
in the same roadway) point. Therefore, many segments 
present the same AADT, which may negatively impact 
the calibration of the developed CPMs. The AADT val-
ues varied from 2165 to 32857 vehicles, with mean and 
standard deviation of 12936 and 6323, respectively.

1.3. Crash Data
The crash data for this study were provided by the 
National Authority for Road Safety, ANSR (2009, Au-
toridade Nacional de Segurança Rodoviária), and cover 
the period from 1999 to 2010. The ANSR maintains a 
database with information gathered from the Traffic 
Crash Registration Form, BEAV (Boletim Estatístico de 
Acidentes de Viação), which is filled out at the time of 
the crash.

The initial database, which has 12 records for each 
of the eighty-eight 200-m-long segments, is formed us-
ing 1056 records, of which 740 recorded zero crashes. 
That is, the database is zero inflated. Therefore, a pre-
liminary analysis aimed at verifying whether there are 
plausible reasons for these zeros was performed. This 
analysis could indicate the convenience of using a zero-
inflated regression model (Zero-Inflated Poisson – ZIP, 
or Zero-Inflated Negative Binomial – ZINB) (Shankar 
et  al. 1997; Carson, Mannering 2001; Kumara, Chin 
2003; Lord et al. 2005b). Taking into account the total 
number of traffic crashes registered per 200-m-long seg-
ment during the overall analysis period (12 years), the 
frequency distribution of the total number of crashes per 
segment was determined and is presented in Table 3.

The main characteristics of the four segments with 
zero crashes were analyzed against correspondent char-
acteristics observed at the nine segments presenting 10 
or more crashes. This analysis reveals that, based on 
the characteristics listed in Table 2 and on the traffic 
volume levels, there is no technical justification for as-
suming that the zero-crash segments can be treated as 
potentially safe segments. Table 4 presents a synthesis of 
those characteristics for two kinds of segment and it can 
be seen that there are no discrepancies between them. 
Furthermore, all segments show similar characteristics 
in regard to the environment bordering the highway.

The zero-inflated regression models assume that the 
elements being studied are in two different states – safe 
(not subject to accidents) and liable to accidents – and 
that the two need to be modelled separately (Carson, 
Mannering 2001; Kumara, Chin 2003).

Based on the analysis it was decided that the use of 
a zero-inflated regression model would be unsuitable for 

the data in hand. In this case, as recommended by Lord 
et al. (2005b, 2007), alternative time periods for aggre-
gating the number of crashes were considered for mod-
elling, as a means to reducing the number of records 
(observations) with zero crashes, as shown in Table 5.

Table 3. Frequency distribution of the number of crashes  
per segment in 12 years – 200-m-long segments

NC 0 1 2 3 4 5 6 7 8 9 10 11 12 16 22

NS 4 12 12 10 14 11 4 2 3 7 2 4 1 1 1

Notes: NC – Number of Crashes; NS – Number of Segments.

Table 4. Characteristics of segments with zero and with more 
than nine accidents

Variables
Number  

of crashes = 0
Number  

of crashes ≥10
Max Min Max Min

AADT 27903.58 7466.17 27903.58 5067.33
LW 3.75 3.45 4.23 3.53
SW 0.70 0.31 1.73 0.50
LO 1.90 0.70 3.90 0.60
RSL 0.94 0.45 1.00 0.22
HS 336.30 65.60 853.20 0.00

RTL 1.00 1.00 1.00 0.00
VS 0.00 0.00 25.35 0.00

DPC 0.00 0.00 1.00 0.00
DAP 5.00 0.00 15.00 0.00

Notes: AADT  – Annual Average Daily Traffic; LW  – Lane 
Width; SW – Shoulder Width; LO – Lateral Offset; RSL – rate 
of the length in horizontal tangent per total segment length; 
HS – Horizontal Sinuosity; RTL – rate of the length in verti-
cal tangent per total segment length; VS – Vertical Sinuosity; 
DPC – Density of Pedestrian Crossings; DAP – Density of Ac-
cess Point.

Table 5. Number of Zero (ZR) and Total Crash (TR) records 
for different time observation periods

Item Type of 
records

Time observation period  
[in years]

1 2 3 4 6 12

200-m-long
ZR 740 273 142 90 37 4
TR 1056 528 352 264 176 88

[%] of ZR 70% 52% 40% 34% 21% 5%

400-m-long
ZR 195 63 30 20 4 0
TR 384 192 128 96 64 32

[%] of ZR 51% 33% 23% 21% 6% 0%

2. Methodology

The CPM for the Portuguese two-lane highway segments 
was developed using the GEE with the negative binomial 
link function.

The verification of the presence and type of corre-
lation structure in the longitudinal crash data was per-
formed by testing the following correlation structures 
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provided by the GEE procedure: independent, exchange-
able, and autoregressive. These structures allow for the 
specification of the correlation between the number of 
crashes measured at a given road segment for different 
periods of time. The correlation structures have been 
proposed by Liang and Zeger (1986) and are fairly well 
detailed in the work of Wang and Abdel-Aty (2006).

2.1. Model Formulation
Given the objective of this study, the analysis considers 
only models with the general expression presented in 
Eq. (5); the GLM version (Eq. (6)) is derived from this 
equation:

( ) ( )( ) ,

Volume ;
j j mt

j
x

mt mtE y e
β

γ
 

= α 
  

∑
  (5)

( )( ) ( ) ( ) ,ln ln ln Volume ,mt mt j j mt
j

E y x= α + γ + β∑  (6)

where: ( )mtE y  – the expected number of crashes at seg-
ment m over time period t; Volumemt – AADT observed 
at segment m over time t; xj,mt  – value of explanatory 
variable i observed at segment m over time t; α, γ, βj – 
model parameters to be estimated.

The modelling procedure followed a backward 
elimination starting with the AADT and all candidate 
variables (presented in Table 2). The final model for 
each combination of segment length and time obser-
vation period, which considered the three correlation 
structures provided by the GEE, present only the ex-
planatory variables that are statistically significant at 5% 
significance level.

The identification of the factors affecting the fre-
quency of crashes defined by the combinations of time 
and space was based on the model that best fit the field 
data. The best model for a given combination was se-
lected based on the conditions presented in Section 2.2.

The overall best model was selected with the CU-
mulative REsiduals (CURE) method and with the mar-
ginal R2 ( )2

margR . The Quasi-likelihood Information Cri-
terion (QIC) statistic was considered for the correlation 
structure evaluation. Another important consideration 
for model selection was the analysis of the model pa-
rameters’ sign. The parameters’ sign must be compatible 
with the expectation from a traffic engineering point of 
view.

2.2. Model Assessment
Three elements were considered for examining the good-
ness-of-fit for each CPM generated: the CURE method, 
the 2

margR  and the Akaike’s Information Criterion (AIC) 
in the GEE, which is called the QIC.

The CURE test considers the difference between the 
number of observed and predicted crashes (the residu-
al) as the basic element for judging the CPM fit (Hauer 
2004).

The CURE plot allows for the examination of the 
CUREs against the variable of interest, which is the 
Volumeit (AADT observed at segment i over time t) for 

the present study. For this examination, the N residu-
als are initially sorted in increasing order of the vari-
able of interest. They are then numbered consecutively 
1, 2, …, z, …, N. The CURE for each z is calculated as 
the sum of the residuals from 1 to z. A good fit means 
that the CURE plot oscillates around the zero value of 
the CUREs. 

Additionally, the CURE plot presents two addition-
al curves formed by acceptable limits for the CUREs, 
which are built as follows:

a) compute the squared residual for each of the N 
sorted residuals; 

b) compute ( )2ˆ zσ  as the sum of these squared re-
siduals from 1 to z;

c) compute:

   
( ) ( ) ( )

( )
2

*
2

ˆ
ˆ 1 ˆ

z
z z

N
σ

σ = σ −
σ

,  (7)

where: ( )* zσ  – CUREs from 1 to z, used to the 
CURE plot; ( )ˆ zσ   – square root of the sum of 
squared residuals from 1 to z ( )( )2ˆ zσ ; ( )2ˆ Nσ  – 
sum of squared residuals from 1 to N;

d) add ( )*2 z± σ  limits to the CURE plot.
The marginal R2 was introduced by Zheng (2000) 

for models developed by GEE method. It takes the form:

( )

( )

2

1 12

2

1 1

ˆ

1

T n

it it
t i

marg T n

it
t i

Y Y
R

Y Y

= =

= =

−

= −

−

∑∑

∑∑
,  (8)

where: Yit – the observed number of crashes at element i 
over time period t; îtY  – the expected number of crashes 
at element i over time period t; Y  – the marginal mean, 

given by: ( )
1 1

1 T n

it
t i

Y Y
nT = =

= ∑∑ .

To assess the best correlation structure between 
data of each grouping strategy (spatial and temporal) 
the QIC statistic was used. This statistic was proposed 
by Pan (2001) as a modification for the AIC in the GEE. 
The modification was developed to address a model se-
lection problem in the GEE concerning the selection of 
the type of correlation among observations in a given 
cluster (working correlation structure). The modification 
involves using the quasi-likelihood constructed from 
the estimating equations (QIC) using the working in-
dependence model and any general working correlation 
structure in the GEE. To select a working correlation 
structure in the GEE, it is necessary to calculate the QIC 
for various candidate working correlation structures. 
According to Ballinger (2004) the correlation structure 
to be adopted is the structure that produces the smallest 
(closest to zero) QIC.

3. Results and Discussion

The main results for the models generated in the cases 
of the 200-m-long and 400-m-long segments are pre-
sented in Tables 6 and 7, respectively. From Table 6, it 
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can be observed that according to the QIC parameter, 
the correlation structure that best fits the longitudinal 
data considered is the exchangeable correlation, accord-
ing to which the correlations between any two observa-
tions within a group is constant. Table 7 shows that for 
the 400-m-long segments the exchangeable correlation 
is also found for the 1-year, 2-years and 4-years mod-
els, while the independent correlation best fits for the 

3-years and 6-years models, respectively. That is, the in-
dependence correlation, which allows the longitudinal 
data to be treated as independent records with the aid of 
the basic GLM procedure, is only suitable for the current 
database for the 400-m-long segments over 3-years and 
6-years time period.

Another important finding is that, as expected, a 
small number of observations (records) considered for 

Table 6. Model estimates for 200-m-long road segments

Time Parameters
Correlation structure

Ind Ex Ar
Coeff. p Coeff. p Coeff. p

1-year

Intercept –7.13 0.01 –7.59 <0.01 –7.13 0.01
ln(AADT) 0.35 0.06 0.38 0.04 0.35 0.06
LW 0.68 0.07 0.72 0.06 0.68 0.07
VS 0.03 0.02 0.03 0.02 0.03 0.02
DAP 0.07 0.01 0.07 0.01 0.07 0.01
QIC 1558.45 1554.80 1561.56

2
margR 0.04 0.04 0.04

Number of observations in the database = 1056

2-years

Intercept –6.57 0.01 –7.08 0.01 –6.85 0.01
ln(AADT) 0.37 0.04 0.40 0.03 0.38 0.04
LW 0.67 0.07 0.71 0.06 0.72 0.06
VS 0.03 0.03 0.03 0.03 0.03 0.02
DAP 0.07 0.01 0.07 <0.01 0.07 0.01
QIC 989.90 987.35 999.18

2
margR 0.07 0.07 0.07

Number of observations in the database = 528

3-years

Intercept –5.99 0.02 –6.30 0.01 –6.24 0.01
ln(AADT) 0.36 0.05 0.38 0.03 0.37 0.04
LW 0.64 0.08 0.67 0.08 0.69 0.07
VS 0.03 0.03 0.03 0.03 0.03 0.03
DAP 0.07 <0.01 0.07 <0.01 0.07 <0.01
QIC 631.95 630.19 640.35

2
margR 0.09 0.09 0.09

Number of observations in the database = 352

4-years

Intercept –5.99 0.02 –6.30 0.01 –6.24 0.01
ln(AADT) 0.36 0.05 0.38 0.03 0.37 0.04
LW 0.64 0.08 0.67 0.08 0.69 0.07
VS 0.03 0.03 0.03 0.03 0.03 0.03
DAP 0.07 <0.01 0.07 <0.01 0.07 <0.01
QIC 394.44 393.74 396.54

2
margR 0.10 0.10 0.10

Number of observations in the database = 264

6-years

Intercept –5.60 0.02 –5.86 0.02 –5.76 0.02
ln(AADT) 0.36 0.05 0.38 0.04 0.36 0.04
LW 0.62 0.09 0.64 0.09 0.65 0.08
VS 0.03 0.03 0.03 0.03 0.03 0.03
DAP 0.07 <0.01 0.07 <0.01 0.07 <0.01
QIC 41.25 41.24 41.24

2
margR 0.13 0.13 0.13

Number of observations in the database = 176

Notes: AADT – Annual Average Daily Traffic; LW – Lane Width; VS – Vertical Sinuosity; DAP – Density of Access Point; QIC – 
Quasi-likelihood Information Criterion statistic.
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model calibration can prevent the generation of an ac-
ceptable CPM. For the cases involving the 400-m-long 
segments and 3, 4 and 6-years of cumulative data, the 
explanatory variable HS was determined to have a nega-
tive coefficient value. This result is not expected from a 

traffic engineering point of view. When this variable is 
excluded from the models (which is not justified from a 
statistical point of view) and new models are generated, 
only LW and traffic volume variables remain statistically 
significant. For the case of the 200-m-long segments the 

Table 7. Model estimates for 400-m-long road segments

Time Parameter
Correlation structure

Ind Ex Ar
Coeff. p Coeff. p Coeff. p

1-year

Intercept –12.69 0.01 –12.90 0.01 –12.52 0.01
ln(AADT) 0.76 0.01 0.77 <0.01 0.75 0.01
LW 1.31 0.01 1.34 0.01 1.30 0.01
VS 0.03 0.01 0.03 0.01 0.03 0.02
DAP 0.08 0.02 0.08 0.02 0.07 0.03
QIC 653.54 653.10 658.52

2
margR 0.11 0.11 0.10

Number of observations in the database = 384

2-years

Intercept –11.93 0.01 –12.14 0.01 –11.89 0.01
ln(AADT) 0.76 0.01 0.77 0.01 0.74 0.01
LW 1.30 0.01 1.32 0.01 1.34 0.01
VS 0.03 0.01 0.03 0.01 0.03 0.01
DAP 0.08 0.03 0.08 0.03 0.07 0.04
QIC 247.50 247.18 256.00

2
margR 0.18 0.18 0.18

Number of observations in the database = 196

3-years

Intercept –11.93 0.01 –11.97 <0.01 –12.41 0.01
ln(AADT) 0.73 0.01 0.74 <0.01 0.74 0.01
LW 1.57 0.04 1.57 0.04 1.69 0.03
HS –0.01 0.03 –0.01 0.03 –0.01 0.03
VS 0.02 0.02 0.02 0.02 0.02 0.02
DPC 0.72 0.03 0.72 0.03 0.73 0.03
QIC 13.96 14.02 14.51

2
margR 0.19 0.19 0.19

Number of observations in the database = 128

4-years

Intercept –11.70 0.01 –11.70 0.01 –11.89 0.01
ln(AADT) 0.74 0.01 0.74 0.01 0.75 0.01
LW 1.57 0.04 1.57 0.04 1.61 0.03
HS –0.01 0.02 –0.01 0.02 –0.01 0.02
VS 0.02 0.02 0.02 0.02 0.02 0.02
DPC 0.73 0.03 0.73 0.03 0.73 0.03
QIC –178.53 –178.51 –179.20

2
margR 0.21 0.21 0.21

Number of observations in the database = 96

6-years

Intercept –11.67 <0.01 –11.55 <0.01 –11.55 0.01
ln(AADT) 0.77 0.01 0.76 <0.01 0.76 0.01
LW 1.61 0.03 1.60 0.03 1.60 0.03
HS –0.01 0.02 –0.01 0.02 –0.01 0.02
VS 0.02 0.02 0.02 0.02 0.02 0.02
DPC 0.73 0.02 0.73 0.03 0.73 0.03
QIC –354.85 –355.50 –355.50

2
margR 0.27 0.27 0.27

Number of observations in the database = 64

Notes: AADT – Annual Average Daily Traffic; LW – Lane Width; HS – Horizontal Sinuosity; VS – Vertical Sinuosity; DPC – Density 
of Pedestrian Crossings; DAP – Density of Access Point; QIC – Quasi-likelihood Information Criterion statistic.
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results show that the models generated for sample sizes 
equal to or less than 128 observations present problems 
for properly identifying the major contributory factors 
to the crash frequencies observed in the field.

The models acceptable from both a statistical and 
traffic engineering point of view are those generated 
from the databases with 200-m-long road segments and 
3-years and 4-years time periods, and with 400-m-long 
road segments and 1-year and 2-years time periods. The 
latter two models best fit the corresponding data as their 

2
margR is greater than those found for the 200-m-long da-

tabases’ models. Additionally, all of their explanatory 
variables are statistically significant for α = 5%, while 
for the 200-m-long segments’ models the variable LW is 
only statistically significant for α = 7.6% (3-years model) 
and α = 8.5% (4-years model).

Fig. 1. CURE plots for the models developed for the 200-m-long segments: a – 1-year crash data (ZR = 70%; TR = 1056);  
b – 2-years crash data (ZR = 52%; TR = 528); c – 3-years crash data (ZR = 40%; TR = 352); d – 4-years crash data (ZR = 34%; 

TR = 264); e – 6-years crash data (ZR = 21%; TR = 176)

Considering only the models acceptable it is pos-
sible to verify that among the contributing variables 
studied, the major contributing factors to the crash 
frequency are the traffic volume, expressed in terms of 
AADT, the LW, the VS and the DAP. All of these vari-
ables have a positive impact on the dependent variable 
(coefficients with positive sign). One important aspect to 
highlight is that the LW in the database varies from 3.05 
to 4.23 m. What the results show, therefore, is that in this 
range, larger traffic lanes can have a negative effect on 
traffic safety, which is probably due the reduction in the 
lane’s capability of helping the vehicles maintain similar 
trajectories. As a final evaluation of the previously con-
sidered acceptable models, the CURE plot for each case 
was developed. Figs 1 and 2 show these plots.
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From Fig.  1, it is possible to observe that for the 
3-years and 4-years crash data models, the CURE plots 
oscillate around 0 and do not cross the upper and lower 
limits. Therefore, the models can be considered accept-
able. However, their CUREs present points very close to 
the upper limit. Although the 3-years model presents 

2
margR  slightly smaller than the corresponding for the 

4-years model, the level of significance of its variables is 
greater. Additionally, for practical applications, a model 
that can estimate the number of crashes for shorter time 
period seems to be more convenient. Because of this, the 
3-years model can be considered to be the best model 
for the 200-m-long segments.

According to Fig. 2, for the 400-m-long segments, 
the CURE plots for the 1-year and 2-years models reveal 
that these models are acceptable. The other models in 

this figure are also acceptable from the CURE plots but 
they are not from a traffic engineering point of view, as 
previously discussed.

Comparing the 2
margR  of 1-year and 2-years models 

it is clear that the 2-years model fits the field observation 
better than the 1-year model (Fig.  2). Also, it fits the 
field observations better than the 200-m-long segments 
counterparts and can be selected as the best model for 
the highway segments studied.

Summary and Conclusions

The objective of the present study was the identification 
of the major contributory factors to road crash frequen-
cy for road segments of Portuguese two-lane highways 
located in the northern region of the country. The study 

Fig. 2. CURE plots for the models developed for the 400-m-long segments: a – 1-year crash data (ZR = 51%; TR = 384);  
b – 2-years crash data (ZR = 33%; TR = 192); c – 3-years crash data (ZR = 23%; TR = 128); d – 4-years crash data (ZR = 21%; 

TR = 96); e – 6-years crash data (ZR = 6%; TR = 64)
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also sought to investigate the effects of aggregating data 
for the identified factors in different ways, that is, in 
temporal groupings and spatial groupings. The impor-
tance of this work is to contribute to the promotion of 
road safety in the Portuguese northern national road 
system, which serves many cities and industrial zones.

The initial database considered for this study was 
formed by the fatal and injury crash frequency (with-
out pedestrian and cyclist crashes), the Average Annual 
Daily Traffic (AADT) and the geometric characteristics 
of eighty-eight 200-m-long segments during the years 
1999 to 2010. This database contains 1056 data records, 
of which 740 have zero annual crashes. However, a pre-
liminary analysis of the characteristics of the segments 
for which there were no crashes registered over the 
12-years period revealed that there was no clear tech-
nical justification for classifying those segments as in-
herently safe and, accordingly, the use of zero-inflated 
regression models was ruled out.

To reduce the number of zero crash records, dif-
ferent databases were developed from the initial da-
tabase by taking into account variations on the space 
and time scale of the data, as suggested by Lord et al. 
(2005a, 2005b). In terms of time, four options for ag-
gregating the data were considered, all of which were 
aimed at including all of the 12-years data available. For 
the space scale, in addition to the 200-m-long original 
segments, 400-m-long segments were also considered. 
Therefore, including the 1-year crash data, 10 different 
databases were analyzed. As expected, an enlargement in 
the length of the road segment analyzed or in the time 
periods from which the crash data are considered allows 
for a significant reduction in the zero crash observations 
in the database and contributes to generating acceptable 
Crash Prediction Models (CPMs). However, the concern 
with an excess of zeros must be balanced with considera-
tions regarding the impact of grouping data (in space, 
in time or in both) on the sample size, which can, in 
turn, make it difficult to develop acceptable CPMs. The 
GEE procedure was selected to work with the longitu-
dinal data present in all databases. This procedure made 
it possible to verify that the observations are effectively 
correlated (exchangeable correlation), except for the 
3-years and 6-years data for the 400-m-long segments, 
where the observations proved to be independent.

From an analysis of the models obtained using the 
CUmulative REsidual (CURE) plots and marginal R2 
it was found that the models generated on the basis of 
the 3-years database for the 200-m-long segments and 
of the 2-years database for the 400-m-long were those 
with the best fits for the data. Both models were able 
to capture the same significant contributory factors to 
the observed crash frequencies. These factors were the 
traffic volume (expressed in AADT), Lane Width (LW), 
Vertical Sinuosity (VS), and Density of Access Points 
(DAP). As these factors result in positive coefficients in 
the models, which are acceptable, when they increase, 
it is reasonable to expect that the crash frequency in-
creases as well. Thus, the study proved to be capable of 
pinpointing those elements that need to be the object 
of measures taken to promote road safety on national 

roads located in Northern region of Portugal. Among 
such measures the control is increased over the implan-
tation of accesses to lots bordering the road and the use 
of road signs, not only to channel traffic flows, but also 
to warn drivers of the presence of stretches of road with 
vertical sinuosities in close succession.

The main limitation in this study was the number 
of 200 meters homogenous segments included in the 
sample, 88, partly due to the high costs associated with 
the data collection and the lack of logistical resources 
and equipment. This sample size may have impeded 
the identification of the significance of some of the re-
searched variables. Other limitation was the lack of de-
tailed information related to all the interventions that 
took place in the studied NR, which did not allow the 
inclusion of other variables related to the road condi-
tions in the models (road surface, friction coefficient, 
etc.).

References
Anastasopoulos, P. C.; Mannering, F. L. 2011. An empirical 

assessment of fixed and random parameter logit models 
using crash- and non-crash-specific injury data, Accident 
Analysis & Prevention 43(3): 1140–1147. 
http://dx.doi.org/10.1016/j.aap.2010.12.024 

Anastasopoulos, P. C.; Mannering, F. L. 2009. A note on mod-
eling vehicle accident frequencies with random-parameters 
count models, Accident Analysis & Prevention 41(1): 153–
159. http://dx.doi.org/10.1016/j.aap.2008.10.005 

Anastasopoulos, P. C.; Mannering, F. L.; Shankar, V. N.; Had-
dock, J. E. 2012. A study of factors affecting highway ac-
cident rates using the random-parameters tobit model, Ac-
cident Analysis & Prevention 45: 628–633. 
http://dx.doi.org/10.1016/j.aap.2011.09.015 

ANSR. 2009. Acidentes Rodoviários. Observatório de Seguran-
ça Rodoviária [Road Crashes. Road Safety Observatory]. 
Autoridade Nacional de Segurança Rodoviária (ANSR) 
[National Authority for Road Safety], Lisboa, Portugal 
(Portuguese).

Ballinger, G. A. 2004. Using generalized estimating equations 
for longitudinal data analysis, Organizational Research 
Methods 7(2): 127–150. 
http://dx.doi.org/10.1177/1094428104263672 

Cafiso, S.; Di Graziano, A.; Di Silvestro, G.; La Cava, G.; Per-
saud, B. 2010. Development of comprehensive accident 
models for two-lane rural highways using exposure, geom-
etry, consistency and context variables, Accident Analysis & 
Prevention 42(4): 1072–1079. 
http://dx.doi.org/10.1016/j.aap.2009.12.015 

Caliendo, C.; Guida, M.; Parisi, A. 2007. A crash-prediction 
model for multilane roads, Accident Analysis & Prevention 
39(4): 657–670. http://dx.doi.org/10.1016/j.aap.2006.10.012 

Carson, J.; Mannering, F. 2001. The effect of ice warning signs 
on ice-accident frequencies and severities, Accident Analy-
sis & Prevention 33(1): 99–109. 
http://dx.doi.org/10.1016/S0001-4575(00)00020-8 

Couto, A.; Ferreira, S. 2011. A note on modeling road accident 
frequency: a flexible elasticity model, Accident Analysis & 
Prevention 43(6): 2104–2111. 
http://dx.doi.org/10.1016/j.aap.2011.05.033 

Dinu, R. R.; Veeraragavan, A. 2011. Random parameter mod-
els for accident prediction on two-lane undivided highways 
in India, Journal of Safety Research 42(1): 39–42. 
http://dx.doi.org/10.1016/j.jsr.2010.11.007 

http://dx.doi.org/10.1016/j.aap.2010.12.024
http://dx.doi.org/10.1016/j.aap.2008.10.005
http://dx.doi.org/10.1016/j.aap.2011.09.015
http://dx.doi.org/10.1177/1094428104263672
http://dx.doi.org/10.1016/j.aap.2009.12.015
http://dx.doi.org/10.1016/j.aap.2006.10.012
http://dx.doi.org/10.1016/S0001-4575(00)00020-8
http://dx.doi.org/10.1016/j.aap.2011.05.033
http://dx.doi.org/10.1016/j.jsr.2010.11.007


103 J. O. da Costa et al. Portuguese two-lane highways: modelling crash frequencies for different temporal ...

El-Basyouny, K.; Sayed, T. 2009. Accident prediction models 
with random corridor parameters, Accident Analysis & 
Prevention 41(5): 1118–1123. http://dx.doi.org/10.1016/j.
aap.2009.06.025 

FHWA-TFHRC. 2003. Interactive Highway Safety De-
sign Model (IHSDM): Crash Prediction Module (CPM) 
Engineer’s Manual. EUA: IHSDM. Federal Highway 
Admininstation(FHWA), Turner-Fairbank Highway Re-
search Center (TFHRC). 66 p. Available from Internet: 
http://www.wsdot.wa.gov/publications/fulltext/design/
IHSDM/CPM_EM.pdf 

Gomes, S. V. 2012. The influence of the infrastructure char-
acteristics in urban road accidents occurrence, Procedia – 
Social and Behavioral Sciences 48: 1611–1621. 
http://dx.doi.org/10.1016/j.sbspro.2012.06.1136 

Gomes, S. V.; Cardoso, J. L. 2012. Safety effects of low-cost 
engineering measures. An observational study in a Portu-
guese multilane road, Accident Analysis & Prevention 48: 
346–352. http://dx.doi.org/10.1016/j.aap.2012.02.004 

Gomes, S. V.; Geedipally, S. R.; Lord, D. 2012. Estimating the 
safety performance of urban intersections in Lisbon, Por-
tugal, Safety Science 50(9): 1732–1739. 
http://dx.doi.org/10.1016/j.ssci.2012.03.022 

Halekoh, U.; Højsgaard, S.; Yan, J. 2006. The R package geepack 
for generalized estimating equations, Journal of Statistical 
Software 15(2): 1–11. 

Harwood, D. W.; Council, F. M.; Hauer,  E.; Hughes, W. E.; 
Vogt, A. 2000. Prediction of the Expected Safety Per-
formance of Rural Two-Lane Highways. Publication  
No FHWA-RD-99-207. US Department of Transportation, 
Federal Highway Administration (FHWA). 200 p. Avail-
able from Internet: http://www.fhwa.dot.gov/publications/
research/safety/99207/99207.pdf 

Hauer, E. 2004. Statistical road safety modeling, Transportation 
Research Record 1897: 81–87. 
http://dx.doi.org/10.3141/1897-11 

Joshua, S. C.; Garber, N. J. 1990. Estimating truck accident rate 
and involvements using linear and Poisson regression mod-
els, Transportation Planning and Technology 15(1): 41–58. 
http://dx.doi.org/10.1080/03081069008717439 

Kumara, S. S. P.; Chin, H. C. 2003. Modeling accident occur-
rence at signalized tee intersections with special empha-
sis on excess zeros, Traffic Injury Prevention 4(1): 53–57. 
http://dx.doi.org/10.1080/15389580309852 

Liang, K.-Y.; Zeger, S. L. 1986. Longitudinal data analysis using 
generalized linear models, Biometrika 73(1): 13–22. 
http://dx.doi.org/10.1093/biomet/73.1.13 

Lord, D.; Bonneson, J. 2007. Development of accident modi-
fication factors for rural frontage road segments in Texas, 
Transportation Research Record 2023: 20–27. 
http://dx.doi.org/10.3141/2023-03 

Lord, D.; Mahlawat, M. 2009. Examining application of aggre-
gated and disaggregated poisson-gamma models subjected 
to low sample mean bias, Transportation Research Record 
2136: 1–10. http://dx.doi.org/10.3141/2136-01 

Lord, D.; Manar, A.; Vizioli, A. 2005a. Modeling crash-flow-
density and crash-flow-V/C ratio relationships for rural and 
urban freeway segments, Accident Analysis & Prevention 
37(1): 185–199. http://dx.doi.org/10.1016/j.aap.2004.07.003 

Lord, D.; Mannering, F. 2010. The statistical analysis of crash-
frequency data: a review and assessment of methodologi-
cal alternatives, Transportation Research Part A: Policy and 
Practice 44(5): 291–305. 
http://dx.doi.org/10.1016/j.tra.2010.02.001 

Lord, D.; Persaud, B. 2000. Accident prediction models with 
and without trend: application of the generalized estimat-
ing equations procedure, Transportation Research Record 
1717: 102–108. http://dx.doi.org/10.3141/1717-13 

Lord,  D.; Washington,  S.; Ivan, J. N. 2007. Further notes on 
the application of zero-inflated models in highway safety, 
Accident Analysis & Prevention 39(1): 53–57. 
http://dx.doi.org/10.1016/j.aap.2006.06.004 

Lord, D.; Washington, S. P.; Ivan, J. N. 2005b. Poisson, Poisson-
gamma and zero-inflated regression models of motor ve-
hicle crashes: balancing statistical fit and theory, Accident 
Analysis & Prevention 37(1): 35–46. 
http://dx.doi.org/10.1016/j.aap.2004.02.004 

Milton, J.; Mannering, F. 1998. The relationship among high-
way geometrics, traffic-related elements and motor-vehicle 
accident frequencies, Transportation 25(4): 395–413. 
http://dx.doi.org/10.1023/A:1005095725001 

Pan, W. 2001. Akaike’s information criterion in generalized 
estimating equations, Biometrics 57(1): 120–125. 
http://dx.doi.org/10.1111/j.0006-341X.2001.00120.x 

Poch, M.; Mannering, F. 1996. Negative binomial analysis of 
intersection-accident frequencies, Journal of Transportation 
Engineering 122(2): 105–113. 

  http://dx.doi.org/10.1061/(ASCE)0733-947X(1996)122:2(105) 
Shankar, V.; Milton, J.; Mannering, F. 1997. Modeling accident 

frequencies as zero-altered probability processes: an empir-
ical inquiry, Accident Analysis & Prevention 29(6): 829–837. 
http://dx.doi.org/10.1016/S0001-4575(97)00052-3 

Thomas,  P.; Morris,  A.; Otte,  D.; Breen, J. 2003. Real-world 
accident data-coordinated methodologies for data collec-
tion to improve vehicle and road safety, in Proceedings: 18th 
International Technical Conference on the Enhanced Safety 
of Vehicles, 19–22 May 2003, Nagoya, Japan, 1–10.

Vangeneugden,  T.; Molenberghs,  G.; Verbeke,  G.; Demé-
trio, C. G. B. 2011. Marginal correlation from an extended 
random-effects model for repeated and overdispersed 
counts, Journal of Applied Statistics 38(2): 215–232. 
http://dx.doi.org/10.1080/02664760903406405 

Venkataraman, N.; Ulfarsson, G. F.; Shankar, V. N. 2013. Ran-
dom parameter models of interstate crash frequencies by 
severity, number of vehicles involved, collision and location 
type, Accident Analysis & Prevention 59, 309–318. 
http://dx.doi.org/10.1016/j.aap.2013.06.021 

Wang,  X.; Abdel-Aty, M. 2006. Temporal and spatial analy-
ses of rear-end crashes at signalized intersections, Accident 
Analysis & Prevention 38(6): 1137–1150. 
http://dx.doi.org/10.1016/j.aap.2006.04.022 

WHO. 2013. Global Status Report on Road Safety 2013: Sup-
porting a Decade of Action. World Health Organization 
(WHO), Geneva, Switzerland. 318 p. Available from In-
ternet: http://www.iru.org/cms-filesystem-action/policies/
sustainable_development/road_safety/gsrrs_en.pdf 

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section 
and Panel Data. The MIT Press. 1096 p.

Zhang, Y.; Xie, Y.; Li, L. 2012. Crash frequency analysis of dif-
ferent types of urban roadway segments using generalized 
additive model, Journal of Safety Research 43(2): 107–114. 
http://dx.doi.org/10.1016/j.jsr.2012.01.003 

Zheng, B. 2000. Summarizing the goodness of fit of generalized 
linear models for longitudinal data, Statistics in Medicine 
19(10): 1265–1275. 
http://dx.doi.org/10.1002/(SICI)1097-0258(20000530) 
19:10<1265::AID-SIM486>3.0.CO;2-U

http://dx.doi.org/10.1016/j.aap.2009.06.025
http://dx.doi.org/10.1016/j.aap.2009.06.025
http://dx.doi.org/10.1016/j.sbspro.2012.06.1136
http://dx.doi.org/10.1016/j.aap.2012.02.004
http://dx.doi.org/10.1016/j.ssci.2012.03.022
http://dx.doi.org/10.3141/1897-11
http://dx.doi.org/10.1080/03081069008717439
http://dx.doi.org/10.1080/15389580309852
http://dx.doi.org/10.1093/biomet/73.1.13
http://dx.doi.org/10.3141/2023-03
http://dx.doi.org/10.3141/2136-01
http://dx.doi.org/10.1016/j.aap.2004.07.003
http://dx.doi.org/10.1016/j.tra.2010.02.001
http://dx.doi.org/10.3141/1717-13
http://dx.doi.org/10.1016/j.aap.2006.06.004
http://dx.doi.org/10.1016/j.aap.2004.02.004
http://dx.doi.org/10.1023/A:1005095725001
http://dx.doi.org/10.1111/j.0006-341X.2001.00120.x
http://dx.doi.org/10.1061/(ASCE)0733-947X(1996)122:2(105)
http://dx.doi.org/10.1016/S0001-4575(97)00052-3
http://dx.doi.org/10.1080/02664760903406405
http://dx.doi.org/10.1016/j.aap.2013.06.021
http://dx.doi.org/10.1016/j.aap.2006.04.022
http://dx.doi.org/10.1016/j.jsr.2012.01.003
http://dx.doi.org/10.1002/(SICI)1097-0258(20000530)19:10%3c1265::AID-SIM486%3e3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1097-0258(20000530)19:10%3c1265::AID-SIM486%3e3.0.CO;2-U

