
TRANSPORT
ISSN 1648-4142 / eISSN 1648-3480

2020 Volume 35 Issue 6: 576–587

 https://doi.org/10.3846/transport.2020.14159

SPATIOTEMPORAL DYNAMICS OF PUBLIC TRANSPORT DEMAND:  
A CASE STUDY OF RIGA

Dmitry PAVLYUK*, Nadežda SPIRIDOVSKA, Irina YATSKIV (JACKIVA)# 

Dept of Mathematical Methods and Modelling, Faculty of Engineering,  
Transport and Telecommunication Institute, Riga, Latvia

Received 6 July 2020; revised 17 August 2020; accepted 2 September 2020

Abstract. Sustainable urban mobility remains an emerging research topic during last decades. In recent years, the smart 
card data collection systems have become widespread and many studies have been focused on usage of anonymized data 
from these systems for better understanding of mobility patterns of Public Transport (PT) passengers. Data-driven mo-
bility patterns can benefit transport planners at strategic, tactical, and operational levels. A particular point of interest is 
a spatiotemporal dynamics of mobility patterns that highlights transformation of the PT passenger flows over the time 
continuously or in response to modifications of the PT system and policies. This study is aimed to estimation and analysis 
of the spatiotemporal dynamics of PT passenger flows in Riga (Latvia). A multi-stage methodology was proposed and in-
cludes three main stages: (1) estimation of individual trip vectors, (2) clustering of trip vectors into spatiotemporal mobil-
ity patterns, and (3) further analysis of mobility patterns’ dynamics. The best practice methods are applied at every stage 
of the proposed methodology: the smart card validation flow is used for extracting information on boarding locations; the 
trip chain approach is used for estimation of individual trip destinations; vector-based clustering algorithms are utilised for 
identification of mobility patterns and discovering their dynamics. The resulting methodology provides an advanced tool 
for observing and managing of PT demand fluctuation on a daily basis. The methodology was applied for mining of a large 
smart card data set (124 million records) for year 2018. Most important empirical results include obtained daily mobility 
patterns in Riga, their clusters, and within-cluster dynamics over the year. Obtained daily mobility patterns allows estima-
tion of a city-level PT origin–destination matrix that is useful in many applied areas, e.g., dynamic passenger flow assign-
ment models. Mobility pattern-based clustering of days allows effective comparison and flexible tuning of the PT system 
for different days of a week, public holidays, extreme weather conditions, and large events. Dynamics of mobility patterns 
allows estimating the effect of implementing changes (e.g., fare increase or road maintenance) and demand forecasting for 
user-focused development of PT system.
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Introduction 

The key goal of the Sustainable Urban Mobility Plan 
(SUMP) (EC 2013) is improving the accessibility of urban 
areas and providing high-quality and sustainable mobility. 
SUMP is defined (Rupprecht et al. 2019) as a strategic plan 
designed to satisfy the mobility needs of people and busi-
nesses in cities and their surroundings for a better quality 
of life. Sustainable urban development requires an appro-
priate transport system, so mobility is an integral part of 
the development of the entire city. Urban mobility is be-
coming a critical challenge with the increasing population 
in cities and the growing urbanisation level. Seeing these 
trends, attention to mobility alternatives for meeting the 
demand of growing populations should be considered in 
the perspective of sustainable transport alternatives.

Smart card systems, adopted for Public Transport (PT) 
in many cities over the world, intensively collect a large 
volume of data that have a huge potential for revealing the 
mobility demand. A lot of efforts have been made in scien-
tific literature to develop tools for extracting and utilizing 
information from smart card databases. Smart card data 
can be used for strategic, tactical and operational tasks 
and researchers agree that more can be done with the data: 
destination estimation, network performance, travel be-
haviour. A regular smart card database stores information 
at the lowest level of disaggregation (usually, individual 
smart card validations), so there is a long methodological 
way to aggregating them into mobility patterns. A typi-
cal methodology includes many intermediate steps (like 
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estimation of boarding and alighting stops, identification 
of trip chains, etc.), which are associated with many hy-
potheses made and technical problems raised. Frequently, 
these hypotheses and problems are city- and data-specific, 
so case studies play an important role in PT researches.

This paper aims to define the mobility patterns of the 
users of PT in Riga (Latvia) based on smart card data. The 
Riga smart card system provides only entry validations 
and is not integrated with scheduling databases and PT 
vehicle locations. This fact challenges the utilised methods, 
as well as the adopted hypotheses that need to be verified 
in different contexts. Methodological and technical chal-
lenges that appear in consecutive stages of mobility pat-
tern recognition were discussed and general feasibility of 
the methodology for solving strategic-level problems was 
demonstrated. The paper is organised as follows: Section 
1 presents a brief overview of spatiotemporal PT mobility 
studies; Section 2 introduces details of our methodology; 
Section 3 describes the case study, obtained empirical re-
sults and related discussion; Section 4 provides a discus-
sion, and the last section summarizes the conclusions.

1. State of the art

Better understanding of mobility behaviours is highly re-
quired for services customization and more effective PT 
systems. Many original studies have been published over 
the last two decades: Pelletier et al. (2011), Faroqi et al. 
(2018), and Welch, Widita (2019) composed extensive lit-
erature reviews that cover different aspects of PT smart 
card data processing. Although many authors widely refer 
their studies as spatiotemporal analysis of urban mobility 
patterns, the essence of this analysis could be different.

The first step towards spatiotemporal mobility pattern 
analysis is based on discovering the spatial distribution of 
PT boardings and its dynamics over the research period. 
Morency et al. (2007) analysed the number of boardings 
at the PT stop level during 277 days within a Canadian 
transit network; Zhong et al. (2015) utilised temporal pat-
terns of boardings during the days and implemented cor-
relation analysis of PT stops for one-week Singapore smart 
card data; Briand et al. (2017) used the temporal profile 
of boardings for clustering passengers and discover their 
behaviour; El Mahrsi et al. (2017) implemented a similar 
methodology to discover patterns of different smart card 
types.

Although boarding activities are important for tran-
sit operators, they do not reveal mobility directions and 
trajectories. Therefore, many researchers put their efforts 
on estimation of individual trip destinations. The prob-
lem is usually complicated by the absence of data on the 
alighting PT stop – many smart card usage policies require 
validation of the card at the boarding only. In addition to 
estimation of alighting stops, the problem of transfer stops 
arises: a data processing algorithm should distinguish final 
destinations of passengers from intermediate ones. Typi-
cally, this problem is solved on the base of the next smart 
card validation and predefined rules (e.g., a time period 

threshold between consecutive validations). These rules 
are the subject of selection and can be quite complicated – 
for example, a short stop for carrying a child to school and 
continuing the way to the office could be considered as a 
destination of interest for mobility patterns. The trip chain 
approach is widely used in many studies to extend spatial 
boarding information (Gentile, Noekel 2016). Trépanier 
et  al. (2007) provided an algorithm for trip destination 
estimation and applied it to the analysis of spatiotemporal 
patterns of route loadings. Wang et al. (2011) estimated 
origin and destination of passengers for evaluation of bus 
connections. Tao et al. (2014) compared origins and desti-
nations distribution over the time to discover patterns for 
different social groups of passengers. Similar to studies on 
boarding information, origin and destination pairs were 
recently used for passenger and weeks clustering (Des-
chaintres et al. 2019; He et al. 2020).

Many researches are focused on estimation of PT pas-
sengers’ behaviour on individual, boarding and alighting 
stop, and route levels, and only a very limited number of 
studies are devoted to analysis of a large-scale variabil-
ity of PT demand using smart card data. Ma et al. (2013) 
analysed 5-day smart card data in Beijing (China), for 
discovering the temporal and spatial regularity of PT 
trips. The k-means algorithm was used to identify clus-
ters of passengers with a similar level of demand regular-
ity. Similarly to researches by Ma et al. (2013) and Kieu 
et al. (2015) identified temporal patterns of PT demand 
using 4-month smart card data for South East Queensland 
(Australia) and applying the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) clustering. 
Briand et al. (2017) investigated long-term (year-to-year) 
changes of PT travel behaviour for 5 years of smart card 
data from Gatineau (Canada). They applied a Gaussian 
mixture model for cluster identification and discovered a 
relative stability of cluster characteristics over years. Gou-
let-Langlois et al. (2016) analysed 4-week PT passengers’ 
activities in London (UK) extracted several user clusters 
and discovered associations between travel patterns and 
socio-demographic attributes. Later in research by Goulet-
Langlois et al. (2018), the authors used entropy rates for 
performing the analysis of cluster regularities and vari-
ability over time. Manley et al. (2018) also performed a 
research of London smart card data for discovering spati-
otemporal variation of travel demand. Similarly, to previ-
ous studies, the analysis was conducted on an individual 
level: the authors clustered passengers using similarities 
of their PT usage. Several recent studies were focused on 
combination of smart card data and other sources of travel 
information for discovering mobility patterns and their 
variability. Long and Thill (2015) combined smart card 
data with data from the household travel survey in Beijing 
for discovering typical commuting trips and their variabil-
ity over time. Qi et al. (2019) enhanced smart card data 
with Points Of Interests (POI) for constructing patterns 
of regional mobility. Chen et  al. (2020) also examined 
regional mobility patterns by enhancing smart card data 
with and mobile internet data. Recently, Egu and Bonnel 
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(2020) analysed day-to-day variability of mobility patterns 
using 6-month smart card data from Lyon (France). They 
proposed an intrapersonal variability metric that allows 
better understanding of spatiotemporal patterns in smart 
card data.

One of the best practices in the spatiotemporal urban 
mobility analysis is managing discovered individual ori-
gin–destination (OD) trips as vectors. These vectors are 
usually grouped on the base of Traffic Analysis Zones 
(TAZ) and further estimation of OD matrixes. This ap-
proach is widely used in recent studies by Barry et  al. 
(2009), Kumar et al. (2018), Munizaga, Palma (2012), Wei 
et al. (2017), due to the simplicity of the resulting structure 
and wide range of visualisation tools. At the same time, it 
requires a strong assumption on the correct TAZ defini-
tion. Recently, it was argued that the preliminary TAZ 
definition may be unreasonable and an assumption-free 
approach is highly required (Xu et al. 2019). The authors 
suggested to use clustering of POI for mining the zones 
from data and applied this data-driven zone definition for 
spatiotemporal analysis of bicycle riders’ mobility pattern.

2. Research methodology

The methodology, proposed in this study, covers different 
levels of smart card data analysis – from raw validation 
data to dynamics of spatiotemporal data-driven mobility 
patterns.

2.1. Data structure

The key input for the research methodology is a structure 
of available data and its completeness. In this study, data 
from two non-integrated data sources were utilized:

 – smart card validation data set that is provided by PT 
operator;

 – scheduling information that was collected in General 
Transit Feed Specification (GTFS) format from Open 
Mobility Data (OMD 2019).

A sample of validation records, obtained from the 
smart card system contains the following information:

 – TransactionDatetime contains an accurate card vali-
dation timestamp;

 – RouteID codes information about the transport mode 
and the route number (for example, tram_11);

 – RunDirection is a binary indicator of movement di-
rection (forward or backward);

 – CardID is a unique card identifier that is utilised for 
trip chain identification;

 – CardType includes information about applied fares 
(one-hour tickets, discount tickets, etc.);

 – TransportID is a unique PT vehicle number.
The smart card database is not integrated with the 

automated vehicle location system, so there is no natural 
information about the spatial dimension of data. Thus, PT 
schedules were utilised and data fusion was implemented 
for enhancing the smart card data set with spatial infor-
mation. Scheduling information for every date is collected 

via historical feeds in GTFS format and includes informa-
tion on:

 – RouteID and TripDirection that are matched to cor-
responding fields from the smart card database;

 – StopSpatialLocation includes geographical coordi-
nates of every PT stop in the system;

 – ScheduledTripID is a unique identifier of a scheduled 
PT trip;

 – StopTimes are scheduled arrival and departure times 
for every trip and PT stop.

The main stages of the research methodology are:
 – trip vector construction: 

 - fusion of data from smart card and scheduling da-
tabases;

 - estimation of a boarding stop for every individual 
trip leg;

 - trip chain recognition and trip vector construction;
 – mobility pattern estimation: 

 - discovering typical mobility patters by spatiotem-
poral clustering of trip vectors;

 – analysis of mobility patterns’ dynamics over time:
 - clustering sample dates by mobility patterns’ simi-
larity;

 - estimation of within-cluster variability of mobility 
patterns during the research period (a year).

Many existing studies address a specific stage of smart 
card data analysis – spatial analysis of boardings, estima-
tion of alighting stop and construction and trip vector, 
PT demand variation, etc. Every stage of smart card data 
analysis requires specific assumptions and is associated 
with specific errors and information losses. Our research 
methodology is a composite one, so it naturally aggregates 
assumptions and errors of intermediate stages. Thus, the 
case study in addition to its practical added value, allows 
revealing feasibility of complex smart card data analysis 
for strategic level problem solving and decision making.

2.2. Trip vector construction

2.2.1. Data fusion

Due to disintegrated smart card validation and schedul-
ing databases, the first step was discovering of actual PT 
run from the smart card database and matching them to 
scheduled PT runs (run is defined as the movement of the 
PT vehicle between end stops of a route). The smart card 
database includes information on transport vehicle num-
bers and moving directions, but does not contain identi-
fiers of the PT runs. To discover the actual PT run, the 
following rules were proposed:

 – a new PT run is started if the direction is changed 
(from forward to backward and reverse);

 – a time lag between two consecutive registrations ex-
ceeds 30 min (this works for specific cases where a 
transport vehicle goes to a park for maintenance and 
return to the same starting point);

 – PT runs with one smart card validation are excluded 
as erroneous.
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When actual PT runs are extracted, they are repre-
sented by a tuple ObservedRun:

=rObservedRun { , ,r rRouteNumber RunDirection
},r rFirstRegistration LastRegistration ,                    (1)

where: r is a PT run index; RouteNumber, RunDirection 
correspond to the extracted run; FirstRegistration, Last-
Registration are calculated as timestamps of first and last 
smart card validation during the run. 

Next, scheduled runs ScheduledRun are extracted from 
the scheduling database as:

=rsScheduledRun { , ,rs rsRouteNumber RunDirection
},rs rsFirstStop LastStop ,  (2)

where: rs is a scheduled run index; FirstStop, LastStop are 
scheduled departure timestamps for the first and last stops 
in the run. 

Finally, the matching rule for observed and scheduled 
PT runs is introduced as:

= ANDr rsRouteNumber RouteNumber
= ANDr rsRunDirection RunDirection

> − 1ANDrs rFirstStop FirstRegistration Sh
> + 2 ANDrs rLastStop LastRegistration Sh

− +min r rsrs
w FirstRegistration FirstStop

( )− ⋅ −1 r rsw LastRegistration LastStop ,  (3)

where: Sh1, Sh2 are tolerance thresholds for run start and 
end timestamps; w is a relative confidence for first and last 
stop matching. 

The nature of Sh1 and Sh2 tolerance thresholds is dif-
ferent: Sh1 corresponds to a time lag between PT trans-
port departure from the beginning stop of the route and 
the first smart card validation, while Sh2 corresponds to 
a time lag between the last validation and the end stop of 
the route. The first time lag is usually shorter – in many 
cases, the beginning stop is used by many passengers, so 
the first validation happens immediately after the trans-
port departure. The second time lag is usually longer  – 
boardings during last stops of the route are rare. Thus, 
Sh1 is arbitrary set to 10 min and Sh2 set to 60 min in this 
case study. In addition to the tolerance thresholds, which 
are designed for cutting out incorrect runs, the parameter 
w was introduced and allows balancing the importance 
of first and last stop matching. In this case study, w value 
was to 0.5 (equal importance of the first and the last stop); 
other tested values do not affect final results significantly. 
Potentially, this value can be important for solving prob-
lems, where precise recognition of the PT run is required. 
In our case, an improper selection of a PT run from a 
series of consecutive PT runs, serving the same route with 
a short time interval (2…3 min) is not critical for estima-
tion of longer trips.

The suggested rule – Equation (3) – for PT run selec-
tion does not control the uniqueness of runs, so a sched-
uled run may be matched to several observed ones (for 

example, in the case of buses, gathered together after a 
traffic jam). This approach is functional until the research-
ers are interested in actual times of PT stops only.

2.2.2. Boarding stop estimation
The problem of boarding stop estimation is recently ad-
dressed in several studies (Barry et al. 2009; Chen, Fan, 
2018; Wang et al. 2011). Following Chen and Fan (2018), 
schedule information was matched with actual card vali-
dation timestamps to associate a trip with a boarding 
stop. Scheduled and actual StopTimes can be different due 
to unexpected changes in PT operation (e.g., delays due 
to congested traffic conditions). To overcome this issue, 
scheduled stop times was corrected utilizing the informa-
tion about the smart card validation flow (assuming that 
validations are temporary clustered in a short time after 
the actual stop timestamp).

2.2.3. Trip chain recognition  
and trip vector construction
The problem of alighting stop estimation is a complex 
one and widely acknowledged in literature. In this study, 
a popular trip chain methodology was applied for identi-
fication of intermediate and final destinations. Following 
the methodology, we grouped consecutive PT legs into a 
single trip. Within the scope of this research, the primary 
goal is defined as identification of mobility vectors, thus 
actual alighting stop information is not absolutely neces-
sary. Instead of estimation of PT trip’s alighting stop, the 
next boarding stop was used for trip vector construction 
(Figure 1).

Figure 1. Illustration of a difference between actual and 
reconstructed PT trip vectors (the actual vector is presented  

in blue, the reconstructed one – in green)

Reconstructed 
trip vector

Actual
PT trip
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Our analysis was focused on chained trips only, so 
the boarding stop of the following leg was arbitrary used 
as a destination for the previous one. Thus, the step of 
alighting stop identification, which is usually based on the 
nearest distance between a stop from the previous leg and 
the boarding stop of the following one, was skipped. In 
addition, at this stage all smart card validations that hap-
pen only once a day (including one-travel tickets) were 
excluded. The trip chain analysis is usually focused on 
“home  – activity (work)  – home” commuters, so a des-
tination of the last leg within the day was defined as the 
boarding stop of the first trip. As this assumption could 
be weak and not supported by previous studies for Riga, 
these “return” trips were separately analysed.

Finally, trip vectors were defined by grouping consecu-
tive legs. The legs are considered as consecutive if a differ-
ence between their boarding times does not exceed 60 min 
(this value is arbitrary selected by the Riga PT operator, 
which provides one-hour tickets with unlimited number 
of transfers). The resulting dataset includes geographical 
information about trips, associated with the origin (board-
ing stop) and destination (next leg’s boarding time) and the 
boarding timestamp, represented as a vector TripVector:

{= ,i iTripVector BoardingTime
},i iOriginStop DestinationStop ,  (4)

where: i is a trip vector index.

2.3. Mobility pattern estimation

The dataset of trip vectors contains information about 
a large number of individual trips, which are usually 
grouped for easier visualisation and mobility pattern 
recognition. At this stage, the clustering technique was 
applied for grouping individual trip vectors into mobil-
ity vectors. The mobility vectors MobilityVector represent 
main spatiotemporal patterns of PT usage and includes in-
formation about average origin and destination locations, 
associated boarding timestamp, and flow volume:

{= ,j jMobilityVector BoardingTime

}, ,j j jOrigin Destination Flow ,  (5)

where: j is a mobility vector index; Origin, Destination are 
the geographical coordinates (longitude and latitude) of 
mobility vector’s initial and terminal points. 

Figure 2 represents an example of constructed mobil-
ity patterns for one PT route at different time periods of 
the day.

Note that unlike origin and destination of the trip vec-
tor, which are associated with specific PT stops, origin and 
destination of the mobility vector are arbitrary geographi-
cal coordinates that are not directly linked to PT stops 
and routes. 

This approach to mobility vector construction differs 
our methodology from many existing studies. Many au-
thors represent a daily mobility pattern via distribution of 

passengers over the spatial (stop locations) and temporal 
(hours) dimensions (El Mahrsi et al. 2017; Morency et al. 
2007; Xu et  al. 2019); others identify patterns via flows 
between predefined TAZ (Kumar et al. 2018). At the same 
time, the first approach does not utilize information on 
mobility directions, while the second one requires aggre-
gation at the TAZ level. Note that the trip vectors were 
clustered, which differs this research from previous stud-
ies, focused on clustering of passengers (Han, Sohn 2016; 
Morency et al. 2007) or stops (Cats et al. 2015). The sug-
gested approach allows constructing mobility patterns that 
represent spatiotemporal information about PT demand 
in a flexible manner: the resulting patterns may vary over 
the time and not linked to predefined city zones. 

Any clustering algorithms can be applied for trip vec-
tor clustering, e.g., k-means clustering with a predefined 
number of clusters; agglomerative hierarchical clustering 
with posterior identification of clusters, or DBSCAN al-
gorithm. The clustering is executed on a daily basis, so a 
daily mobility pattern was constructed as a set of mobil-
ity vectors (clustered trip vectors) for every date in the 
research sample.

2.4. Dynamics of estimated mobility patterns

Although sample-wise smart card data provides useful 
information about regular travel patterns, day-to-day es-
timation of mobility patterns allows better understanding 
of pattern variability over time (Alsger et al. 2018). This is 
highly expected that mobility patterns differ for weekdays 
and weekends, as well as for different seasons, weather 
conditions, etc. Thus, the most interesting aspect of PT de-
mand variability is mobility pattern changes within groups 
of similar dates. For example, from practical point of view, 
it can be interesting to identify changes of mobility pat-
terns for summer weekends with good weather condi-
tions – for improving PT service at these specific dates (for 
PT operators) or for monitoring inhabitant behaviour and 
preferences as a result of local policies and investments 
(for municipal governments). This grouping can be hard-

Figure 2. Typical mobility patterns for a selected bus route
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coded (e.g., split working days and public holidays), but, 
taking into account a large number of factors that affect 
PT demand, it would be beneficial to apply a data-driven 
approach to the problem. In this study, a clustering tech-
nique was applied for identification of dates with similar 
daily mobility patterns and further analysed within-cluster 
variability over the research period.

2.4.1. Clustering sample dates by mobility patterns 
The daily mobility pattern is represented by a set of vec-
tors, and, as any clustering technique requires specifica-
tion of a distance metric, a custom similarity metric for 
two vector sets was introduced. A distance between two 
mobility vectors can be naturally estimated using any 
technique from a wide range of vector similarity metrics: 
Euclidean distance, cosine similarity, etc. The problem is 
related to absence of links between mobility vectors in pat-
terns for two days: there is no prior information about the 
matching of mobility vector pairs between two dates. This 
matching is required for measuring the total similarity be-
tween mobility patterns of two dates. To solve this prob-
lem, application of the minimum-cost bipartite matching 
algorithm was proposed:

 – mobility vectors of two days are matched to mini-
mize the sum of pairwise similarities;

 – resulting cost of matching is used as a distance metric 
between daily mobility patterns.

The minimum-cost bipartite matching is a classical 
combinatorial problem that can be solved by any well-
known algorithm. In this study, the classical Hungarian 
method was applied. Results of mobility vector matching 
are illustrated in Figure 3.

Having the distance metric for daily mobility patterns, 
a matrix of distances can be constructed and the sample 
dates can be clustered to groups of similar mobility pat-
terns for further analysis.

2.4.2. Estimation of within-cluster  
variability of mobility patterns

One of the key issues of city transport policy planning is 
variation of mobility patterns over the time (Alsger et al. 
2018). PT authorities evaluate and adjust their current 
services following the changing demand. Usually a PT 
operator supports several schedules that applied for days 
with different mobility patterns. Thus, within-cluster vari-
ability of daily mobility patterns plays an important role 
and needs to be estimated. Mobility pattern variability is 
estimated by applying temporal moving average values of 
within-cluster distances over the sample to monitor and 
analyse trends and temporal variation of mobility patterns.

The research methodology is summarised in Figure 4.
There are several distinguishing features of the pre-

sented methodology:
 – due to the disaggregated smart card and scheduling 
databases and absence of information on actual PT 
locations, the methodology includes the custom data 
fusion stage;

 – the methodology considers daily mobility patterns 
as sets of non-fixed vectors. The majority of exist-
ing PT studies deal with mobility patterns from one 
of prespecified perspectives: spatial (distributions of 
boarding or alighting), temporal (daily time series of 
trips), or fixed vectoral (TAZ-based flows). The pro-
posed definition of daily mobility patterns is more 
flexible, requires less assumptions and could better 
reflect actual PT demand;

 – the methodology suggests the data-driven approach 
to discovering similarities between daily mobility pat-
terns (for further clustering). The approach is based 
on the minimum-cost bipartite matching algorithm 
and, to the best of our knowledge, was not previously 
applied to urban mobility patterns’ analysis;

Figure 3. Illustration of minimum-cost bipartite matching results for mobility patterns of two dates
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Figure 4. Stages of the research methodology
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 – the methodology covers the complete cycle of smart 
card data processing – from raw validation database 
to daily mobility patterns and their variability. Al-
though best practice methods are applied at every 
stage, all of them are based on background assump-
tions and are subject to errors. The error is naturally 
accumulated during several consecutive stages, so the 
utility of the combination of best practices should be 
proved. 

3. Case study

This study utilizes data from the Riga urban PT opera-
tor Rīgas Satiksme (https://www.rigassatiksme.lv) and its 
subsidiary Rīgas Karte Ltd. (https://rigaskarte.lv) that 
manages smart card operations. The PT in Riga runs a 
distance of about 45 million km and carries nearly 150 
million passengers per year. Smart cards (called e-tickets) 
are universal electronic tickets that manage payments for 
PT services. They were fully introduced into the Riga PT 
in 2009 and they are valid for all PT modes, except sub-
urban trains. Electronic validators are located in PT vehi-
cles and register passengers paying for the trip. Passengers 
entitled to fare discounts also have to register their trips. 
Each validation record contains temporal (date and time), 
transport (PT route and direction), and fare information, 
which is collected at the boarding timestamp only.

A topology of the Riga PT system and distribution 
of served passenger flows by transport mode are pre-
sented in Figure 5. The research data set includes smart 
card validation records from 2018, except special public 
holidays when PT trips are not charged (e.g., New Year’s 
Day, Midsummer) and several days where information is 
missed due to technical reasons. Thus, the data set covers 
315 days with complete information. The overview of the 
research area and the data set is presented in Table 1.

The primary source of data is the smart card validation 
database, obtained from the Riga urban PT operator. The 
structure of the database is common and similar to data of 
other cities (Welch, Widita 2019). An example of valida-
tion records is presented in Table 2.

Note, that the smart card database contains only 
temporal information about validation. Although all PT 
transports are equipped with Global Positioning System 
(GPS) sensors, the smart card validation database is com-
pletely separate and does not contain any geographical 
(spatial) information. In addition, there is no information 
about PT runs (start and end times, stop times) in the 
database, which creates additional problems for enhanc-
ing data with spatial information. It should be mentioned 
that the database is not consistent enough and contains 
data errors, which should be identified and resolved. One 
of the popular errors is an absence of direction switching 
within a PT run, e.g., data indicate that a transport goes 
“forward” direction for several hours, which is impossible 
for the Riga PT system. These errors are ones of the back-
ground reasons for introducing a custom PT run match-
ing rules – Equation (3).

The first stage of the methodology includes a fusion of 
smart card validation data within historical scheduling in-

Figure 5. PT system of Riga (bus routes are coded as blue, tram routes as red, and trolleybus routes as green):  
a – topology of the PT of Riga; b – monthly dynamics of number of served passengers in 2018
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Table 1. Description of the research area and data set

Settings Value
Research area Riga (Latvia)
Research area population 615 thousand inhabitants

Number of PT routes 84, including 55 bus, 19 trolleybus 
and 10 tram routes

Number of PT stops 1675
Time frame 1 January – 31 December 2018
Number of passengers ~124 million

https://www.rigassatiksme.lv
https://rigaskarte.lv
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formation, estimation of boarding stops and construction 
of individual trip vectors. Following the best practices, 
presented in Section 2, a set of trip vectors was obtained 
for every date in the sample. Summary statistics for inter-
mediate steps of this stage are presented in Table 3.

The stage results were validated against smart card 
records of two passengers with known routes (734 vali-
dations at total) and demonstrated completeness of 67%. 
Missed trip vectors are mainly related to inconsistent in-
formation between smart card and scheduling databases 
(e.g., actual PT runs that cannot be confidently matched 
to scheduled). Smart cards with only one validation for 
a given date were excluded from consideration. Due to 
these reasons, the trip vectors to smart card validations 

ratio resulted in 42…43% (the last column in Table 3) and 
uniformly distributed by seasons, weekdays and day times.

Trip vectors, obtained at the first stage, are clustered 
into daily mobility patterns. Figure 6 presents an exam-
ple set of trip vectors for a smart card and a typical daily 
mobility pattern.

Discovered daily mobility patterns are represented by a 
set of vectors of origin, destination (marked by red circles 
in Figure 6), average time of the day (labels), and flow vol-
ume (width of lines). Daily mobility patterns provide an 
extensive information on PT demand and can be used for 
construction and calibration of OD matrixes and making 
tactical decisions of PT scheduling. Different approaches 
to clustering were tested, including different distance met-

Table 2. Example validation records

Transaction date, time Route ID Run direction Card ID Card type Transport ID
2 January 2018, 05:27:08 bus_3 forward 2030603xxx 10 one-hour tickets 544189912
2 January 2018, 05:28:07 tram_1 forward 6400065xxx daily 386483920
2 January 2018, 05:21:11 tram_1 forward 2565066xxx monthly 983736630

Table 3. Summary statistics of trip vector construction steps

Weekday Smart card validations  
(daily average)

Validations with matched  
PT runs

Trip  
vectors

Trip vectors to 
validations ratio

Monday 417679 323711 179900 0.4307
Tuesday 449695 348914 196328 0.4366
Wednesday 461946 358751 202423 0.4382
Thursday 466666 362378 204147 0.4375
Friday 451185 348514 193041 0.4279
Saturday 263355 207657 114021 0.4330
Sunday 209492 164457 88966 0.4247

Figure 6. Typical individual trip vectors (a) and a daily mobility pattern (b) – destinations are marked with red circles;  
flow volumes presented by vector widths

a) b)
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rics and algorithms. The results are fairly similar, so for 
brevity reasons the following discussion is presented for 
one solution only  – Euclidean distance-based k-means 
algorithms, executed separately for morning and evening 
rush hours, midday, and “return” trips (where exact alight-
ing times are unknown). 

The primary interest of this study is the variability of 
daily mobility patterns over the year. Daily mobility pat-
terns are highly expected to be different for weekdays and 
weekends, so variability should be investigated within 
similar groups of days. The proposed methodology al-
lows unsupervised identification of these groups by the 
introduction of a distance metric between daily mobility 
patterns and the application of a clustering algorithm. This 
approach makes the methodology more flexible, com-
paratively to predefined grouping criteria. The distance 
metric is based on the minimum-cost bipartite matching 
algorithm and described in Section 2; for clustering the k-
means and hierarchical agglomerative algorithms were ar-
bitrary chosen (further results relate to the k-means clus-
tering). Number of clusters were identified on the of the 
gap statistics and the average silhouette width (Figure 7). 

The two-cluster solution is fairly trivial  – daily pat-
terns for weekends and public holidays are recognised 
and grouped into one of the clusters. The three-cluster 
solution is more informative, so further only this solution 
is discussed. 

Table 4 includes distribution of weekdays over the 
three-cluster solution.

Cluster 1 contains only weekends and public holidays, 
including local events (Riga City festival and Folklore fes-
tival). Clusters 2 and 3 consist of weekdays of two patterns. 
For discovering background reasons for splitting weekdays 
into two clusters, the distribution of cluster components 
over the seasons is considered (Table 5). 

The first pattern is more typical for the summer season 
(43 of 52 summer weekdays belong to this cluster), while 
for other seasons cluster volumes are similar. One possible 
explanation of this fact is an effect of longer daylight time 
and good weather. During summer, this is more typical to 
visit natural attractors like sea and river beaches, forests, 
and smallholdings after or before regular working hours. 
Deeper analysis of differences between Cluster 2 and 3 
days is required for better understanding of mobility pat-
terns and fitting the PT supply.

Finally, the moving average technique is applied for 
analysis of mobility trends within-clusters (Figure 8).

Overall within-cluster distance has the lowest values 
for Cluster 1 (weekends/public holidays) and the high-
est values for Cluster 2 (typical for non-summer week-
days). In addition, higher variability within all clusters is 
observed during summer season. The higher variability 
that observed for all clusters at summer months are fairly 
explainable by tourists flows and vacations. Frequently, 

Table 4. Distribution of weekdays between the clusters

Cluster number Cluster given name Monday Tuesday Wednesday Thursday Friday Saturday Sunday
1 Weekends and public holidays 6 2 1 0 2 43 42
2 Weekdays, pattern 1 12 19 23 18 16 0 0
3 Weekdays, pattern 2 27 25 22 29 27 1 0

Table 5. Distribution of weekday cluster components over the seasons

Cluster number Cluster given name Winter 
(December–February)

Spring 
(March–May)

Summer 
(June–August)

Autumn 
(September–November)

2 Weekdays, pattern 1 25 27 9 27
3 Weekdays, pattern 2 31 34 43 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 2 3 4 5 6 7 8 9 10
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Figure 7. Gap statistics and average silhouette width charts for mobility patterns clustering
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the most important issues of PT demand are associated 
with anomalies in its dynamics. For example, there is a 
higher variation in Cluster 2 (weekdays) during February 
and March, which do not have straightforward reasons. 
A one-year dataset is not sufficient for confident conclu-
sions on anomalies or trend breaks, but it can be stated 
that ongoing monitoring of corresponding dynamics will 
allow decision makers to observe effects of strategic de-
cisions like introducing of new regulations toward green 
transport and sustainable city development.

Reproducibility of the study. Although the case study 
data set is closed by the confidentiality agreement, im-
plemented routines (R source codes) for all proposed 
algorithms and procedures were publicly provided at 
https://github.com/DmitryPavlyuk/postdoc?Transport2020.  
Due to a high similarity of smart card data sets for cities 
over the world and high availability of scheduling data in 
GTFS format, these routines could be helpful for repro-
ducing the case study in other geographical settings.

4. Discussion

The added value of this study splits into practical benefits 
for the PT system of Riga and methodological advances of 
smart card data analysis. Most important practical results 
include: 

 – obtained daily mobility patterns that can be used for 
city-level PT OD matrix estimation that is useful in 
many applied areas, e.g., dynamic passenger flow as-
signment models;

 – mobility pattern-based clustering of days allows ef-
fective comparison and flexible tuning of the PT 
system for different days of a week (weekdays, week-
ends), public holidays, extreme weather conditions, 
and large events;

 – dynamics of mobility patterns allows estimating the 
effect of implementing changes (e.g., fare increase or 
road maintenance) and demand forecasting for user-
focused development of PT system.

Summarising the case study results, its potential ben-
efits at tactical, operational, and strategic levels should be 
underlined. At the tactical level, obtained mobility pat-
terns could be used for PT service adjustment. The Riga 
PT operator keeps separate schedules for weekdays and 
weekends and adjusts schedules on a seasonal basis and 

Figure 8. Variability of mobility pattern clusters (within-cluster distances, smoothed by moving average)

for large events. Information about mobility patterns al-
lows them better tuning of schedules to match day-spe-
cific user needs. At the operational level, the information 
is useful for obtaining precise performance indicators on 
a transit network, e.g., schedule adherence and consist-
ency of fares. Following the proposed methodology, actual 
mobility patterns could be estimated at the end of a day 
and compared with the expected ones; significant devia-
tion of actual and expected patters could be considered 
as an informative signal about potential operational prob-
lems. Long-term dynamics of mobility patterns are the 
most beneficial at the strategic level: better understanding 
of user behaviour and forecasting of its dynamics allows 
advanced improvements of the PT system, its extension 
and adaptation to passenger needs. 

In addition to these benefits, the added value of this 
study includes the methodological component: the de-
veloped methodology allows providing the dynamic in-
formation about mobility patterns and their fluctuation 
over space and time almost in real-time. The methodology 
incorporates estimation of individual trip vectors (origin 
and destination spatial points), clustering of trip vectors 
into spatiotemporal mobility patterns, and further analysis 
of mobility patterns’ dynamics. As smart card data are eas-
ily available, the methodology provides an easy and cheap 
tool for observing and managing of PT demand fluctua-
tion on a daily basis. 

The case study, presented in this paper, does not spec-
ify and utilise any clusters of passengers. The smart card 
database contains information about a card type (one-
hour tickets, daily or monthly tickets, subsidised tickets), 
and the information can be even more enhanced with 
social and demographic data of personalised tickets. This 
information can be naturally used for passenger cluster-
ing and deeper analysis of their PT travel behaviour and 
changes of mobility patterns.

Although application of the composed methodology 
was successful and lead to beneficial results for our case 
study, several problems, which should be addressed by 
involved parties, were identified. Firstly, this is necessary 
to implement data fusion of scheduling and validation 
databases for obtaining spatiotemporal information. This 
step introduces new levels of uncertainty into the prepared 
data and could affect results and conclusions. At the same 
time, all PT vehicles in modern cities are equipped with 
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GPS sensors, which allow adding enhancing every smart 
card validation or, at least, every executed PT stop with 
geographical information. Such integration of on-board 
PT equipment is technically simple and not costly, so 
smart card operators are recommended to introduce this. 
This integration will be beneficial not only for analysis of 
mobility patterns, but also will help with implementation 
of other modern PT services like online information about 
loading of PT vehicles and a provided level of service. Sec-
ondly, the composed methodology includes several stages: 
from identification of boarding location to construction 
of mobility patterns. Many existing studies are focused on 
method development for a selected stage (e.g., identifica-
tion of boarding stop locations), without its links to other, 
more general problems. Although development of such al-
gorithms is beneficial, we recommend to consider their 
efficiency not within a scope of one stage, but as a stage 
of a specific practical problem solving. For example, an al-
gorithm that provides better identification of an alighting 
stop in average (have a higher accuracy value) will be less 
efficient as a stage of a practical problem solving due to a 
bias in incorrectly identified locations or its strict require-
ment for a precise boarding location. Thirdly, it was dem-
onstrated that the methodology of PT demand estimation 
could be flexible and data-driven, and does not necessarily 
require definition of TAZ as an input. This user-centred 
approach to zoning, based on real PT passenger flows and 
travel demand, seems to be more dynamic and informa-
tive for stakeholders and does not require a costly manual 
definition and updating process. 

Conclusion and future work

The paper is devoted to a case study of spatiotemporal 
aspects of PT demand. The composed methodology of 
the study includes several stages, namely: fusion of in-
formation from the scheduling and smart card databases; 
identification of boarding locations; estimation of mobility 
vectors, based on the trip chain approach; construction of 
mobility patterns by clustering mobility vectors; clustering 
of dates on the base of a custom mobility pattern similar-
ity definition; analysis of spatiotemporal mobility pattern 
dynamics within similar date clusters over the research 
period. The composed methodology was implemented as 
a publicly available software and allowed estimation and 
analysis of daily mobility patterns, which is beneficial at 
tactical, operational, and strategic levels.

There are a lot of opportunities for further methodo-
logical enhancements. The share of trip vectors, success-
fully recognised from smart card validation data, is fairly 
low (42…43%) and could be improved by integrating 
smart card and scheduling databases with PT vehicles’ 
location information; estimating of destinations for one-
time smart cards; and extracting regular routes of individ-
ual passengers. The proposed methodology highly requires 
an additional attention to validation of obtaining practical 
results using other sources of PT demand information like 

passenger surveys and observational studies. In addition, 
discovered mobility patterns and their dynamics require 
a deeper analysis for providing recommendations to PT 
operators and authorities. All mentioned issues are con-
sidered as limitations of the current study and as future 
steps to its practical application in Riga. Finally, taking 
into account the high similarity of smart card data sets 
for cities over the world, the proposed methodology and 
its software implementation can be adopted for analysis of 
spatiotemporal PT demand in other cities.
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