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Abstract. The accurate short-term traffic flow forecasting is fundamental to both theoretical and empirical aspects of 
intelligent transportation systems deployment. This study aimed to develop a simple and effective hybrid model for 
forecasting traffic volume that combines the AutoRegressive Integrated Moving Average (ARIMA) and the Genetic 
Programming (GP) models. By combining different models, different aspects of the underlying patterns of traffic flow 
could be captured. The ARIMA model was used to model the linear component of the traffic flow time series. Then the 
GP model was applied to capture the nonlinear component by modelling the residuals from the ARIMA model. The 
hybrid models were fitted for four different time-aggregations: 5, 10, 15, and 20 min. The validations of the proposed 
hybrid methodology were performed by using traffic data under both typical and atypical conditions from multiple 
locations on the I-880N freeway in the United States. The results indicated that the hybrid models had better predic-
tive performance than utilizing only ARIMA model for different aggregation time intervals under typical conditions. 
The Mean Relative Error (MRE) of the hybrid models was found to be from 4.1 to 6.9% for different aggregation time 
intervals under typical conditions. The predictive performance of the hybrid method was improved with an increase in 
the aggregation time interval. In addition, the validation results showed that the predictive performance of the hybrid 
model was also better than that of the ARIMA model under atypical conditions.
Keywords: short-term traffic-forecasting; hybrid model; ARIMA; genetic programming.

Introduction 

The development of the dynamic freeway traffic man-
agement systems has prompted the research for proac-
tive traffic management strategies to mitigate traffic con-
gestion on freeways. Toward this goal, a large amount of 
studies have applied an extensive variety of time-series 
models to produce short-term traffic variables forecast-
ing, such as traffic volume, traffic speed, travel time, etc. 
(Hamed et al. 1995; Vlahogianni et al. 2005; Ghosh et al. 
2005, 2007; Chandra, Al-Deek 2009; Chen et al. 2012; 
Hamad et  al. 2009; Wang, Shi 2013). The short-term 
traffic-forecasting models were developed to extrapolate 
traffic variables into the near-term future based on the 
past observations of the same traffic variables measured 
with traffic surveillance systems (Smith et al. 2002; Vla-
hogianni et  al. 2005, 2007; Turochy 2006; Zhang, Xie 
2008; Zhang, Ye 2008; Dimitriou et  al. 2008; Huang, 
Sadek 2009; Hamad et al. 2009; Min, Wynter 2011; Chen 

et al. 2012; Dunne, Ghosh 2012; Wei, Chen 2012; Wang, 
Shi 2013). One of the practical applications of the short-
term traffic-forecasting models is to help travellers select 
their travel routes or plan their trips in advance based 
on real-time traffic information. It can also help to de-
velop proactive traffic management strategies for traffic 
congestion prevention and mitigation.

Over the past several decades, much effort has 
been devoted to the development and improvement of 
forecasting short-term traffic variables. Of the conven-
tional statistical methods, the AutoRegressive Integrated 
Moving Average (ARIMA) family of models has been 
extensively utilized in constructing the forecasting mod-
els (Hamed et al. 1995; Williams 2001; Smith et al. 2002; 
Williams, Hoel 2003; Ghosh et al. 2005, 2007; Chandra, 
Al-Deek 2009). For example, Hamed et al. (1995) em-
ployed ARIMA to develop a model for short-term pre-
diction of traffic volume in urban arterials. Smith et al. 
(2002) compared the predictive performance of the 
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ARIMA model and the nearest neighbour technique in 
forecasting traffic flow on highway. The results demon-
strated that the ARIMA model produced better predic-
tive performance than the nearest neighbour technique 
did. Ghosh et al. (2007) used the Bayesian ARIMA 
model in developing a short-term traffic flow-forecast-
ing model. It was found that the Bayesian model could 
better match the traffic behaviour of extreme peaks and 
rapid fluctuation. However, the major limitation of the 
ARIMA model is the pre-assumed linear correlation 
structure among the time series values. The approxima-
tion of linear models to complex real-world problems is 
not always adequate (Zhang 2003; Aladag et al. 2009). 
Previous studies also suggested that the linear statistical 
algorithm was not adequate to capture the complicated 
process underlying traffic (Hamed et al. 1995; Williams 
2001; Stathopoulos, Karlaftis 2003).

In response to the limitations associated with the 
conventional statistical methods, a number of studies 
have proposed non-parametric methods and artificial 
intelligence models for developing short-term traffic 
flow forecasting models. These models include Artificial 
Neural Network (ANN) model (Smith, Demetsky 1997; 
Zhang 2000), recurrent neural networks (Van Lint et al. 
2002), genetically optimized neural networks (Vlahogi-
anni et al. 2005, 2007), Support Vector Machine (SVM) 
prediction model (Vanajakshi, Rilett 2004; Zhang, Xie 
2008), and wavelet network model (Xie, Zhang 2006). 
Although these models could capture the nonlinear pat-
tern of traffic flow and produce better predictive perfor-
mance than conventional statistical methods, the major 
limitation associated with these models is that these 
models work as black boxes, which cannot be directly 
used to identify the relationships between input vari-
ables and output variable by a mathematical equation. 

This study aimed to propose a simple and effective 
hybrid model for forecasting traffic volume that com-
bines the ARIMA model with Genetic Programming 
(GP). Combining these two models could enhance the 
possibility to capture the linear and nonlinear patterns 
within traffic flow data and to improve the predictive 
performance. Previous studies also suggested that com-
bining different models could improve the prediction 
accuracy over the individual model (Zhang et al. 2011; 
Wang, Shi 2013). GP is a relatively new modelling tech-
nique, which was proposed to solve the classification 
and regression problems. The GP model is an evolution-
ary computation method introduced by Koza (1992). In 
recent years, GP model has gained considerable atten-
tion in transportation engineering for regression (Das 
et al. 2010) and classification analyses (Xu et al. 2013). 
The GP model has two major advantages over the tra-
ditional statistical regression and artificial intelligence 
models. First, with GP model, there is no need to specify 
any pre-specified functional forms. The solutions of the 
GP model can be any functional forms describable by 
mathematics. The GP model could select the best func-
tional form for the solution to the problem based on the 
features presented from the data. Second, in contrast to 
the ‘black box’ solutions in artificial intelligence models, 
the solution of the GP model is an easily readable math-

ematical model, which defines the tangible relationship 
between input variables and output variable. This allows 
the results of GP models to be easily applied in practical 
engineering applications. In addition, previous studies 
also suggested that the GP model could produce bet-
ter predictive performance over the traditional methods 
(Ong et al. 2005; Lensberg et al. 2006; Etemadi et al. 
2009; Lee, Tong 2011). So far, no applications of the GP 
model for short-term traffic flow forecasting have been 
identified by the authors.

1. Methodology

The basic principles and modelling process of the ARI-
MA and GP models are summarized in the following as 
the foundation to describe the hybrid model.

1.1. The ARIMA Model 
The ARIMA model was introduced by Box and Jenkins 
(1976). The Auto Regressive Moving Average (ARMA) 
has been widely used in forecasting time series. In an 
ARMA(p, q) model, the value of the time series in the 
next period is assumed to be a linear function of several 
past observations and random errors, as represented in 
the following:
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where: y(t) and ε(t) denote the actual value and random 
error at time period t, respectively; fi (i = 1, 2, …, p) and 
θj (j = 0, 1, 2, …, q) are the parameters of the model; p 
and q are integers and referred to as the orders of the 
autoregressive terms and moving average terms; εt are 
assumed to be white Gaussian noise. 

After calibrating the model parameters fi and θj 
using specific sampled data, the one-step forecast of y(t) 
can be estimated as:
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where: ( ) ε E t  is the expected value of white Gauss-
ian noise, i.e., ( ) ε =  0E t ; θj (j = 0, 1, 2, …, q), ϕi(i = 
1, 2; …, p) are the estimated parameters of the ARMA 
model; ( )−y t i  are the known historical traffic vol-
ume data; and ( )−ŷ t i  are the predicted volume of the 
ARMA model.

The ARIMA model is a generalization of the 
ARMA model. In an ARIMA(p, d, q) model, the param-
eter p and q are the same to those in the ARMA model. 
The parameter d represents the d-th order difference of 
the original data series, which aims to remove the trend 
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from the data series. By introducing the backshift opera-
tor B (that is, ( ) ( )= −1By t y t ), the Eq. (1) for ARMA(p, 
q) can be written as:

( ) ( ) ( ) ( )− φ − − φ − − − φ − =1 21 2 ... py t y t y t y t p

( ) ( ) ( ) ( )( )θ + ε − θ ε − + θ ε − + + θ ε − ⇒0 1 21 2 qt t t t q

( ) ( ) ( ) ( )φ = θ + θ ε0B y t B t ,                                   (3)

where: ( )φ B  is the autoregressive operator which is 
represented as a polynomial in the backshift operator: 
( )φ = − φ − φ − − φ2

1 21 ... p
pB B B B ; ( )θ B  is the moving-

average operator, represented as a polynomial in the 
backshift operator: ( )θ = θ θ − − θ2

1 21– – ...  q
qB B B B . 

Similarly, the ARIMA model can be written as:

( )( ) ( ) ( ) ( )′ ′ ′ ′φ − = θ + θ ε01 dB B y t B t ,  (4)

where: d represents the degree of non-seasonal differenc-
ing; ( )′φ B  and ( )′θ B  are the autoregressive and moving-
average operators for the ARIMA model, respectively. In 
the ARIMA model, the d-th order difference of the data 
series, ( ) ( )−1 dB y t , is used for forecasting, instead of 
the original data series y(t).

1.2. The GP Technique 
The GP model is an evolutionary computation method 
introduced by Koza (1992). The GP model can be used 
to generate mathematical models, which represent ap-
proximate or exact solutions to a problem (Koza 1992). 
It can be considered as an extension of the genetic al-
gorithms (GA). The main difference between GP and 
GA is the representation of individuals. The individu-
als in a GA model are numbers coded as fixed-length 
binary strings, while the individuals in a GP model are 
mathematical models coded as function trees (Koza 
1992; Xu et al. 2013). An example of function tree in GP 
model is given in Fig. 1. The inner nodes represent the 

mathematical functions such as ‘+’ and ‘÷’, and the leaf 
nodes represent the predictors and constants. The left 
most tree in Fig. 1 represents the mathematical model 
( ) ( ) ( ) = + ⋅ ÷ , , log 0.2f X Y Z X Y Z . In a particular 

problem, the list of functions and predictors should be 
specified. The mathematical models in GP are generated 
from the pre-specified set of functions and predictors.

In general, GP works on a population of mathe-
matical models (individuals) based on evolution theory. 
In each generation, multiple models are stochastically 
selected based on their fitness, and modified to form a 
new population of models by genetic operations. The 
new population of models is then used in the next itera-
tion of the algorithm. A GP model will stop when the 
predetermined maximum number of generations has 
been produced or the predetermined fitness level has 
been reached for the population. The evolution process 
is expected to produce continuously a better model for 
a problem.

The new models in a GP model are usually created 
by three genetic operators, including crossover, muta-
tion, and reproduction. The reproduction operator sim-
ply selects a proportion of models and includes them 
into the next generation without any alterations. The 
creation of new or offspring models from the crossover 
operation is accomplished by combining information 
extracted from the selected parents. Two parent models 
are randomly selected based on their fitness level and 
sub-trees are chosen from both parent models. Then 
the crossover operator swaps the sub-trees from the two 
parent models. Fig. 1 illustrates an example of crossover 
operation. 

The purpose of mutation operator is to introduce 
new information into the population and avoid the pre-
mature convergence of a GP model. In mutation opera-
tion, a single parent is randomly selected based on its 
fitness level. A random sub-tree on the parent model is 
selected and replaced with a new random tree created 
from the pre-specified set of predictors and functions 
(Fig. 2). In the procedure of generating a random tree, 
the node at the initial tree depth level is first random-
ly chosen from the set of functions. Then its children 
node(s) are randomly chosen between functions set and 
predictors set. The random tree will stop growing when 
reaching the maximum tree level. Readers may consult 
Koza (1992) for full description of this procedure.

Fig. 1. Crossover operation in GP Fig. 2. Mutation operation in GP
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The fitness function of a GP model determines how 
well a model in the population is able to solve the prob-
lem. The fitness function varies greatly across different 
types of problems. The fitness function is usually devel-
oped based on the error between the values predicted 
by the model and the actual data. In this study, a fitness 
function for short-term traffic flow forecasting was de-
veloped based on the Mean Absolute Error (MAE). As-
suming a dataset ( ) ( ) ( ){ }= …1 1 2 2, , , , , ,a mS y x y x y x  of 
input variables xi for output variable yi, the functional 
form of the fitness function is expressed as follows:

( ) ( )
=

= −∑
1

1 m

j j i i
i

F B B x y
m

,  (5)

where: F(Bj) denotes the fitness of the j-th model Bj in 
the population; Bj(xi) is the value calculated by the j-th 
model Bj in the population.

The GP model uses the following steps to solve 
problems:

(a) initialization – create at random an initial pop-
ulation of M models;

(b) execute each model in the current population 
on training dataset and evaluate the fitness of 
each model in the current population;

(c) select the parent models, which will be used to 
produce offspring models;

(d) select the reproduction, crossover, and muta-
tion operators probabilistically;

(e) generate a new model by performing one of the 
three genetic operators;

(f) repeat step (c) to step (e) until the predeter-
mined population size M has been reached;

(g) replace the M old models by new generated M 
models; 

(h) repeat step (b) to step (g) until the prede-
termined maximum generation N has been 
reached.

The model with the best fitness level in any genera-
tion is designated as the result of GPs.

1.3. The Hybrid Methodology Based  
on ARIMA and GP 
Since it is difficult to completely know the characteristics 
of the traffic volume time series data, hybrid methodol-
ogy that has both linear and nonlinear modelling capa-
bilities can be a good strategy. By combining different 
models, different aspects of the underlying patterns of 
traffic flow may be captured. This study proposed a hy-
brid model that combines ARIMA for modelling the lin-
ear component Lt of traffic flow time series and the GP 
for modelling the nonlinear component Nt, as follows:

( ) = + + ξt t ty t L N ,  (6)

where: y(t) represents the actual value at time period 
t; Lt and Nt denote the linear component and nonlin-
ear component of the model respectively; ξt denotes 
the random error term. The residuals from the ARIMA 
model (rt) were calculated as follows:

( )= − ˆ
t tr y t L ,  (7)

where: ˆ
tL  is the predicted value of Lt, which is estimat-

ed using the ARIMA model. By modelling the residu-
als from the ARIMA(rt) using the GP model, nonlinear 
relationships can be discovered. With n input variables, 
the GP model for the residuals rt can be written as:

( )− − −= + ξ1 2, , ,t t t t n rtr f r r r ,  (8)

where: ξrt denotes the random error term; 
( )− − −1 2, , ,t t t nf r r r  represents the nonlinear function 

constructed using the GP model. Using the GP model 
to construct the nonlinear component of time series can 
generate a mathematical equation than ANN and SVM 
model. Thus, in practice, the predicted values using GP 
can be verified through the mathematical equation. 
The estimation of the residuals rt can be determined by 
Eq. (8). Then the predicted values of the time series are 
estimated as follows:

( ) = +ˆ ˆˆ t ty t L N .  (9)

The proposed hybrid approach uses the following 
steps to forecast traffic flow:

1) Model the linear component of the time series 
using ARIMA model, and estimate ˆ

tL  using 
ARIMA model.

2) Calculate the residuals from the ARIMA model 
using Eq. (7), and model them using the GP 
model in Eq. (8). The nonlinear component ˆ

tN  
are the predicted values of the developed GP 
model in Eq. (8).

3) Estimate the forecasts of the hybrid model by 
adding the predicted values of the ARIMA and 
GP model.

2. Data Sources and Evaluation Criteria 

Data were obtained from the highway Performance 
Measurement System (PeMS) maintained by the Califor-
nia Department of Transportation (Caltrans), US. The 
PeMS database provided 30-sec raw loop detector data, 
including vehicle count, vehicle speed, and detector oc-
cupancy. The traffic data were collected from the Detec-
tor 401561 (Site A) and Detector 401517 (Site B) located 
on the northbound freeway I-880 (Fig. 3). The freeway 
has five lanes at the selected sites. The 30-sec raw traffic 
data were collected from all the five lanes. As shown in 
Fig. 3, the selected two detectors are far away from each 
other and have a number of ramps in between. Thus, the 
traffic data collected at the two sites are considered to 
have low correlations. The PeMS database also provides 
the detailed traffic incident data, including incident type, 
starting time, location and duration.

As discussed in Stathopoulos and Karlaftis (2003), 
Dunne and Ghosh (2012), and Chen et al. (2012), the 
traffic flow series recorded on weekdays were substan-
tially different from those recorded on the weekends or 
holidays. The prediction models for weekday might pro-
duce unsatisfactory results for traffic data on weekends. 
Thus, for consistency purposes, this study only focuses 
on the weekday traffic flows. 
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The missing data problems are unavoidable in traf-
fic flow data. Previous studies suggested that the miss-
ing data problem greatly affected traffic analysis (Zhong 
et al. 2004; Xin et al. 2006; Qu et al. 2009; Chen et al. 
2003, 2012). The missing data should be imputed be-
fore developing the traffic-forecasting model. Different 
statistical methods and artificial intelligence models 
have been used for missing data imputation, such as, 
the Bayesian networks (Chen et al. 2003), the Bayes-
ian principal component analysis (Qu et al. 2009), the 
ANN (Zhong et al. 2004), and the Probabilistic Principal 
Component Analysis (PPCA) (Qu et al. 2009). Since the 
PPCA can quickly produce accurate imputations (Qu 
et al. 2009), the PPCA was used in this study to impute 
the missing values in the dataset. The PPCA also has the 
advantage of appropriate combing both neighbouring 
historical flow data and current-day flow data (Qu et al. 
2009). The reader may consult Oba et al. (2003) and Qu 
et al. (2009) for full description of the PPCA method.

The measurement noises and useless traffic fluc-
tuations in the high-resolution traffic data (lower than 
1 min) can decrease the predictive performance of the 
prediction models (Castro-Neto et al. 2009; Chen et al. 
2012). Accordingly, the 30-sec raw detector data was 
first aggregated into 5-min traffic data by summing up 
the 10 observations of the 30-sec traffic volumes:

=
=∑

1

n

i
i

y q ,  (10)

where: y denote the aggregated traffic volume; qi rep-
resent the average traffic volume across different lanes; 
n represent the number of observations during the ag-
gregation time interval. If there are any missing values 
of the 30-sec traffic volume during a 5-min interval, the 
traffic volume for this 5-min interval was labelled as a 
missing value. The PPCA method was conducted on 

the 5-min traffic data to impute all the missing values 
within it. The imputed 5-min traffic data were further 
aggregated into 10-min, 15-min and 20-min time inter-
val using Eq. (10). The proposed hybrid models were 
fitted for these four different time-aggregations: 5, 10, 
15, and 20 min.

Previous study suggested that the traffic flow pre-
diction model developed by normal traffic data may 
produce poor predictive performance when incidents or 
atypical situations are present (Castro-Neto et al. 2009; 
Guo et al. 2013). Hence, the predictive performance of 
the proposed hybrid model was evaluated with traffic 
data under both normal conditions (Scenario 1) and in-
cident conditions (Scenario 2). In Scenario 1, the used 
traffic flow data were not significantly affected by inci-
dents, such as crashes. The traffic flow data at Sites A 
and B were collected from 1 May 2012 to 1 June 2012. To 
achieve more reliable and accurate estimations, a long 
period of traffic flows were selected as training dataset 
(Zhang et al. 2011). The traffic flow data from the week-
days in May 2012 were used as the training dataset and 
the traffic flow data on 1 June 2012 were used as the 
validation dataset for Scenario 1. Table 1 summarizes 
the descriptive statistics of the training and validation 
dataset for Scenario 1 based on the 30-sec traffic data. 

In Scenario 2, the traffic data under incident condi-
tions were collected to test the predictive performance of 
the proposed hybrid model under incident conditions. 
The only difference between Scenarios 1 and 2 was that 
the validation dataset for Scenario 2 contained the traffic 
flow data under incident conditions. The predictive per-
formance of the models developed based on the training 
dataset in Scenario 1 was tested on the validation dataset 
for Scenario 2. Table 2 summarizes the descriptive statis-
tics and characteristics of the traffic data under incident 
conditions in Scenario 2.

To compare the predictive performance of the ARI-
MA and the proposed hybrid model, the following four 
performance indexes were used:

1) the Mean Absolute Error (MAE):

( ) ( )
=

= −∑
1

1 ˆ
m

t
MAE y t y t

m
;  (11)

2) the Mean Relative Error (MRE):
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 −
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y t y t
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Fig. 3. Study sites of freeway I-880N
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Table 1. Descriptive Statistics of traffic data used in Scenario 1

Selected sites
Training dataset [vehicles/hour] Validation dataset [vehicles/hour]

Mean S.D. Missing [%] Mean S.D. Missing [%]
Site A 818 465 3.60 840 468 0
Site B 924 545 3.54 904 505 0

Table 2. Descriptive statistics of traffic data used in Scenario 2

Selected sites Date Time Mean S.D. Missing [%]
Site A 8 June 2012 12:30÷13:25 793 174 0%
Site B 4 April 2012 11:40÷12:45 701 194 0%
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3) the Mean Square Error (MSE):

( ) ( )( )
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4) the Mean Square Relative Error (MSRE):
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y t y t
MSRE

m y t
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3. Results of Data Analysis 

3.1. Model Development 
A statistical analysis of a time series requires that the 
time series are stationary. In other words, this time series 
should have the same statistical behaviour at each point 
in time. Forecast of statistical models, including the 
ARIMA model, based on non-stationary series usually 
exhibit large errors (Washington et  al. 2003). Readers 
may consult Washington et al. (2003) for full explana-
tion of the requirement of stationarity in the time series 
analysis. Thus, before modelling a time series, the data 
must be stationary. Fig. 4a illustrates the 5-min traffic 
data of the whole training dataset at Site A. Fig. 4b and 
4c illustrate the AutoCorrelation Function (ACF) and 
the Partial AutoCorrelation Function (PACF) of the 
5-min traffic data, respectively. The ACF plot indicates 
that the traffic volume series is non-stationary, since the 
ACF decays very slowly. 

The 5-min traffic volume series become stationary 
after the first-order differencing. The first-order dif-
ference of 5-min traffic volume does not have a visible 
trend and its ACF and PACF decay quickly (Fig. 4d–f). 
The Augmented Dickey Fuller (ADF) test was further 
conducted to test the stationarity. The ADF test result 
indicates that the null hypothesis of non-stationarity can 
be rejected at the 0.01 significance level after the first 
differencing was performed. Thus, the first-order differ-
ence of 5-min traffic volume is stationary and can be 
used for the ARIMA model development.

To identify the best ARIMA model for the 5-min 
traffic data at Site A, the ARIMA models were developed 
for different combinations of parameter p and q. The 
parameter p and q were set from 0 to 10. The Akaike’s 
Information Criterion (AIC) was used to find the best 
ARIMA model. It was found that the AIC reached a 
minimum when p and q were set to be 3 and 2, respec-
tively. Besides, it was ensured that all the variables in the 
ARIMA model were statistically significant (Table 3). 
The residuals analysis was further conducted for the 
developed ARIMA model to make sure there is no pat-
tern remaining. Fig. 5 illustrates the graphical check of 
the residuals from the developed ARIMA model for the 
5-min traffic data at Site A. As shown in Fig. 5a, 5b, the 
autocorrelations of the residuals from the ARIMA mod-
el are very small and insignificant. The partial autocor-
relations (Fig. 5c) and inverse autocorrelations (Fig. 5d) 
of the residuals are also negligible. The white noise test 

Fig. 4. 5-min average traffic flow, ACF and PACF at Site A
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was also conducted on the residuals. The results of the 
white noise test in Table 4 indicate that the residuals 
from ARIMA model have no pattern remaining, and 
that the best ARIMA model for the 5-min traffic data at 
Site A has been identified. The other 7 ARIMA models 

for different time-aggregations were developed using the 
same procedure. Tables 3 and 5 summarize the estima-
tion results of the ARIMA models at Sites A and B for 
different aggregation time intervals, including 5, 10, 15 
and 20 min.

Fig. 5. The graphical check of residuals from the developed ARIMA model for 5-min traffic data at Site A

Table 3. Estimation results of the ARIMA models for different aggregation intervals at Site A

Aggregation level Parameter Estimate Standard error t-value Significance

5-min
ARIMA
(3, 1, 2)

Constant –1.061·10–4 0.008 –0.010 0.9897

Auto regressive
Lag 1 1.232 0.036 34.500 <0.0001
Lag 2 –0.158 0.026 –6.110 <0.0001
Lag 3 –0.128 0.022 –5.940 <0.0001

Moving average
Lag 1 1.675 0.032 51.620 <0.0001
Lag 2 –0.720 0.033 –22.030 <0.0001

10-min
ARIMA
(4, 1, 4)

Constant –3.269·10–4 0.017 –0.020 0.9845

Auto regressive

Lag 1 2.065 0.019 111.190 <0.0001
Lag 2 –2.237 0.035 –64.470 <0.0001
Lag 3 1.237 0.035 35.520 <0.0001
Lag 4 –0.172 0.018 –9.480 <0.0001

Moving average

Lag 1 2.256 0.006 348.580 <0.0001
Lag 2 –2.647 0.007 –399.970 <0.0001
Lag 3 1.648 0.006 296.760 <0.0001
Lag 4 –0.394 0.005 –83.420 <0.0001

15-min
ARIMA
(3, 1, 4)

Constant –3.112·10–4 0.025 –0.010 0.990

Auto regressive
Lag 1 0.745 0.066 11.210 <0.0001
Lag 2 –0.857 0.055 –15.530 <0.0001
Lag 3 0.698 0.060 11.570 <0.0001

Moving average

Lag 1 0.796 0.068 11.760 <0.0001
Lag 2 –0.964 0.061 –15.860 <0.0001
Lag 3 0.714 0.065 10.980 <0.0001
Lag 4 –0.163 0.024 –6.820 <0.0001
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The GP models were developed to predict the non-
linear component of the traffic flow time series. The pa-
rameters used in the GP models are given in Table 6. 
The function set contained 8 standard arithmetic opera-
tors, including +, –, ×, ÷, protected square root, sin, cos, 
and pow(2, x). If A £ 0, the protected square root of A 

equals to 0. When A > 0, the protected square root of A 
equals to the square root of A. The function pow(2, x) 
represents two raised to the power, x. The population 
size was set to 1000, and the maximum number of gen-
erations was 100. The reproduction probability was 0. 
The purpose of doing so was to let the crossover and 

Aggregation level Parameter Estimate Standard error t-value Significance

20-min
ARIMA
(4, 1, 3)

Constant –0.001 0.035 –0.020 0.984

Auto regressive

Lag 1 –0.338 0.088 –3.830 0.0001
Lag 2 –0.250 0.065 –3.870 0.0001
Lag 3 0.749 0.065 11.550 <0.0001
Lag 4 0.087 0.034 2.590 0.010

Moving average
Lag 1 –0.428 0.086 –4.950 <0.0001
Lag 2 –0.422 0.086 –4.920 <0.0001
Lag 3 0.562 0.086 6.560 <0.0001

Table 4. Autocorrelation check for white noise for the 5-min ARIMA model at Site A

To lag Pr > Chisq Autocorrelations
6 1.000 0.000 0.000 –0.001 0.004 –0.021 0.011

12 0.108 0.030 –0.009 –0.045 0.026 –0.033 0.025
18 0.350 0.026 –0.017 –0.002 –0.017 0.018 –0.010
24 0.440 –0.040 0.015 –0.019 0.009 0.018 0.016
30 0.584 0.001 –0.006 –0.007 –0.018 –0.008 0.041

Table 5. Estimation results of the ARIMA models for different aggregation intervals at Site B

Aggregation level Parameter Estimate Standard error t-value Significance

5-min
ARIMA
(1, 1, 2)

Constant 1.124·10–4 0.007 0.020 0.9869
Auto regressive Lag 1 –0.869 0.095 –9.160 <0.0001

Moving average
Lag 1 –0.415 0.098 –4.240 <0.0001
Lag 2 0.372 0.049 7.570 <0.0001

10-min
ARIMA
(3, 1, 3)

Constant –8.820·10–5 0.019 0.000 0.996

Auto regressive
Lag 1 0.394 0.199 1.980 0.048
Lag 2 0.769 0.244 3.150 0.002
Lag 3 –0.444 0.090 –4.950 <0.0001

Moving average
Lag 1 0.592 0.199 2.980 0.003
Lag 2 0.724 0.289 2.500 0.012
Lag 3 –0.646 0.131 –4.920 <0.0001

15-min
ARIMA
(3, 1, 2)

Constant –3.103E·10–4 0.030 –0.010 0.992

Auto regressive
Lag 1 0.838 0.109 7.690 <0.0001
Lag 2 –0.291 0.088 –3.290 0.001
Lag 3 0.139 0.030 4.670 <0.0001

Moving average
Lag 1 0.911 0.109 8.340 <0.0001
Lag 2 –0.365 0.095 –3.830 0.000

20-min
ARIMA
(3, 1, 2)

Constant 0.002 0.003 0.620 0.5331

Auto regressive
Lag 1 1.775 0.041 43.510 <0.0001
Lag 2 –0.678 0.066 –10.310 <0.0001
Lag 3 –0.113 0.028 –3.960 <0.0001

Moving average
Lag 1 1.780 0.034 51.880 <0.0001
Lag 2 –0.782 0.034 –22.770 <0.0001

End of Table 3
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mutation operation govern the evolutionary process (Xu 
et al. 2013). The probabilities of the crossover and muta-
tion were set to be 0.4 and 0.6, respectively. Implement-
ing a lower crossover probability and a higher mutation 
probability can avoid genetic drift (Das et al. 2010), 
which is the accumulation to a sub-optimal solution in 
the search space. The terminal set included the constant 
terminals (randomly generated floating point numbers 
between –10 and 10) and the residual lagged variables 
(i.e., rt–1, rt–2, …, rt–n). 

To select an optimal number of residual lagged 
variables, the GP model was conducted in a successive 
phase in which the number of residual lagged variables 
n was set from 1 to 10. The number of 10 is expected to 
cover the possible n that ensures the best prediction ac-
curacy. The optimal number of residual lagged variables 
in previous studies that use the similar hybrid model is 
usually lower than 10 (Zhang 2003; Aladag et al. 2009; 
Lee, Tong 2011; Zhang et al. 2011). The value would be 
selected when the prediction accuracy of the GP model 
reached a maximum. After the development of the GP 
model for the 5-min traffic data at Site A, the residuals 
from the hybrid model for 5-min interval was also ana-
lysed to ensure that there is no pattern left. The white 
noise test of the residuals from the hybrid model in 
Table 7 indicates that there is no pattern remaining in 
the residuals from the hybrid model for 5-min interval. 
Thus, the best GP model for 5-min interval at Site A 
has been identified. The other 7 GP models for different 
time-aggregations were developed using the same pro-
cedure. The white noise tests also indicate that there are 
no patterns left for these 7 hybrid models. Figs 6 and 7 
illustrate the GP models for different aggregation time 
intervals at Sites A and B.

Table 6. The configuration parameters of the GP model

Configuration parameters Selected values
Number of individuals 1000
Number of generations 100
Genetic operations crossover and mutation
Crossover probability 0.4
Mutation probability 0.6

Functions set +, –, ×, ÷, protected square 
root, pow(2, x), sin, cos

Terminal set
random constant (between 
–10 and 10), residual lagged 
variables

Fitness function MAE Fig. 6. The GP model for different time-aggregations at Site A

Table 7. Autocorrelation check for white noise for the 5-min hybrid model at Site A

To lag Pr > Chisq Autocorrelations
6 0.941 0.001 0.005 –0.004 –0.024 –0.016 0.013

12 0.151 0.059 0.015 –0.005 0.055 0.003 0.046
18 0.150 0.050 –0.010 0.009 –0.025 0.014 –0.025
24 0.182 –0.048 0.001 –0.026 0.000 0.018 0.012
30 0.288 0.005 –0.008 –0.002 –0.016 0.000 0.042

a) Aggregation time length = 5 min

b) Aggregation time length = 10 min

c) Aggregation time length = 15 min

d) Aggregation time length = 20 min
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3.2. Predictive Performance  
under Normal Conditions 
Tables 8 and 9 compare the predictive performance of 
the ARIMA models against that of the proposed hybrid 
models for Sites A and B under normal conditions. These 
two tables report four performance indexes on the vali-
dation dataset for Scenario 1 for different aggregation 
time intervals, including MAE, MRE, MSE and MSRE. 
As shown in Tables 8 and 9, the hybrid model produces 
better predictive performance than that of the ARIMA 
models for different aggregation intervals. By comparing 
the performance indexes for different aggregation time 
intervals, it can be found that the predictive performance 
of the hybrid method increases with an increase in the 
aggregation time interval. This may imply that data 
aggregation could suppress the effects of the measure-
ment noises and useless traffic fluctuation information.

For further comparison of the predictive perfor-
mance of the ARIMA and hybrid model, Figs 8 and 9 
illustrate the predicted volumes of the models against 
the actual values for different time-aggregations at Sites 
A and B. In addition, Figs 8 and 9 also summarize the 
regression coefficients for the fitted linear relationship 
between the actual and predicted values. For different 
time-aggregations at both sites, the R-square values of the 
hybrid models are all greater than those of the ARIMA 
model, indicating that the predicted values of the hybrid 
method have higher correlation with the actual values. 

The above results reveal that the hybrid models 
have better forecasting accuracy than the ARIMA mo-
del. This indicates the advance nature and effectiveness 
of combining the GP model with the ARIMA model. 
The hybrid strategy can better capture the characteristics 
of the traffic flow time series data. Moreover, the hybrid 
model can display a mathematical equation which can 
be easily used to forecast traffic volume in practice. For 
example, the hybrid model for 20-min interval at Site 
A is composed of a linear component and a nonlinear 
component. The linear component is estimated by the 
ARIMA model for the 20-min interval shown in Table 3, 
and the nonlinear component is obtained by the equa-
tions shown in Fig. 6. 

For illustrative purposes, the prediction results 
of the hybrid model and the original observations for 
different aggregate time intervals at Sites A and B are 
shown in Figs 10 and 11. The hybrid model provides 
reasonably accurate forecasts of traffic volume. In gen-
eral, the hybrid model has lower prediction errors for 
larger aggregation time intervals, and has higher predic-
tion errors for greater traffic volumes. Fig. 7. The GP model for different time-aggregations at Site B

a) Aggregation time length = 5 min

b) Aggregation time length = 10 min

c) Aggregation time length = 15 min

d) Aggregation time length = 20 min

Table 8. Comparison of the predictive performance of the models for Site A in Scenario 1

Aggregation level
ARIMA ARIMA + GP

MAEa MRE MSE MSRE MAEa MRE MSE MSRE
5 min 69.48 9.62% 4827.47 0.93% 54.02 6.93% 2918.59 0.48%

10 min 57.36 7.45% 3290.17 0.56% 36.12 5.32% 1304.65 0.28%
15 min 58.68 7.15% 3443.34 0.51% 36.36 5.29% 1322.05 0.28%
20 min 62.52 7.70% 3908.75 0.59% 30.48 4.10% 929.03 0.17%

Note: aThe unit of the MAE is [vehicles/hour].
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Comparisons of prediction accuracy have also been 
made with several previous studies shown in Table 10. 
The prediction accuracy of the proposed is relatively 
good compared with the models in previous studies 

(Table 10). Table 10 also gives the improvements of the 
proposed models in previous studies over traditional 
models. It can be concluded that the improvements of 
the proposed model in this study are relatively high.

Table 9. Comparison of the predictive performance of the models for Site B in Scenario 1

Aggregation level
ARIMA ARIMA + GP

MAEa MRE MSE MSRE MAEa MRE MSE MSRE
5 min 74.76 8.24% 5589.06 0.68% 54.84 6.72% 3007.43 0.45%
10 min 68.69 7.32% 4718.04 0.54% 44.76 5.27% 2003.46 0.28%
15 min 70.90 7.09% 5026.24 0.50% 40.45 4.53% 1636.36 0.21%
20 min 79.81 7.84% 6369.96 0.61% 39.92 4.15% 1593.93 0.17%

Note: aThe unit of the MAE is [vehicles/hour].

Fig. 8. Predicted versus actual volumes for different aggregation time intervals at Site A

Fig. 9. Predicted versus actual volumes for different aggregation time intervals at Site B
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Table 11 gives the Central Processing Unit (CPU) 
times needed for the estimation of the hybrid model 
parameters, and the CPU times needed for the applica-
tion of estimated hybrid models for one prediction us-
ing a desktop computer (3.4 GHz CPU and 8GB RAM). 

Fig. 10. Prediction results for different aggregation time intervals by using the hybrid method at Site A

Fig. 11. Prediction results for different aggregation time intervals by using the hybrid method at Site B
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Table 10. Prediction accuracy comparison

Authors
MRE of the 

proposed model 
in the study [%]

Improvement 
in MRE over 

traditional 
model [%]

Smith et al. (2002) 8.8 1.1
Zhang, Xie (2008) 8.8 2.3
Chandra, Al-Deek (2009) 9.4 1.4
Castro-Neto et al. (2009) 9.0 0.8
Lee, Tong (2011) 7.6 0.5
Dimitriou et al. (2008) 10.2 1.6

Table 11. The CPU times for model calibrations  
and predictions

Aggregation 
level 

Model parameter 
estimation [min]

One prediction using 
estimated model [sec]

Site A Site B Site A Site B
5 min 33.5 38.2 <0.1 <0.1
10 min 21.7 25.3 <0.1 <0.1
15 min 26.1 18.7 <0.1 <0.1
20 min 19.7 24.6 <0.1 <0.1
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Although calibrating a hybrid model needs a relatively 
long time, the estimated model needs very short time to 
make a prediction. The CPU running times required by 
one prediction of the estimated models are less than 0.1 
second. Thus, the developed models have the potential 
to be used for online traffic control and management.

3.3. Predictive Performance under  
Atypical Conditions 
The predictive performance of the hybrid model and the 
ARIMA model on the validation dataset for Scenario 2 
(incident conditions) was tested. Since the durations of 
the most incidents on the I-880N freeway are lower than 
60 minutes, we only tested the predictive performance 
of the hybrid model for the 5-min interval. The predic-
tion model for the long time interval, such as the 20-min 
interval, can only make 3 predictions for a 60-min pe-
riod. This may lead to unstable estimates of the predic-
tive performance of the hybrid model. Fig. 12a and 12b 
illustrate the traffic flow data under incident conditions 
and the traffic data under normal conditions (average 
volumes across the 23 weekdays in May 2012). Traffic 
volumes under incident conditions were significantly 
lower than those observed on the normal weekdays.

Fig. 12c and 12d illustrate the actual values and 
predicted values from the ARIMA and hybrid models 
for two sites. During the period of incident, the predict-
ed values of the hybrid models are more closed to actual 
values than those predicted by the ARIMA models for 
both sites, indicating that the predictive performance 
of the hybrid model is better than that of the ARIMA 
model even under incident conditions.

The predictive performance indexes of the hybrid 
model and the ARIMA model under incident con-
ditions are given in Table 12. It should be noted that 
these performance indexes were calculated for the pe-

riod that began about 20 minutes before the occurrence 
of the incident and ended about 20 minutes after the 
traffic flow back to normal conditions. Previous study 
suggested that this could help evaluate the models’ ca-
pability of responding to unexpected changes in traffic 
flow, as well as the ability of these models to recover the 
prediction performance when traffic flow returns to the 
normal patterns (Castro-Neto et al. 2009). As shown in 
Table 12, compared with the ARIMA model, the hybrid 
model can increase the MRE by about 9% on the vali-
dation dataset for Scenario 2. Thus, combining the GP 
model with the ARIMA model can better capture the 
characteristics of the short-term traffic flow time series 
data under incident conditions.

Table 12. Comparison of the predictive performance  
of the ARIMA and hybrid models in Scenario 2

Selected sites
ARIMA ARIMA + GP

MAEa MRE [%] MAE MRE [%]
Site A 171.68 19.13 80.92 9.70
Site B 150.26 17.09 75.49 9.21

Note: aThe unit of the MAE is [vehicles/hour].

Conclusions

This study proposed a hybrid methodology, which com-
bines the ARIMA and GP models for short-term traffic 
flow forecasting. Compared with the models in previ-
ous studies, the proposed method has the following 
advantages. First, the hybrid model can better capture 
the linear and nonlinear patterns within traffic flow 
data and improve the predictive performance. Second, 
the GP technique in the hybrid model does not need 
pre-specified functional forms and can select the best 
functional form based on the training data. Finally, un-

Fig. 12. Actual and predicted values from ARIMA models and hybrid models for two sites under incident conditions

Actual and predicted values at site B for Scenario 2Actual and predicted values at site A for Scenario 2

12:00 12:28 12:57 13:26 13:55 14:24 11:02 11:31 12:00 12:28 12:57 13:26

Historical and current flow at site A for scenario 2

12:00 12:28 12:57 13:26 13:55 14:24

Historical and current flow at site B for scenario 2
Time of the day (one unit = 5 min) Time of the day (one unit = 10 min)

Time of the day (one unit = 15 min) Time of the day (one unit = 20 min)

11:02 11:31 12:00 12:28 12:57 13:26
0

400

800

1200

1600a)

Tr
af

fic
 vo

lu
m

e [
ve

hi
cle

s/h
ou

r]

0

450

900

1350

1800b)

Tr
af

fic
 vo

lu
m

e [
ve

hi
cle

s/h
ou

r]

0

400

800

1200

1600c)

Tr
af

fic
 vo

lu
m

e [
ve

hi
cle

s/h
ou

r]

0

450

900

1350

1800d)

Tr
af

fic
 vo

lu
m

e [
ve

hi
cle

s/h
ou

r]

Current Historic Current Historic

Current ARIMA ARIMA + GP Current ARIMA ARIMA + GP



356 C. Xu et al. Short-term traffic flow prediction using a methodology based on autoregressive integrated moving ...

like the ANN and SVM, which work as black boxes, the 
GP can generate easily readable mathematical equations. 
Thus, the proposed model can be easily applied in prac-
tical engineering applications. The major shortcoming of 
the proposed model is that the GP model is a computa-
tionally intense algorithm that requires a great amount 
of machine running time. It usually takes relatively long 
time for training a GP model when the number of ob-
servations in the training dataset is quite large. However, 
the calibrated model only needs extremely short time to 
make predictions.

The hybrid models were fitted for four different 
time-aggregations: 5, 10, 15, and 20 min. The valida-
tions were performed by using traffic data under both 
normal and incident conditions obtained from multiple 
locations on the I-880N freeway in the United States. 
The results showed that the hybrid models have bet-
ter predictive performance than utilizing only ARIMA 
model for different aggregation time intervals under 
normal conditions. The MRE of the hybrid models was 
found to be from 4.1 to 6.9% for different aggregation 
time intervals under normal conditions. The predictive 
performance of the hybrid method increases with an in-
crease in the aggregation time interval. In addition, the 
validation results also showed that the hybrid model can 
still produce satisfactory predictive performance under 
incident conditions. The predictive performance of the 
hybrid model is better than that of the ARIMA model 
under incident conditions.

With regard to the aggregation level, the hybrid 
model for 5-min interval is more appropriate for practi-
cal application. The reasons are as follows. First of all, 
for incident traffic conditions, the hybrid model is ex-
pected to forecast traffic flow in high resolution, as the 
dynamic traffic management system needs to mitigate 
and minimize the adverse effects of incidents in a timely 
fashion. In addition, for the normal traffic conditions, 
the hybrid model for 5-min interval can also achieve 
relatively good prediction accuracy of 93%. The hybrid 
model for 5-min interval can provide good prediction 
accuracy for both normal and incident traffic condi-
tions. Second, the 5-min traffic data are commonly used 
in practical engineering. The hybrid model for 5-min 
interval can be easily applied in practical applications 
by using the 5-min traffic data. Finally, previous studies 
about short-term traffic-forecasting also recommended 
to developed prediction model for 5-min interval.

The proposed hybrid model has the potential to be 
used for short-term traffic flow forecasting in practice. 
However, before the hybrid method is used in practical 
applications, additional research is still needed to further 
improve the model predictive performance. First, the ef-
fects of the other factors such as time of the day and 
weather conditions could be considered. Incorporating 
these factors as input variables may further improve 
the model fitness. Second, this study only modelled the 
traffic data from a single isolated detector. By combing 
the traffic information from adjacent loop detectors, 
the predictive performance of the hybrid model may be 

further improved. Finally, additional traffic data from 
other freeways are needed to test the transferability of 
the proposed model. The authors recommend that fu-
ture studies may focus on these issues.
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