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Abstract. Real-time bus travel time prediction has been an interesting problem since past decade, especially in India. Pop-
ular methods for travel time prediction include time series analysis, regression methods, Kalman filter method and Artifi-
cial Neural Network (ANN) method. Reported studies using these methods did not consider the high variance situations 
arising from the varying traffic and weather conditions, which is very common under heterogeneous and lane-less traffic 
conditions such as the one in India. The aim of the present study is to analyse the variance in bus travel time and predict 
the travel time accurately under such conditions. Literature shows that Support Vector Machines (SVM) technique is capa-
ble of performing well under such conditions and hence is used in this study. In the present study, nu-Support Vector Re-
gression (SVR) using linear kernel function was selected. Two models were developed, namely spatial SVM and temporal 
SVM, to predict bus travel time. It was observed that in high mean and variance sections, temporal models are performing 
better than spatial. An algorithm to dynamically choose between the spatial and temporal SVM models, based on the cur-
rent travel time, was also developed. The unique features of the present study are the traffic system under consideration 
having high variability and the variables used as input for prediction being obtained from Global Positioning System (GPS) 
units alone. The adopted scheme was implemented using data collected from GPS fitted public transport buses in Chennai 
(India). The performance of the proposed method was compared with available methods that were reported under similar 
traffic conditions and the results showed a clear improvement.
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Notations

ANN – artificial neural network;
ApEn – approximate entropy;
APTS – advanced public transportation system;
ATIS – advanced traveller information system;
COV – coefficient of variation;
GPS – global positioning system;

HMHV – high mean high variance;
ID – identification;
IIT – Indian Institute of Technology;
IT – information technology;

KFT – Kalman filtering technique;
LMLV – low mean low variance;
MAE – mean absolute error;

MAPE – mean absolute percentage error;
MLR – multiple linear regression;
MSE – mean square error;

MTC – Metropolitan Transport Corporation (Chen-
nai) Ltd (https://mtcbus.tn.gov.in);

NN – neural network;
SIPCOT – State Industries Promotion Corporation of Ta-

mil Nadu (https://sipcot.tn.gov.in);
SRM – structural risk minimization;
SVM – support vector machines;
SVR – support vector regression.

Introduction 

One of the key elements in ATIS and APTS is to predict 
vehicle travel time or arrival time with reasonable accu-
racy. This would have been an easy task if the deviations 
in travel times were minimal or having less uncertainty. 
However, these deviations are mainly due to traffic sig-
nals, congestion, and weather condition, where the un-
certainty is high. The variability and uncertainty in travel 
time is much higher in a heterogeneous and lane-less traf-
fic condition such as the one existing in India. Manually 
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operated signals and presence of pedestrians and animal 
drawn carts in the traffic stream adds to these complexi-
ties. Developing a model that can take into account all 
these factors is a challenging task. Existing literature 
mainly focused on three types of models for travel time 
prediction: time series (Rajbhandari 2005; Suwardo et al., 
2010; Kumar, Vanajakshi 2012), ANN (Jeong, Rilett 2004; 
Ramakrishna et al. 2006; Kumar et al. 2014b; Fan, Gurmu 
2015; Chen et al. 2007; Vanajakshi, Rilett 2004; Mazlou-
mi et al. 2011), and KFTs (Liu et al. 2014; Nanthawichit 
et al. 2003; Shalaby, Farhan 2004; Vanajakshi et al. 2009; 
Padmanaban et  al. 2010; Kumar, Vanajakshi 2014; Chu 
et  al. 2005; Kumar et  al. 2014a). There were only a few 
studies that paid special attention to high variability issue 
(Mazloumi et al. 2011) using ANN. None of the studies 
paid special attention to address the high variability issue 
under heterogeneous and lane-less traffic conditions that 
are leading to higher prediction errors on certain sections 
and trips. This may be because the model equations used 
in those studies were developed based on simple equa-
tions for characterizing the evolution of travel time. SVM 
has been reported as a forecasting tool that can perform 
well with uncertainty in several areas in recent years (Yu 
et al. 2006, 2010a; Wu et al. 2003; Vanajakshi, Rilett 2004, 
2007). SVM is a specific type of learning algorithm char-
acterized by the use of kernel functions. SVM theory 
mainly depends on SRM principle to estimate a function 
by minimizing an upper bound of the generalization error. 
SVM is shown to be very resistant to over fitting problem 
(Vapnik 1999). Another important property of the SVM is 
that training SVM is equivalent to solving a linearly con-
strained quadratic programming problem so that the solu-
tion of SVM is always unique and globally optimal, unlike 
other network training that requires nonlinear optimiza-
tion, which may lead to local minima. Table 1 presents 
a summary of the studies that used SVM to predict bus 
travel time along with the corresponding traffic conditions 
and variables considered.

In the present study, a reliable system for real-time 
bus travel time prediction paying special attention to the 
high variability condition was developed using nu-SVR. 
The optimum amount of data required to predict the next 

trip was identified by ApEn technique and performance 
of the proposed method was compared with a model 
based approach (Vanajakshi et al. 2009) that was reported 
to be performing well under Indian traffic conditions. The 
validation was done for a selected bus route in Chennai 
(India), which are equipped with GPS. 

1. Literature review 

Various techniques have been reported in literature for the 
prediction of travel time. These include approaches such 
as historical and real-time averaging, statistical analyses 
(Yu et al. 2017; Bian et al. 2015; Xu, Ying 2017), dynamical 
systems approach and machine-learning techniques. Each 
of these techniques has its own advantages and disadvan-
tages in terms of data requirement, variables involved and 
complexity of analysis. Historical and real-time averaging 
methods are sufficient under expected traffic conditions 
without much variation. However, under unexpected traf-
fic conditions where the variability is high, their accuracy 
will be greatly reduced (Jeong, Rilett 2004; Shalaby, Farhan 
2004; Vanajakshi, Rilett 2007). Regression methods will 
predict the dependent variable (travel time) using a set of 
independent variables that can affect travel time (Abdel-
fattah, Khan 1998; Patnaik et al. 2004; Kwon et al. 2000; 
Ramakrishna et al. 2006; Yu et al. 2010b). However, it is 
difficult to identify and collect information on the exhaus-
tive set of affecting variables (Cheng et al. 2010). Dynami-
cal systems approaches develop models that can capture 
the dynamics of the system by establishing mathematical 
relationships between appropriate variables (Wall, Dailey 
1999; Dailey et  al. 2001; Cathey, Dailey 2003; Shalaby, 
Farhan 2004; Vanajakshi et  al. 2009; Padmanaban et  al. 
2010; Kumar, Vanajakshi 2012, 2014; Hans et  al. 2015; 
Zhou et al. 2017; Kumar et al. 2017). However, it may not 
be always possible to develop explicit equations that can 
capture the system dynamics very efficiently. Machine 
learning techniques such as ANN (Chen et al. 2004; Ram-
akrishna et al. 2006; Jeong, Rilett 2004; Mazloumi et al. 
2011) and SVM (Yu et al. 2006, 2016; Wu et al. 2003; Yang 
et al. 2016) are commonly used to predict travel time be-
cause of their ability to solve complex non-linear relation-

Table 1. Summary of literature that used SVM for bus travel time prediction

Source Traffic conditions Variables considered
Proposed method heterogeneous travel time data from previous five vehicles for temporal SVM model and from five 

previous subsections for spatial SVM models
Yu et al. (2006) homogeneous time-of-day and weather conditions
Yu et al. (2010b) homogeneous speed of the bus
Yu et al. (2010a) homogeneous time-of-day, weather conditions, route segment, travel times on the current segment, latest 

travel times on the predicted segment
Yu et al. (2011) homogeneous bus time interval among the route set, bus time interval of the same route, weighted 

average of bus running time among the route set, bus running time in the same route
Yu et al. (2016) homogeneous time-of-day, weather conditions and bus speed
Yang et al. (2016) homogeneous time period, length of road, weather conditions and bus speed
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ships. Out of these, SVM has proved to be one of the most 
effective tools for pattern recognition across different areas 
and hence is used in this study. A review of reported stud-
ies that used SVM for the prediction of traffic parameters 
are discussed below.

Wu et  al. (2003) and Vanajakshi, Rilett (2007) used 
SVM for travel time prediction and showed SVM giving 
better results compared to historic and real-time meth-
ods. Vanajakshi and Rilett (2004) used ANN and SVM to 
predict the traffic stream speed. The study reported SVM 
as a viable alternative to ANN for short term prediction 
of traffic parameters, especially when less data is available 
for training or when the training data has more varia-
tions. Yu et al. (2006) predicted the bus arrival time based 
on the travel time of current segment and the latest travel 
time of the next segment using SVM. Separate mod-
els were built according to the time-of-day and weather 
conditions. The developed models were tested using 
off-line data of a transit route and exhibited advantages 
over an ANN-based model. Yu et  al. (2010b) developed 
SVM based models to predict bus arrival time based on 
speed data. Yu et  al. (2010a) developed a hybrid model 
based on SVM and KFT and predicted the baseline travel 
times based on time-of-day, weather conditions, route 
segment, travel times on the current segment, and latest 
travel times on the predicted segment. Yu et  al. (2011) 
proposed models to predict bus arrival times based on 
running times of multiple routes. They developed SVM, 
ANN, k-nearest neighbours algorithm and linear regres-
sion models to predict bus arrival time. Yu et  al. (2016) 
proposed a model to predict bus travel time using SVM. 
The arrival time of bus was predicted by taking the time, 
weather and speed data as input. Yang et  al. (2016) de-
veloped a model to predict bus arrival times using SVM 
with genetic algorithm. In the study, the characteristics 
of the time period, the length of road, weather, and bus 
speed were used as input vectors and genetic algorithm 
was used to identify the best parameters. From the above 
discussion, it can be seen that researchers found SVM 
technique to be producing better results when compared 
to ANN and other standard techniques for prediction 
problems. However, no significant studies have been re-
ported using SVM to predict bus travel time under Indian 
traffic conditions, which differ largely from the conditions 
in western countries and is the focus of the present study. 
Studies reported to predict bus travel time under hetero-
geneous conditions, are discussed below.

Ramakrishna et  al. (2006) used NNs to predict the 
travel time under heterogeneous traffic conditions. They 
used travel time data from 25 trips of buses to develop 
ANN and MLR models. Results showed ANN perform-
ing better compared to MLR. Vanajakshi et  al. (2009) 
used KFT to predict travel time under heterogeneous 
traffic conditions. They used preceding two bus trips 
data collected using GPS to predict next bus travel time. 
Padmanaban et  al. (2010) extended the above study by 
incorporating the delays in the model. Kumar and Vana-

jakshi (2014) proposed a statistical methodology to find 
out patterns in the data and used them as input to predict 
the next bus travel time using KFT. Kumar et al. (2014a, 
2014b) used GPS data to predict bus travel time using 
ANN and the obtained results were compared with KFT. 
Results showed that ANN gave better results when there 
is a large data set for network training. However, many 
of these studies reported higher errors on sections with 
high variability such as the ones with signals and bus 
stops (Fatima, Kumar 2014). This problem of high vari-
ability is of bigger concern under the heterogeneous and 
lane-less traffic. SVM has been reported to perform bet-
ter when the data is having high variability (Vanajakshi, 
Rilett 2004) and hence can be a better tool for travel time 
prediction under such traffic conditions. A few studies 
were reported from the homogeneous traffic conditions 
addressing the issue of predicting travel time variability 
as discussed below. 

Fu, Rilett (1998) and Pattanamekar et al. (2003) pre-
sented a set of analytic functions for both mean and vari-
ance of travel times. Liu et al. (2005) developed a macro-
scopic model for urban link travel time prediction based 
on measurements collected by single loop detectors. The 
method divided travel times into two components as link 
cruising times and intersection delays. They then pre-
sented a set of analytic equations to derive the mean and 
the variance of link travel time. Li (2006) developed fuzzy 
NNs to predict mean travel time and used the S-shaped 
relationship to predict vehicle-to-vehicle travel time vari-
ability. Mazloumi et  al. (2011) developed two separate 
ANN models to predict average bus travel time and its 
variability using traffic flow data, weather conditions and 
schedule adherence as input variables. The current study 
is one of the first attempts, where SVM technique is be-
ing used for bus travel time prediction for a traffic system 
with very high variance such as the heterogeneous and 
lane-less Indian traffic. In addition, the present study is 
different from the past literature in terms of the variables 
used in the prediction method. The present study used 
only the travel time collected using GPS units fitted in 
buses as input. 

2. Data collection and preliminary analysis

Data were collected using GPS units that were fitted in 
MTC buses in the city of Chennai. The bus route selected 
for the present study is the Metropolitan Transport Cor-
poration route number 19B, from Saidapet (within city 
area) to Kelambakkam (in the suburban area). It has a 
route length of 30 km having 21 major bus stops. The av-
erage time headway between two consecutive buses in this 
route was around 15…30 min. The selected route is shown 
in Figure 1. This road stretch passes through several types 
of urban roads with various land use characteristics such 
as commercial (Saidapet, SIPCOT, etc.), institutional ar-
eas (Hindustan Engineering College, Women’s Polytechnic 
College, College of Engineering Guindy, etc.) and IT hubs 
(Navallur IT Park, Tidel Park, etc.). Sample photographs 
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of the route, 19B at some of the locations are shown in 
Figure 1b. Under such traffic conditions, a mix of motor-
ized vehicles such as passenger cars, buses, trucks, three 
wheelers, and two-wheelers would be moving along with 
non-motorized vehicles such as bicycles and animal drawn 
carts. All these vehicles share the same road space without 

any segregation for the various vehicle types as shown in 
Figure 1b. This will lead to high level of uncertainties and 
variability in travel time, which make the present study 
different from the studies that were reported in literature. 

The collected GPS data includes the ID of the GPS 
unit, time stamp, and latitude and longitude of the loca-
tion at which entry was made. From the collected data, the 
distance between two consecutive entries was calculated 
using the Haversine formulae (Chamberlain 1996). The 
processed data consists of travel times and corresponding 
distance between consecutive locations of all the buses. 
One month’s data were considered for the analysis. 

To start with, the entire route length was divided into 
smaller subsections of 500 m length and the time taken 
to cover each subsection was calculated using the linear 
interpolation technique. These data were analysed to find 
the variations in travel time. Figure 2a shows the varia-
tion in travel time across various sections in the consid-
ered study route and it can be observed that a few sec-
tions are experiencing high variability in travel time. To 
understand the reason for these high values, a closer look 
of the route was carried out and was observed that each 
of the peaks corresponded to a bus stop or intersection. 
Table 2 presents those details (column titled “Character-
istics”) along with their corresponding descriptive statis-
tics such as average travel time, average speed, standard 
deviation and COV.

Next, variations in travel time over time of the day 
were analysed. For this, travel times experienced by all 
trips in individual sections were studied. Figure 2b and 
Figure 2c show, sample plots, one from subsection 7, a 
low variance subsection from the suburban area and oth-
er from subsection 47, a high variance subsection from 
the urban area. From Figure 2b, it can be observed that 
the travel times during 8:00…10:00 AM and 4:00…6:00 
PM are relatively high, indicating morning and evening 
peak in traffic. In addition, it can be observed that the 
peak hours have more variance than those in off-peak 
hours. On the other hand, Figure 2c shows very little vari-
ation in travel time in this subsection over different time 
periods of the day. The main reason for this can be that 
the subsection is in the suburban area, where the traffic is 
less and the effect of peak and off-peak is not very promi-
nent compared to the ones in urban areas (subsection 46) 
as shown in Figure 2b.

A similar analysis was carried out to study the effect 
of rain on bus travel time. Data were collected on 7 rainy 
days and the travel times were compared with the travel 
time of sunny days. Figure 2d shows the effect of rain on 
bus travel time for sample subsections. It can be seen that 
both mean and variance of travel time are higher on rainy 
days compared to sunny days.

Thus, it can be seen that sections in urban areas dur-
ing peak hours and the sections with intersections or 
other obstructions experience more travel time and vari-
ability. In addition, weather changes such as rain causes 
variation in travel time. 

Figure 1. 19B bus route: a – route scheme  
(source: https://www.openstreetmap.org); b – snapshots  
of traffic conditions along bus route at some locations

a)

b)

https://www.openstreetmap.org
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Figure 2. Variations: a – variation in travel time across various sections along the route; b – travel time variation in subsection 46 
(urban); c – travel time variation in subsection 7 (suburban); d – effect of rainfall on bus travel time for sample subsections
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3. SVM

From literature review, it was observed that a few stud-
ies predicted the variability in travel time separately using 
ANN and the total travel time using SVM under homo-
geneous traffic conditions, and none of the studies under 
heterogeneous traffic conditions. Earlier studies (Vanajak-
shi, Rilett 2004) stated SVM as a viable alternative to ANN 
for prediction of traffic parameters, when less amount of 
data is available for training or when the training data has 
more variations. Considering the high variation in travel 
time, particularly with the heterogeneous and lane-less 
traffic conditions, SVM seems to be a suitable candidate 
for prediction. The present study tries to predict bus travel 
time especially under these conditions using SVM and the 
details are presented below.

SVM are learning systems that use a hypothetical 
space of linear functions in a high dimensional feature 
space, trained with a learning algorithm. This learning 
strategy was introduced by Vapnik (1999). The main idea 
behind SVM is that for a given training sample, the SVM 
construct a hyper plane as the decision surface in such a 
way that the margin of separation between positive and 
negative examples is maximized. SVM are based on the 
SRM inductive principle, which seeks to minimize an up-
per bound of the generalization error consisting of the 
sum of the training error and confidence level. In SVR, 
the basic idea is to map the data into high dimensional 
feature space via non-linear mapping and do linear re-
gression in this space. This linear regression in high di-
mension space corresponds to non-linear regression in 
the low dimension input space. 

Consider a set of training data points ( )1 1,x y , ( )2 2,x y
 
,  

…, ( ),n nx y , where xn is an n-dimensional input vector 
such as previous travel times of current segment, and yn 
is the desired value. Let ˆny  be the predicted value such as 
travel time of next segment, and n is the number of train-
ing samples. Let the output data vector be in the form: 

( )y f x= .  (1)

SVM approximates the function in Equation (1) using 
the following form:

( ) ( ) ( )0 0
1

ˆ ,
n

t
i i

i

y x x x
=

ω = ω ⋅φ +ω = ω ⋅φ +ω∑ ,  (2)

where: ( )xφ  represents the high dimensional feature spac-
es, which is nonlinearly mapped from the input space 
x; the coefficients w0,ω, etc. are estimated by solving a 
constrained optimization problem, which is done using 
Lagrangian multiplier method. The regression problem 
can be solved by using nu-SVR, which was proposed by 
Schölkopf et al. (2006). The basic optimization equations 
for nu-SVR is:

cost function:

( )2

1

1
2

N

n n
n

cw c
N

′

=

⋅ + ⋅ν ⋅ε + ⋅ ξ − ξ∑   (3)

with constraints as:
ˆn n ny y− = ε + ξ ;

ˆn n ny y ′− = ε + ξ ;
0nε ≥ ;
0n′ξ ≥ ;

0ε > ,                                                                   (4)
where: w – weights vector; c – regularization constant; n – 
lower bound on the fraction of support vectors (a scalar 
bounded in between 0 and 1); e – width of the tube; xn , 

n′ξ  – slack variables.
In dual form, the above can be represented as:

( ) ( )
1

,
N

d n n n
n

L
=

′α α′ = ε ⋅ α −α −∑
( ) ( ) ( )

1 1

1 ,
2

N N

m m n n m n
m n

k x x
= =

′ ′⋅ α −α ⋅ α −α ⋅ ⋅∑∑   (5)

with constraints as: 

Table 2. Descriptive statistics of high mean and variance subsections

Subsection 
ID

Section 
length [km] Locations Characteristics Average travel 

time [s]
Average speed 

[km/h]
Standard 

deviation [s]
COV 
[%]

11 0.5 Toll Booth toll booth 74 24.14 43 57.26
13 0.5 SIPCOT bus stop 92 19.42 52 55.84
17 0.5 Navullur Church bus stop 92 19.50 62 67.32

26…27 1.0 Sholinganallur bus stop and 4-legged 
signalized intersection 192 18.69 92 47.81

28 0.5 Accenture Bus stop 118 15.22 70 59.69
37…38 0.5 Ellaiamman Nagar 3-legged skewed intersection 152 23.66 79 52.17
40…42 1.5 Thoraipakkam “T” intersection 260 20.72 173 66.36
45…46 1.0 SRP tools “T” intersection 196 18.34 155 78.90

47 0.5 Tidel park
bus stop and 2 major 
intersections within 100 m 
distance

171 10.50 109 63.86

51…52 1.0 Kotturpuram (IIT) “T” shaped signalized 
intersection 155 23.21 137 88.37
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( )
1

0
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n n n
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′ε ⋅ α −α =∑ ;

0 n n
C
N

′< α ⋅α ≤ ;

( )
1

N

n n
n

c
=

′α −α ≤ ⋅ν∑ ,  (6)

where: Ld – Lagrangian multiplier in dual form; α, α′ – La-
grangian multipliers; “–” – represents vector; m = 1, ..., N,   
n = 1, ..., N – denote N-dimensional vectors. e can be im-
agined as a tube, equivalent to the approximation accuracy 
placed on the training data points. If the predicted values 
are within this accuracy limit, the loss associated with that 
point is assumed as zero, and if the predicted point is out-
side this accuracy limit, the loss is taken as the magnitude 
of the difference between the predicted value and radius 
e of the tube. A large e can depreciate the approximation 
accuracy placed on training points. C is called the regu-
larization constant. Increasing the value of C will result 
in the relative importance of the empirical risk with re-
spect to the regularization term. Both C and e are user 
prescribed parameters. In this study, to predict the travel 
time for the next instances, LIBSVM tool box in MAT-
LAB (https://www.mathworks.com/products/matlab.html)  
was used (Chang, Lin 2011), and the kernel function used 
was a linear kernel of the form:

( ) ( ),i j i jK x x x x coef= γ ⋅ + ,  (7)

where: K  – linear function; g  – width parameter; coef  – 
coefficient.

4. Implementation and results

4.1. Model development using SVM

In the present study, two different prediction approaches 
were attempted using SVM, namely temporal and spatial. 
The temporal approach used the travel times of previous 
many trips of same subsection to predict next trip in that 
subsection, whereas the spatial approach used travel time 
of the same trip on previous many sections to predict next 
subsection travel time. Unlike earlier studies, the present 
study used only the travel time data collected using GPS 
units fitted in buses for the prediction. The details of input 
selection and SVM implementation are discussed sepa-
rately in the sections below.

4.1.1. Prediction model considering  
spatial variation (spatial SVM)

Here, bus travel time was predicted by considering the 
spatial variation in travel time, where the travel time of the 
same trip on previous many subsections is used to predict 
the travel time of the next subsection. In order to identify 
the optimum inputs (number of previous subsections), 
ApEn technique was used. ApEn is a technique used to 
quantify the amount of regularity and the unpredictabil-
ity of fluctuations in data over time (Pincus 1991). This 

algorithm was implemented for the current study to find 
the uncertainty associated with predicted travel time and 
was implemented using MATLAB. ApEn obtained for the 
training data with respect to number of previous sections 
is shown in Figure 3a. It can be observed in the figure that 
the uncertainty in the prediction is negligible after using 
travel time from previous five sections as input. Hence, 
previous five subsections travel time was selected as the 
input to predict the bus travel time in the next subsec-
tion. Thus, input vector to SVR was a five-dimensional 
matrix with previous five subsections travel times, and 
output vector consisted of corresponding next subsection 
travel time. Models were developed for each subsection 
separately using these identified inputs.

4.1.2. Prediction model considering  
temporal variation (temporal SVM)

In the case of temporal SVM, bus travel time was pre-
dicted by considering the temporal variation in travel 
time, meaning the travel time of the next trip was pre-
dicted using the travel time of previous trips in the same 
subsection. In this case, also, ApEn was used to find the 
optimum amount of data required to predict the next trip. 
Figure 3b shows the ApEn obtained for the training data 
with respect to number of previous trips. Here, it can be 
observed that the uncertainty in the prediction is negligi-
ble if previous six or more trips are used as input. Hence, 
previous six trips was selected as the input size to predict 
the next bus travel time in this case. Thus, input vector to 
SVR was a six-dimensional matrix with previous six trips 
travel time, and output vector consisted of corresponding 
next trip travel time and was developed for each subsec-
tion separately.

SVM requires a good amount of training dataset, with 
inputs and the corresponding outputs. One month’s data 
were used in this study, out of which 18 days data were 

Figure 3. ApEn: a – vs number of previous sections;  
b – vs number of previous trips
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used for training, 7 days data for cross-validation and the 
remaining data to test the performance. The descriptive 
statistics of these data sets are presented in Table 3 for 
selected subsections. 

During cross-validation, the model is simulated with 
the separate dataset kept for cross-validation to check the 
efficiency. During testing, the predicted value obtained 
from simulation were compared with the actual value. The 
common measures used for representing forecast accuracy 
are scale-dependent measures (based on the absolute error 
or squared errors, e.g. MAE or MSE), and measures based 
on percentage errors (scale independent, e.g. MAPE). Out 
of these MAPE is reported as one of the best (Makridakis 
1993), and hence was reported in the current study along 
with correlation coefficient r, which are calculated as: 

, ,

,1 100%

N
i a i p

i ai

x x

x
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N
=

−

= ⋅
∑
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∑ ∑
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where: r – correlation coefficient xi,a – actual travel time 
observed from the field; xi,p – predicted travel time value; 

ax   – average of actual travel time; px   – average of pre-
dicted travel time.

Programs were written in MATLAB to generate input 
vector and output vector for training, validation and test-
ing nu-SVR with linear kernel function was used. The four 
important unknown parameters of the kernel function 
were n (lower bound on the fraction of support vectors), 
g (width parameter), C (cost/penalty parameter), and coef 
(coefficient), and were obtained by cross-validation. 

4.2. Performance evaluation

The results obtained from the implementation of the pre-
diction methods presented in previous section, which will 
be referred as spatial SVM and temporal SVM, will be dis-
cussed in this section. Since the proposed algorithm uses 
significant historic data as inputs, a comparison was made 
with the earlier studies that reported the use of model 
based approaches (named as spatial KFT and temporal 

KFT). In spatial KFT approach (Vanajakshi et al. 2009), 
the travel time of a bus in an upcoming subsection was 
predicted using the travel time in the previous subsection. 
In temporal KFT approach (Kumar et al. 2014a, 2014b) 
the travel time of a bus in a subsection was predicted us-
ing previous many buses travel times in the same subsec-
tion. 

Performance evaluation of the proposed methods was 
carried out by comparing the predicted values with the 
actual values over a period of one week for various trips 
and subsections. Evaluations were carried out separately 
for peak and off-peak conditions, low and high variance 
sections (suburban and urban) and rainy and sunny days, 
based on the findings from the preliminary data analysis 
and are presented below. 

4.2.1. Performance comparison of peak  
and off-peak conditions
In this scenario, performance comparison was carried out 
for each of the trips in a day averaged across all sections. 
Figure 4a shows the performance of the proposed meth-
ods (temporal SVM and spatial SVM) for a representative 
day separated into peak and off-peak. To compare the per-
formance, results using temporal KFT and spatial KFT are 
also shown in the plot. From Figure 4a, it can be observed 
that overall, the SVM models having lesser error than the 
corresponding KFT. On closer look, it can be seen that 
the temporal SVM performs the best during peak periods 
(8:00…10:00 AM and 4:00…7:00 PM), and both temporal 
and spatial SVM performing comparable during off-peak 
period. Overall, it can be stressed that during peak peri-
ods, when the variability is high, temporal SVM outper-
forms all the other methods.

Performance comparison across multiple days was 
also carried out and Figure 4b shows the results in terms 
of MAPE for the selected one-week test period. It can be 
observed here also that temporal SVM outperforms all 
the other approaches on majority of the days.

4.2.2. Performance comparison over subsections
Along with the comparison of performance over trips, 
a comparison over subsections was also made. Figure 5 
shows a comparison between predicted travel times and 
actual travel times that were calculated for the maximum 

Table 3. Descriptive statistics of the data used for training, validating and testing the SVM model

Subsection 
ID

Average travel time [s]
(average speed [km/h]) Standard deviation [s] COV [%]

training validation testing training validation testing training validation testing
11 78

(23.05)
79

(22.93)
74

(24.12)
48 52 52 61.54 65.65 69.35

13 92
(19.48)

93
(19.37)

95
(18.99)

59 55 58 64.29 59.35 61.39

28 116
(15.47)

110
(16.36)

118
(15.23)

88 71 70 75.77 65.03 59.39

47 194
(9.25)

191
(9.43)

204
(11.12)

152 135 148 78.09 70.75 72.65
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variability subsection (47) using temporal SVM. From 
Figure 5, it can be observed that the predicted values ob-
tained from the temporal SVM are having a strong cor-
relation with the actual travel times with a correlation 
coefficient of r = 0.897. 

A similar analysis has been carried out for all the sub-
sections facing high variability and the results are pre-
sented in Table 4. From Table 4, it can be observed that 
the temporal SVM is performing better than the other 
methods for the subsections that are having high variabil-
ity in travel time. From Table 4, it can be observed that 
the correlation coefficient obtained from temporal SVM 
is ranging from 0.72 to 0.94 for the sections that were fac-
ing high variability, indicating good performance (Cohen 
1988; Evans 1995; Russo 2021). In addition, from Table 4, 
it can be observed that the temporal SVM is performing 
better than other methods. 

In next level, the performance of the proposed spa-
tial and temporal SVM methods were compared with 
the spatial and temporal KFT across all subsections of 

Figure 4. Performance comparison of peak and off-peak conditions: a – performance comparison  
over trips that happened on a sample day; b – MAPE comparison for various days
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Figure 5. Sample scatter plot of actual vs. predicted travel times 
(temporal SVM)

Table 4. Correlation coefficients obtained for various prediction 
methods for high variability subsections

Subsection 
index

Temporal 
SVM

Temporal 
KFT

Spatial 
SVM

Spatial 
KFT

11 0.858 0.475 0.279 0.252
13 0.842 0.548 0.237 0.219
17 0.911 0.717 0.330 0.395
26 0.853 0.728 0.556 0.213
27 0.838 0.606 0.361 0.208
28 0.927 0.536 0.543 0.433
37 0.914 0.551 0.230 0.117
38 0.826 0.533 0.441 0.233
40 0.824 0.525 0.260 0.055
41 0.723 0.514 0.375 0.072
42 0.776 0.639 0.414 0.060
45 0.926 0.560 0.316 0.280
46 0.942 0.520 0.468 0.421
47 0.898 0.519 0.369 0.413

the route for a sample day and the results are presented 
in Figure 6a. From Figure 6a, it can be observed that the 
spatial SVM is performing well in low variance sections 
and temporal SVM is performing better in sections that 
are having high variance (subsection ID’s as shown in Ta-
ble 2) within a MAPE of 20%. According to Lewis’ scale 
of interpretation of prediction accuracy (Lewis 1982), 
any forecast with a MAPE value <10% can be considered 
highly accurate, 11…20% as good, 21…50% as reasonable 
and >51% as inaccurate. According to this, the prediction 
accuracy of the proposed method can be considered as 
good.
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Performance comparison across multiple days was 
also carried out and Figure 6b shows the results in terms 
of MAPE for all sections along the route. It can be ob-
served that temporal SVM outperforms all the other ap-
proaches in high variance sections and spatial SVM out-
performs other approaches in low variance sections too. 

Since, the user feels the error in terms of actual de-
viations, a performance comparison was also made over 
different subsections of 500 m length along the consid-
ered routes. Figure 6c shows the comparison of average 
deviation of predicted travel time for all high variability 
sections along the route (worst case sections) using both 
spatial and temporal models using KFT and SVM. From 
Figure 6c, it can be observed that the deviations obtained 
from temporal SVM were much lesser than the other 
methods (spatial SVM, spatial KFT and temporal KFT).

From the above results, it can be seen that SVM is 
performing better than KFT based methods and hence 
KFT results are not included in further analysis. Among 
the SVM approaches, temporal SVM was able to perform 
best under high variability conditions and was able to 
make better predictions. For the sections that were having 
lower variability, spatial SVM has slight advantage over 
temporal SVM methods. In addition, the data require-
ments are much lesser for spatial SVM since a temporal 
database is not required in that case. Hence, it would be 
ideal to use a combination of spatial and temporal SVM, 
with temporal being used for high variance sections alone 
and spatial SVM for all the other sections. However, this 
required a methodology to choose between spatial and 
temporal SVM for each subsection. 

Figure 6. Performance comparison over subsections: a – for all methods in a sample day; b – for SVM methods;  
c – comparison of MAE for all prediction methods
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For this, the thresholds were identified based on the 
mean and variance of the travel times of the subsection 
of interest. With these thresholds, a subsection was clas-
sified as LMLV subsection or HMHV subsection. Figure 
7a and Figure 7b show variation in MAPE with increasing 
mean and standard deviation of travel time. From Figure 
7a and Figure 7b, it can be observed that spatial SVM 
model is performing better than temporal SVM model if 
a sections’ mean travel time is less than 100 s and stand-
ard deviation is less than 65 s. In other words, temporal 
models are performing better if the mean travel time of 
the subsection is more than 100 s and standard deviation 
is more than 65 s and hence these values were chosen as 
the threshold values.

Using the above identified thresholds, all the sections 
were classified into LMLV and HMHV so that suitable 
models can be applied to predict bus travel time. Figure 8 
shows all the sections classified to LMLV and HMHV 
sections using the above identified thresholds.

From Figure 8, it can be seen that most of the HMHV 
sections are within the city area (trip starts in a suburban 

area and ends in the city area). However, depending on 
the traffic or other environmental conditions, a subsec-
tion, which is found to be LMLV may become HMHV 
and vice versa. For example, sections that fall under 
LMLV may become HMHV during peak hours. Thus, it 
will be more meaningful to classify these sections into 
LMLV or HMHV dynamically based on real-time condi-
tions than the offline method discussed earlier. Therefore, 
an automated procedure was developed to select either of 
spatial SVM or temporal SVM, based on current travel 
times and is discussed next. 

5. Automated systems performance

The above discussed methodology to identify HMHV and 
LMLV was automated by dynamically classifying each sec-
tion under consideration to HMHV or LMLV by compar-
ing the latest travel time obtained from each section with 
the identified threshold mean. Thus, no particular section 
will be fixed as LMLV or HMHV and vary dynamical-
ly depending on the latest data obtained from the field. 
Therefore, while implementing the prediction algorithm 
in real-time, the same section may use temporal or spatial 
SVM models based on recently reported travel times from 
that section. The optimum number of previous trips to be 
used for this was chosen heuristically corresponding to 
minimum MAPE. From the analysis, it was observed that 
the least MAPE was obtained when 3 previous trips travel 
times were used as input. Hence, the previous 3 trips were 
considered for calculating the mean and standard devia-
tion, based on which choice between spatial or temporal 
SVM models would be made. Thus, if the mean of the 3 
previous trips exceed 100 s, the temporal SVM models 
are used to predict the travel time and spatial models are 
used otherwise. 

To illustrate the performance of the dynamic selection 
of prediction method, a sample rainy day was selected, in 
which the travel time variation was found to be very high 
as shown in Figure 9. Figure 9 shows the change in mean 
and standard deviation of travel time along different sec-
tions during rainy days. On comparing Figure 9 with Fig-
ure 8, it can be observed that subsections such as 48, 50, 
54, and 55 became HMHV, which were originally LMLV. Figure 7. Variation in MAPE with increase in: a – mean travel 

time; b – standard deviation of travel time

Figure 8. HMHV and LMLV sections identified based on fixed thresholds
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A detailed analysis of one of these sections, which 
changed from LMLV to HMHV, was carried out and 
results obtained are presented in Figure 10. Figure 10 
shows a sample comparison of the predicted and meas-
ured travel times for a sample HMHV subsection using 
both fixed and dynamic models. It can be observed that 
dynamic model is able to capture the variations in this 
subsection better than the fixed model with a MAPE re-
duction from 27 to 13%. Results obtained for all such sec-
tions that changed between HMHV or LMLV are shown 
in Figure 11.

From Figure 11, it can be observed that dynamic 
model is able to capture the change in travel time better 
than fixed model, showing the advantage of automating 
the process.

Summary and conclusions 

The heterogeneity and lack of lane discipline makes the 
Indian traffic highly varying and hence most of the exist-
ing solutions that were developed for homogeneous and 
lane disciplined traffic conditions may not work under 
such conditions. The present study was an attempt for de-
veloping a real-time bus arrival prediction system paying 
special attention to this high variance. Analysis was car-
ried out using the GPS data collected from buses running 
in route number 19B in Chennai (India). The main high-
lights and contributions of the present study are:

»» the present study developed a real-time bus arrival 
prediction system that can capture the variations in 

the system using SVM. This is one of the first at-
tempts to use SVM for bus arrival time prediction 
for a traffic system with very high variance such as 
the heterogeneous and lane-less Indian traffic;

»» one of the unique features of the present study in 
terms of the traffic system under consideration and 
the variables used as input for prediction. It used 
only the travel time collected using GPS units fitted 
in buses as inputs. Another difference from earlier 
studies is in terms of input quantity selection. The 
optimum amount of data required to predict the 
next trip travel time was found using ApEn tech-
nique; 

»» two models were developed, namely spatial SVM 
and temporal SVM, to predict bus travel time. It was 
observed that in high mean and variance sections, 
temporal models are performing better than spatial. 
An algorithm to dynamically choose between the 
spatial and temporal SVM models, based on the cur-
rent travel time, was also developed. Results showed 
that this automated switching was able to capture the 
variations better and produce accurate results mak-
ing it feasible for real-time field implementations.

Overall, the present study focused on accurate travel 
time prediction by focusing more on sections that are 
facing high variability. The results showed that the au-
tomated system performance of the proposed prediction 
model was able to capture the variations in traffic condi-
tions better than existing methods and produce accurate 
results making it feasible for field applications. 

Figure 9. Variation of mean and std. deviation of travel time for various sections in rainy days

Figure 10. Performance evaluation of a sample subsection (54) 
on a rainy day

Figure 11. MAPE comparison between fixed and dynamic 
models in rainy days
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