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Abstract. In this paper, an Integer Linear Programming (ILP) has been developed for rebalancing the stations of a Periodic 
Bike Relocation Problem (PBRP) in multiple periods. The objective function of the mathematical model is reducing costs 
of implementing trucks, transportation between stations and holding bikes on trucks during rebalancing. The variables we 
are following them in this model are conducting the optimal route in several periods, using the most appropriate trucks for 
these routes, and determining the best program for loading/unloading bikes for stations. The distinguishing features of the 
proposed model are considering several bike types, several exclusive trucks and several time periods. Finally, a numerical 
example confirms the applicability of the proposed model.
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Introduction

Bike-Sharing Systems (BSS) allow individuals to rent a 
bike at automatic rental stations scattered around a city, 
use them for a short journey, and return them to any other 
station in that city (Raviv, Kolka 2013). BSS has grown 
rapidly in the past decade. Although the concept has been 
around since the 1960s, the number of cities offering BSS 
has increased from just a handful in the late 1990s to over 
800 at the time of publication (DeMaio 2016). Compared 
to private automobiles, BSS offers a number of environ-
mental and social benefits. These include reduction in 
energy use, air and noise pollution, and congestion levels 
on specific corridors and access routes to public transport 
stops (Martens 2004).

The global growth of BSS has spurred an enthusiastic 
response from transport researchers, which has led to a 
burgeoning of papers examining bike-sharing. In general, 
research issues in this field of study are classified into four 
categories based on their diversity. The first category re-
gards to bike-sharing usage and user preferences. For ex-
ample, Pfrommer et  al. (2014) examined that weekday 
usage of BSS peaks between 7:00–9:00 and 16:00–18:00, 
while weekend usage is strongest in the middle of the day. 

Ahmed et al. (2010) explored BSS are busier in the warmer 
months. Other researchers have found casual users typi-
cally take longer trips than annual members (Buck et al. 
2013). In addition, convenience is the major perceived 
benefit identified by bike-sharing users (Fishman et  al. 
2013). Bachand-Marleau et al. (2012) found Montreal re-
spondents living within 500 meters of a docking station 
were 3.2 times more likely to have used bike-sharing. LDA 
Consulting (2013) identified that trip purpose can vary by 
residential location, age, gender, ethnicity and whether the 
member has a car available for their use.

In the second category, researchers deal with barri-
ers to bike-sharing usage. For example, finding from stud-
ies shows that bike-sharing members are more likely to 
live in close proximity to a docking station, in Montreal 
(Bachand-Marleau et al. 2012), London (Goodman et al. 
2014), Melbourne and Brisbane (Fishman et al. 2014). In 
recently published research, Fishman et al. (2015) showed 
those who have not used bike-shared are considerably 
more sensitive to a lack of bike infrastructure than those 
who are bike share members. Subsequently, helmets have 
emerged as a contentious issue for BSS (Basch et al. 2014). 
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In addition, users and would-be users have reported the 
lack of immediate sign-up is a barrier to usage (Fishman 
et al. 2012a).

Evaluating the impacts of BSS is the issue of some re-
searches in the third category. For example, Shaheen et al. 
(2013) pointed that there are a number of purported ben-
efits of BSS, including travel time saving, connection with 
public transport, health, air and noise pollution benefits. A 
study of a BSS in Shanghai showed that the majority of us-
ers are replacing walking and public transport (Zhu et al. 
2013). Health impacts of BSS were dealt by Woodcock 
and Goodman (2014) on the London BSS. The research-
ers focused on three issues; physical activity, crashes and 
exposure to air pollution. Perceptions of safety (a lack of) 
have been established as a major issue for BSS generally, 
in Australia (Fishman et al. 2012b), the UK (Horton et al. 
2012) and the USA (Starke 2002).

The last category of BSS study respects to rebalancing 
problem. Sayarshad et al. (2012) generated a multi-peri-
odic mathematical model to optimize BSS design in small 
communities by determining minimum required bike fleet 
size with minimum unmet demands and unutilized bikes. 
Chemla et al. (2013) considered bike distribution between 
stations as a pick-up and delivery problem, and presented 
some algorithms for solving the rebalancing problem in 
BSS. Dikas and Minis (2014) formulated the static reposi-
tioning problem as a Mixed Integer Linear Programming 
(MILP) and presented two different models, one arc-in-
dexed and the other time-indexed, whose objective func-
tions include user satisfaction with the system and oper-
ating costs. Brake et al. (2007) presented four models for 
the bike-sharing rebalancing problem, considering a fleet 
of capacitated vehicles; they proposed customized branch-
and-cut algorithms to solve the models. Schalekamp and 
Behrens (2013) developed mathematical programming 
models to determine the optimal daily allocation of bikes 
to stations in a BSS. Fu (2002) presented an inventory 
model suitable for the management of bike rental stations. 
Dell’Amico et al. (2014) presented four MILP models of 
BSS problem in which a fleet of capacitated vehicles is em-
ployed in order to re-balance the bikes with the objective 
of minimizing total cost.

This paper focuses on rebalancing Periodic Bike Re-
location Problem (PBRP) where due to demand imbalance 
at some stations, pick-up or delivery bikes are impossible 
for some users. In some cases, the imbalance is persistent; 
e.g., relatively low return rates at stations located at the top 
of a hill. In other cases, the imbalance is temporary; e.g., 
suburban train stations are apt to face high return rates 
in the morning as commuters into the city drop off their 
bikes and high rental rates in the afternoon as commuters 
exit the train and begin to make their way home (Raviv, 
Kolka 2013). Satisfying user demand subject to such im-
balances requires a dedicated fleet of trucks to regularly 
transfer bikes among stations. We refer to this activity as 
rebalancing bikes. Rebalancing of bikes in the PBRP in-
volves routing decisions concerning the trucks, starting 

from and returning to the depots. The latter involves de-
termining the number of bikes to be removed or placed 
in each station on each visit of the trucks. Ideally, the out-
come of this operation would be to meet all demand for 
bikes and vacant lockers (Raviv et al. 2013).

In this paper, a mathematical model is developed 
for rebalancing PBRP based on recent published paper 
by Dell’Amico et  al. (2014). In Dell’Amico et  al. (2014), 
the model was able to determine the truck routes and 
the flow of load/unload bikes among stations based on 
demands and trucks’ capacities. A maximum number of 
possible routes starting and ending depots is set and the 
models decides the optimal number of routes regarding 
Vehicle Routing Problem (VRP). The routes start and end 
at the same depot. In one formulation they have a second 
dummy depot that, however, is always the same one. In 
addition, m as the maximum number of possible routes 
was considered. The academic contribution of our paper 
is to further develop the model of Dell’Amico et al. (2014) 
by considering b bike types, e.g., VIP and normal bikes for 
various purposes, to enhance service level to users. In ad-
dition, the proposed model has developed in multi-depot 
situation. Rather than starting from one specific depot and 
ending to another depot, routes in the proposed model 
can be conducted from each depot and ends to the same 
depot or another one to rebalancing stations based on to-
tal costs. In continue, the mathematical model decides to 
choose the optimum number and type of trucks in each 
period. Rather than assuming one, k truck types were 
considered in their unique specifications of capacity, im-
plementation cost and distance limitation. The capacities 
are defined for each bike type and this separated capaci-
ties are not be raped by another bike types. On the other 
hand, the capacity is divided per type and separated sec-
tions of the truck are dedicated to each bike-type. Finally, 
the proposed model was enabled to rebalance the stations’ 
demands in multi periods. 

The rest of the paper is organized as follows. We first 
provide problem description and the mathematical model 
in section 1. A numerical example is described and the 
results of solving it are explained in section 2. In section 3, 
a comprehensive discussion is provided to show the ap-
plicability of the proposed model. Finally, conclusion and 
findings are presented in the last section.

1. Mathematical formulation

1.1. Problem description

The problem is defined for rebalancing a finite number 
of bike stations in a PBRP due to occur unpredictable de-
mands for bikes in each station. Because of variations in 
demand’s patterns and uncertainty in bike delivery desti-
nation, the inventory of bikes in stations would be imbal-
anced. Based on demand predictions, a transportation net-
work is designed to rebalance bike stations during speci-
fied hours of day while the network has stopped working. 
The process of rebalancing starts through announcing 
the demands by each stations for each bike type for the 
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rebalancing times. The PBRP centre gathers the data for 
each time periods and decides to conduct the routes and 
assign appropriate trucks with proper amount of bikes to 
rebalance the whole stations. A day usually contains two 
periods t for rebalancing one at noon and another one at 
night. As the rebalancing times are so limited (almost 30 
minutes) and the number of stations are remarkable, it is 
common to use multiple trucks k. So, various trucks in 
different specifications is needed in a fleet of transporta-
tion to rebalance the PBRP. Therefore, the arcs, the flows 
of loading/unloading and the variable defining the use of 
appropriate trucks are the variables, which are determined 
through solving the mathematical model regarding objec-
tive function, constraints and parameters. 

We are given a complete graph = ( , )G V A , where the 
set of vertices { }= … +0,1, , 1V n  are partitioned into the 
depots (vertices 0 and n  +  1), and the stations, vertices 
{ }…1, ,n . Several bike types can be considered in PBRP for 
different purposes. In this research, two bike types (com-
modities) are defined comprised of VIP bikes and normal 
ones. Difference in commodities may be derived from 
quality of bikes, type of use or gender applicant. Each sta-
tion j has a demand of commodity b in period ( )b

jtt q , 
which can be either positive or negative. If > 0b

jtq , then 
j is a pickup node in period t where b

jtq  bikes must be re-
moved; if < 0b

jtq , then j is a delivery node where b
jtq  bikes 

must be supplied in period t. The bikes removed from 
pickup nodes can either go to a delivery node or back to 
the depots. Bikes supplied to delivery nodes can either 
come from the depots or pickup nodes. Whole demands 
must be meet and demand for each commodity cannot be 
fulfilled by another commodity. A fleet of k non-identical 
trucks of capacity b

ks  is available at depots to rebalance the 
stations. Each depot can be considered as starting or end-
ing node in each route.

The PBRP problem involves determining how to 
drive the most suitable trucks through the graph, with 
the aim of minimizing total cost containing costs of im-
plementing trucks, transportation between stations and 
holding bikes on trucks during rebalancing. In addition, 
the following constraints must hold: 

 – each truck performs a route that starts and ends 
at depots and trucks are able to journey a finite 
amount of distance;

 – each truck starts from depot empty or with some 
initial load in period t (i.e., with a number of com-
modity b that vary from 0 to b

tQtot );
 – each station is visited exactly once and its de-
mand is completely fulfilled by the truck visiting it;

 – the sum of demands of the visited stations plus the 
initial load is never negative or greater than b

tQtot  
in the route performed by a truck.

In our study, each demand b
jtq  is computed as the 

difference between the number of commodity b present 
at station i in period t when performing the redistribu-
tion, and the number of commodity b in the station in 
the final required configuration. Note that, we impose a 
station even with no demand (demand ( )= 0,0b

jtq  in each 

period) must be visited, even if this implies that no bike 
has to be dropped-off or picked-up there. This case arises, 
for example, when the driver of the truck is supposed to 
check that the station is correctly working. The case in 
which stations with null demands have to be skipped can 
be simply obtained by removing in a pre-processing phase 
those stations from the set of vertices.

The fact that each truck is allowed to start its route 
with some bikes enlarges the space of feasible PBRP prob-
lem solutions, and allows obtaining a more flexible redis-
tribution plan. Note also that we do not impose the sum 
of redistributed bikes to be null, and hence, there can be 
a positive or a negative flow of bikes on the depot. This 
consideration is useful to model cases in which some bikes 
enter or leave the depot for maintenance.

The traveling cost cij is computed in our case as the 
shortest length of a path in the road network connecting 
i and j, for ( )∈,i j V . It is important to work on a directed 
graph, because all BSS we are aware of are located in urban 
areas, and thus one-way streets typically have a strong im-
pact on the choice of the routes performed by the trucks 
during the redistribution.

In this section, we present an Integer Linear Pro-
gramming (ILP) model for PBRP problem based on the 
above assumptions. The model notations, parameters and 
variables are presented in the next part.

1.2. Mathematical modelling

The proposed mathematical model, which is described 
as follows has developed based on the Dell’Amico et  al. 
(2014).

1.2.1. Notations and parameters
The parameter’s symbols and their definitions are pre-
sented as Table 1.

Table 1. The symbols and definitions of parameters 

Symbol Definition

 V set of vertices

0V set of vertices except the depots  
(stations 0 and n + 1 are depots)

A set of arcs
K set of trucks 
B set of commodities (VIP and normal)
T set of time periods
n number of stations 

b
ks capacity of truck k of commodity b

b
jtq demand for commodity b at vertex j in period t

ijc transportation cost of the arc (i,j)

kp initial cost of implementing truck k

β 
k the total distance restriction for truck k 
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1.2.2. Variables
The variables of the mathematical model are provided as 
Table 2.

Table 2. The symbols and definitions of variables 

Symbol Definition

ijktx taking value 1 if arc (i,j) is used by truck k in 
period t

b
ijktf flow over arc (i,j) for commodity b by truck k  

in period t

ktw taking value 1 if truck k is used in period t

ˆ
kth taking value 1 if truck k presence at depot 0  

in the end of period t 

′kth taking value 1 if truck k presence at depot n + 1 
in the end of period t 

1.2.3. The proposed model
The proposed mathematical model has one objective func-
tion in three parts. The first part minimizes the cost of 
transporting from one station to another. Simply, it is as-
sumed that this cost has a direct relationship with the dis-
tances. The second part points to the implementation cost 
of employing each truck for rebalancing. As several trucks 
were considered in this research, this part were added to 
the basic research to select the most appropriate trucks: 

∈ ∈

= ⋅ +∑∑∑∑min ij ijkt
i V j V K T

Z c x
 

⋅∑∑ k kt
K T

p w .   (1)

Eqs (2) and (3) impose that every stations in each 
period must be visited exactly once. Since maybe several 
routes must be conducted to rebalance the network in 
each period, this rule does not include the depots. Because 
it is possible not transferring right data in right time and 
some failure may be occurred in statistical reports, all the 
stations must be visited: 

∈

=∑∑ 1ijkt
K i V

x


, ∀ ∈ 0 , j V T ;  (2)

∈

=∑∑ 1jikt
K i V

x


, ∀ ∈ 0 , j V T .  (3)

Eq. (4) ensures that the whole number of trucks leav-
ing each depot in each period must return to the depots 
including the same depot or other depots after rebalanc-
ing. This constraint enables conducting routes in four 
master mode; starting and ending station 0, starting and 
ending station n + 1, starting from station 0 and ending 
to station n + 1 and starting from station n + 1 and end-
ing to station 0: 

+
∈ ∈

+ =∑ ∑
0 0

0 1,  jkt n jkt
j V j V

x x

+
∈ ∈

+∑ ∑
0 0

, 1, 0j n kt j kt
j V j V

x x


, ∀ ,K T .  (4)

Eq. (5) is the classical sub-tour elimination con-
straints, see, e.g., Gutin and Punnen (2007) that impose 
the connectivity of the solution. In this research, dimen-

sions of k trucks and t period were attached to the basic 
constraint. Eq. (6) is replaced to the Eq. (5) to prevent 
containing sub-tours in fewer problem dimensions. jtu  
is the sequence number of station j in its tour in period t 
(Bektas 2006):

∈ ∈

≤ −∑∑ 1ijkt
i S j S

x S , ∀ ⊆ 0S V , ≠∅, , S K T ; (5)

− + ⋅ ≤ −∑ 1it jt ijkt
K

u u n x n , ∀ ∈ 0,  , i j V T, T.  (6)

Eq. (7) appoints the balance of the flows on each sta-
tion entering and leaving bikes within rebalancing that 
must be exactly equal to the demands for each commod-
ity in each time period:

( )
∈

− =∑∑ b b b
jtjikt ijkt

K i V
f f q



, ∀ ∈ 0 , ,j V T B .  (7)

The total load leaving the initial depot should be in 
any case non-negative, and moreover, in case b

tQtot  (sum-
mation of all stations’ demands for each commodity at 
period t) takes a negative value, it should be not lower 
than this value. This fact is imposed by Eq. (8). Similarly, 
Eq. (9) states that the total load entering the final depot is 
in any case non-negative, and not lower than the sum of 
all demands in case this is positive:

( )+
∈

+ ≥∑∑
0

0 1,
b b
jkt n jkt

K j V
f f



( )−max 0, b
tQtot , ∀ ,T B ;  (8)

( )+
∈

+ ≥∑∑
0

, 1, 0
b b
j n kt j kt

K j V
f f

{ }max 0, b
tQtot , ∀ ,T B .  (9)

Eq. (10) imposes lower and upper bounds on the 
flows on each arc, and make these bounds as tight as pos-
sible by considering whether or not an arc is travelled by 
a truck. This values are limited depending on demands 
and truck capacities:

{ }− ≤ ≤max 0, ,b b b
it jt ijkt ijktq q x f

{ }+ −min , ,b b b b b
it jt ijktk k ks s q s q x , 

∀ ∈, , , ,i j A K T B.  (10)

Eq. (11) ensures that each arc is traversed at most 
once by whole trucks in each period. Because k numbers 
of trucks are considered in this model, this constraint was 
added to the basic model:

≤∑ 1ijkt
k

x , ∀ ∈, ,  i j A T .  (11)

Eqs (12) and (13) guide bikes to be flown by con-
taining a route of certain truck in each period. For exam-
ple, if a route has covered with a special truck, it is not 
possible to be continued with another truck. Due to have 
several options for rebalancing by trucks and depots, this 
constraint is added to the model to reduce the space of 
feasible problem and remove the unrealistic cases in using 
trucks for routes: 
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′ ′
′ ′

+ + ≤∑ ∑∑ 1ijkt jikt ji k t
K i k

x x x , 

∀ ∈ 0 , , , j V i K T , ′ ≠i i  and ′ ≠j j ;  (12)

∈

≤∑ 1ijkt
j V

x


, ∀ ∈ , ,i V K T .  (13)

Eq. (14) considers a restriction of distance travelled 
by each truck. Because, some limitations such as petrol 
consummation or motor capacity compel trucks to travel 
moderately. The maximum distance for trucks on this 
kind of problems has already been considered, see e.g., 
Dell’Amico et  al. (2016). This viewpoint can effect con-
ducting routes for rebalancing stations: 

∈ ∈

⋅ ≤ β∑∑ ij ijkt k
i V j V

c x
 

, ∀ ,K T .  (14)

Eq. (15) emphasizes that each truck must be em-
ployed at most once in each time period. This employing 
rule naturally causes at most two visits of depots com-
prised of the same or different depot for starting and end-
ing: 

∈ ∈

+ +∑ ∑
0 0

0 0jkt j kt
j V j V

x x
 

+ +
∈ ∈

+ ≤∑ ∑
0 0

1, , 1, 2n jkt j n kt
j V j V

x x
 

 

+ +
∈ ∈

+ ≤∑ ∑
0 0

1, , 1, 2n jkt j n kt
j V j V

x x
 

, ∀ ,K T .  (15)

Eq. (16) uses a binary variable to select the suitable 
trucks and consider the cost of implementing them: 

( )
∈ ∈

≤ − ⋅∑∑  1 ktijkt
i V j V

x n w
 

, ∀ ,K T .  (16)

Eqs (17) and (18) use dependent variables of ˆ
kth  and 

′kth  to communicate among trucks during time periods. 
These variables accept 0 or 1 values in which 1 indicates 
the presence of corresponding truck in the related depot 
at the end of the time periods:

−
∈ ∈

= + −∑ ∑
0 0

, 1 0 0
ˆ ˆ

kt k t j kt jkt
j V j V

h h x x
 

, ∀ ,K T ;            (17)

− + +
∈ ∈

′ ′= + −∑ ∑
0 0

, 1 , 1, 1,kt k t j n kt n jkt
j V j V

h h x x
 

, ∀ ,K T .    (18)

Eqs (19) and (20) ensure a situation in which only 
trucks that are in each depot at the end of the previous 
period can begin in the coming period:

−
∈

≤∑
0

0 , 1
ˆ

jkt k t
j V

x h


, ∀ ,K T ;  (19)

+ −
∈

′≤∑
0

1, , 1n jkt k t
j V

x h


, ∀ ,K T .  (20)

Eq. (21) introduces the boundary of the variables:

{ }∈, 0,1ijkt ktx w , ≥ 0b
ijktf .  (21)

2. Computational results

In this section, a numerical example is used based on a 
real-world instance provided by Dell’Amico et al. (2014) 
from Bari, Italy to show the applicability of the proposed 
model. There is a PBRP with 13 bike stations (contain 2 
depots) and the goal is to rebalance the pre-determined 
demands of these stations for each commodity at two time 
periods (at 12:30 and 23:30). There are two commodities 
including VIP (type 1) and normal (type 2) bikes in each 
station and demands for each of them are independents. 
All demands must be meet and demands for each com-
modity cannot be fulfilled by another type. In addition, 
there are four trucks in different capacities, implementing 
costs and distance restriction to rebalance the stations. 
The trucks only start at node 1 or 13 (depots) in an appro-
priate initial bikes and end to the depots passing stations. 
At the beginning of the rebalancing, trucks 1 and 2 are at 
node 1 and trucks 3 and 4 are at node 13. Tables 3–5 show 
the parameters value for the numerical example. 

The proposed mathematical model was solved by Lin-
go 9.0 software in a dual-core system with CPU 3.0 GHz 
and 4 GB RAM Global optimal solution found with the 
objective value of 836300 after spending around 758 sec-
onds CPU runtime. The best routes in each period were 
conducted and sequence of visits for each route was deter-
mined. The most suitable trucks were chosen regarding ap-
propriate capacities and were assigned to the right routes.  

Table 3. Costs of transportations between bike stations

Origin i
Destination j

1 2 3 4 5 6 7 8 9 10 11 12 13
1 – 2800 2100 1700 1100 3900 1300 3700 3300 3800 1700 2000 600
2 3000 – 1200 1200 2100 1400 3800 2000 1800 1400 1700 1600 2500
3 1800 1400 – 800 900 2400 2600 3300 2400 2400 1000 400 1300
4 1900 1200 600 – 1000 2200 2900 2900 2800 2200 600 1000 1400
5 1400 2100 1300 900 – 3100 2300 3800 2800 3100 1000 1300 1100
6 4600 2100 2800 2900 3700 – 5400 1600 2900 1000 3400 3200 4100
7 1600 3300 2500 2100 1200 4200 – 5000 3800 4200 2200 2400 1300
8 3600 1900 2900 2900 3800 1000 3800 – 1300 2000 3400 3100 3500
9 3100 1600 2600 2600 2800 1800 3400 1500 – 2700 3100 2000 3000

10 4200 1500 2700 2300 3200 600 4500 1500 2000 – 2800 3000 3700
11 1600 1700 1000 600 400 2700 2600 3400 2900 2700 – 900 1200
12 2500 1000 700 1100 1600 2400 3300 2900 2600 2400 1200 – 2000
13 600 2600 1800 1400 1200 3500 1600 4300 3000 3500 1500 1700 –
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On the other hand, the most proper amount of initial 
commodities starting from depots and deliverable com-
modities ending to the depots were determined. Finally, 
the optimized program of pick-up and drop-off for each 
commodity in each station were determined. Figures  1 
and 2 schematically show the optimized solution in time 
periods 1 and 2. 

As it can be seen from Figures 1 and 2, results show 
that different routes and various trucks were determined 
in the optimized solution for rebalancing PBRP in two 
periods. In both periods, trucks 1 and 3 were employed 
to rebalance the stations. Truck 1 starts from the station 
1 (depot 1) and rebalances the stations 7, 5, 12 and 3, re-
spectively, and ends to the station 13 (depot 2). This truck 
is also used in period 2 starting from station 13 and end-
ing to station 1. Truck 3 is the another truck employed in 
period 1, which starts from station 13 passing stations 9, 
8, 6, 10, 2, 4 and 11, and ends to the station 13. This truck 
is also employed in period 2 starting from and ending to 
the station 13 passing stations 7, 3, 12, 2, 4, 11 and 15, re-
spectively. Totally, the number of 26 and 8 bikes are picked 
up from the depots, also, 2 and 26 bikes are delivered to 
the depots in periods 1 and 2. 

3. Discussion

Although a numerical example was considered in this pa-
per to explain the efficiency of the proposed mathemati-
cal model, discussion on the optimized solution from 
different angles illustrates the features of the model and 
highlights its strengths and weaknesses. In this section, 

Table 4. The demand for each type of bikes in time periods 

Origin i
Type 1 Type 2

t = 1 t = 2 t = 1 t = 2
1 (depot) 0 0 0 0

2 –1 5 –3 5
3 –3 1 –3 4
4 –1 3 2 1
5 –3 –4 –1 –5
6 1 1 –2 1
7 –4 3 4 –3
8 –2 –1 2 4
9 –1 0 –4 –4

10 –5 2 1 1
11 –1 3 –2 5
12 5 –1 –3 –3

13 (depot) 0 0 0 0

Table 5. First position, implementing costs, distance restrictions 
and capacities for trucks 

Truck 
k

First 
position

Implementing 
cost pk

Total distance 
restriction bk

Capacity 
b
ks

1
ks 2

ks
1 Depot 1 200000 11000 15 15
2 Depot 1 250000 13000 20 20
3 Depot 2 200000 11000 15 15
4 Depot 2 250000 13000 20 20

Figure 1. The final solution for time period 1

Figure 2. The final solution for time period 2
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several analysis are done to discuss more about the results 
and underline how the final results obtained. In the first 
part, some important steps to reach the final solution are 
tracked. In continue some discussions are done through 
some targeted changes in the model and parameters. 

As it is obvious, demand of each station and conse-
quently visits program have a significant impact on deci-
sions related to routing and select the suitable trucks for 
rebalancing. Therefore, the first analysis on the results is 
designed so that what would be the optimal solution if 
truck routing is only based on the transportation cost cij 
regardless of stations’ demands. In this case, the objective 
is only finding the shortest path from a depot to another 
passing all stations. Figure 3 shows the final solution based 
on the shortest possible path. 

Considering distance restriction bk may impact on 
the final solution. If this limitation (Eq. (15)) is withdrawn 
from final model, the results show that the final solution is 
affected. The objective function in this case equals to the 
amount of 428410, which is better than the original prob-
lem because one truck is employed for each period. This 
means that the truck distance restriction play a decisive 
role in determining the optimal solution. Figure 4 shows 
the optimal solution in this case. 

In this part of discussion, several numerical exam-
ples expanded from available datasets are provided. In our 
attempt to solve real-world instances, we used real data 
from Dell’Amico et al. (2014) and expanded the data based 
on the model. The cities included in our study are: Bari, 
Bergamo, Parma, Reggio Emilia, Treviso and La Spezia 
in Italy. We also used some randomly generated instances 
to show the quality of the proposed model. We generated 
9 instances in total that are summarized in Table 6 and 
results are presented in Table 7. All instances are available 
in supplementary file.

Conclusions

The development of public urban transportation systems 
have a strong role in modern societies. Reduce noise and 
air pollution, reduce congestion level, reduce the cost of 
transportation of citizens and increase safety are just some 
of the notable points in the use of these systems. PBRP is 
one of these systems that although have designed since 
more than 50 years ago, its prosperity has recently started 
around the world. Meanwhile, this issue has attracted the 
attention of researchers more and more to help optimize 
the use of these systems.

Figure 3. The simple routing based on the shortest possible path

Figure 4. The solution not considering distance restrictions
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Truck 1

Table 6. The instances of expanded datasets and numerical examples

City |V| min{qi} avg{qi} max{qi} dev{qi} min{cij} avg{cij} max{cij} dev{cij}
NE.1 10 –10 0.06 12 5.74 139 392.24 874 157.06
NE.2 11 –7 –0.77 5 3.14 139 374.98 616 112.62
NE.3 12 –9 0.55 11 6.50 220 559.35 879 166.75
Bari 13 –5 –0.43 5 3.17 400 2283.97 5400 1067.62
Reggio Emilia 14 –10 –0.08 10 5.39 300 2095.05 5500 1110.44
Bergamo 15 –12 0.25 12 6.57 100 1532.86 3200 631.94
Parma 15 –10 –0.04 9 4.59 200 3121.48 8800 1857.86
Treviso 18 –8 0.18 8 4.27 340 3510.99 6462 2133.37
La Spezia 20 –7 0.23 9 4.24 193 2525.90 4987 1291.00
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In this paper, we look at the PBRP from the field 
of rebalancing bike stations viewpoint. A mathematical 
model has developed for rebalancing the stations, which 
distribute various commodities in several time periods 
implementing special identical trucks. Some assumptions 
have considered in this research, which represent the 
framework of the proposed model as follows:

 – the distance between stations was used as an esti-
mate on the transportation cost;

 – all the stations’ demands must be covered in the 
relative period; lack or surplus for bikes has not 
defined.

 – demands for each bike type cannot be fulfilled by 
other types;

 – all stations must be visited exactly once in each pe-
riod whether they had demands or not;

 – all visits and loading/unloading program for rebal-
ancing are done in the prescribed limited time;

 – simply assumed that required trucks are available 
in each depot for whole time periods;

 – each truck has unique space for each bike type and 
each bike must be put on its defined space;

 – there are enough bikes to the required size in the 
depots and trucks have no problem to pick up 
them;

 – there is enough space in depots for storing addi-
tional trucks and bikes.

In order to do future researches and develop the pro-
posed mathematical model some suggestions are stated as 
follows:

 – develop mathematical models through eliminating 
some of the mentioned assumptions;

 – in this paper, a numerical example was used; it 
would be worthwhile if the model be implemented 
in a case study;

 – the numerical example in this paper was solved by 
Lingo 9.0 software and an exact solution was ob-
tained; this problem is NP-hard and if this model is 

considered for real cases, meta-heuristic methods 
should be used to solve the problem;

 – the present model is a single-objective to reduce 
the costs, while, multiple objectives including 
determining the level of service, sustainability in 
transportation, etc. can be considered.
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