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Abstract. This paper presents a new statistical model for the identification of dangerous locations (subsections) on 
roads, also known as hotspots. The model is based on continual analysis of variance. The variance parameter has the 
potential for the synthesis of quantity and quality, especially regarding traffic accident frequencies and the consequenc-
es of traffic accidents within subsections and the significant comparison of the produced synthesis. The sensitivity of 
the suggested model can be adjusted with the level of disjunction and the length of subsections. A practical application 
of the new model is performed using a sample of 8442 traffic accidents, of which 6079 were Property Damage Only 
(PDO) accidents, 2041 resulted in injuries and 322 resulted in fatalities. The sample is for the period of 2001 to 2011 
and is from an ‘I class’ two lane rural state road in the Serbia with total length of 284 kilometres. The results acquired 
using the continual analysis of variance were compared with previous results from four HotSpot Identification Methods 
(HSID) that are also based on the frequency of traffic accidents. 
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Introduction

Managing hotspots is one of the most important topics 
of road traffic safety, and the identification of hotspots 
(black spots) and their ranking represents a frequent 
subject of discussion among researchers. In the literature 
(Montella 2010; Anđelković et al. 2014), the identifica-
tion of hotspots represents the first step in the process 
of road safety management.

Considering the nonexistence of a unique and 
generally accepted model (with universal benchmarks) 
for the identification and classification of hotspots, for 
the purpose of this research, a new statistical model is 
developed, which is based on the frequency of traffic 
accidents that are spatially and temporally distributed 
on certain road sections and subsections. Statistical-
probabilistic methods are unavoidable in traffic safety 
research. The large number of applied models confirms 
it: Poisson models (Geedipally et  al. 2014), negative 
binominal models (Miranda-Moreno et al. 2007; Ferrei-
ra, Couto 2013; Geedipally et al. 2014), generalized neg-
ative binominal models (Miaou, Song 2005; Russo et al. 

2014), log-normal Poisson models (Miranda-Moreno 
et  al. 2007), empirical Bayes models (Heydecker, Wu 
2001; Miaou, Song 2005; Jiang et al. 2014), hierarchical 
Bayes models (Tunaru 2002), and many other models 
(Carey 2001). By using these models, prioritization is 
often based on the potential for reduction of accident 
risk and finding the locations of greatest risk.

Numerical markings can describe the number of 
accidents, the severity of consequences, the number of 
injured people and other parameters that characterize 
traffic accidents. The statistics of traffic accidents is the 
best data for the identification of dangerous locations. 
Based on the statistics of traffic accidents, it is possi-
ble, apart from identifying the locations were traffic 
accidents are frequent, to conduct a far more sensitive 
analysis of other significant factors connected with the 
occurrence of traffic accidents, and that analysis can in-
clude: determining the interaction between the vehicle 
characteristics, road characteristics and characteristics of 
individuals involved in traffic accidents (Savolainen et al. 
2011; Sokolovskij, Prentkovskis 2013); determining the 
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road conditions, type of accident, and age and gender of 
the driver (Manner, Wünsch-Ziegler 2013; Russo et al. 
2014); determining the effects of speed, congestion and 
horizontal curvature of the road (Wang et al. 2013); the 
behavior of young drivers, presence of passengers and 
involvement of vulnerable participants in traffic (Weiss 
et al. 2014; Alver et al. 2014); and many other factors.

It is important to emphasize that we are analys-
ing random events, and it is well known that statisti-
cal methods that include random events provide certain 
regularities or patterns, especially when large numbers, 
i.e., large groups, are involved. Continual variance analy-
sis was not used previously for the identification of hot-
spots, however, the analysis of variance was used within 
research regarding road traffic safety (Miaou, Lord 2003; 
Lord 2008; Jin et  al. 2008; Antić et  al. 2013; Qu et  al. 
2014).

The main goal of this paper is the introduction of a 
new model based on continual variance analysis for the 
identification of dangerous road subsections. The pri-
mary goal of the proposed method is the identification 
of hotspots, that is, the discovery of the most unsecure 
subsections with the highest concentrations of traffic ac-
cidents. A secondary goal is the identification of the saf-
est subsections with the lowest concentrations of traffic 
accidents. Apart from that, this paper also contains a 
comparative analysis of the presented method and four 
HotSpot Identification Methods (HSID).

1. Methods

Most researchers agree that the empirical Bayes method 
is currently the most reliable method for the identifi-
cation and ranking of hotspots (Heydecker, Wu 2001; 
Tunaru 2002; Miaou, Song 2005; Montella 2010; Ague-
ro-Valverde 2013; Gregoriades, Mouskos 2013; Yu et al. 
2014; Washington et  al. 2014). Bayesian statistics in-
cludes three elements: (1) the previous distribution of 
accidents (historical data about accidents), (2) the distri-
bution probability, and (3) additional (anticipated) dis-
tributions. It is most often based on the assumption that 
the occurrence of accidents follows a Poisson distribu-
tion and that the probability distribution of accident lo-
cations follows a gamma distribution (Cheng, Washing-
ton 2005). A Poisson distribution, in most cases, is not 
appropriate for accident data. The assumption made in 
simple Poisson models is that the mathematical expec-
tations and variance are equal. Heterogeneity is mostly 
shown in the form of over dispersion, which implies that 
the variance is higher than the expectations. There are 
models that attempt to overcome that shortcoming, in-
cluding hierarchical models (Hinde, Demétrio 1998; El-
Basyouny, Sayed 2010), gamma models (Anastasopoulos, 
Mannering 2009; Connors et al. 2013; Zou et al. 2013), 
negative binominal models (Poch, Mannering 1996; 
Hinde, Demétrio 1998; Russo et al. 2014), log-normal 
models (Lord, Miranda-Moreno 2008; Connors et  al. 
2013) and other models (for example Miaou, Lord 2003).

Complex convolution of Poisson and gamma dis-
tributions is founded on the long-term mean value of 

accidents, which contains in its weighting factor the 
mandatory application of variance (Hauer 1997; Har-
wood et al. 2000; Vistisen 2002; Shen, Gan 2003). Vari-
ance is usually observed in three ways: as a fixed value; 
a varying function of the location characteristics; and as 
a value that varies randomly. 

Generally, variance as a second central moment 
represents a strong statistical parameter introduced 
into the entire balance. It can be said that the greatest 
achievement of the use of variance is realized in the 
Pollaczek–Khinchine formula, which shows the influ-
ence of the variance on system function. Additionally, 
the variance indirectly introduces the Annual Average 
Daily Traffic (AADT) in the identification and ranking 
of hotspots, which is not the case here. The authors’ idea 
is based on the fact that in poor countries and in devel-
oping countries, AADT data are often unavailable or in-
accurate, so the authors want to create a model that can 
be used to identify hotspots in countries lacking precise 
AADT data. In that way, decision makers in such coun-
tries could use this simple model and the accompany-
ing software to relatively quickly obtain classified and 
ranked hotspots without AADT data, and they would 
be able to allocate resources to the most dangerous lo-
cations and accordingly improve the level of road traffic 
safety. The inclusion of AADT data is one of the goals of 
a future expansion of the proposed model.

Often, the dominant characteristic in the identifi-
cation of dangerous places is based on socio-economic 
factors (weighted factors) that represent a simple math-
ematical apparatus based on weights (weight factors) 
that statistically take into account only mathematical 
expectations. 

The method of continual variance analysis repre-
sents a new model that can use weights and is based 
on the concept of sequentially searching for hotspots; 
that is, it is also a variance analysis model. The proposed 
model is conservative, and it is observed within the se-
lected road (group).

1.1. Description of the Mathematical Model
The search for dangerous locations on a particular road, 
which is divided into smaller number of subsections, is 
based on observing two groups with mathematical ex-
pectations ε1 and ε2 with no significant difference (no 
difference between groups). When one variable is taken 
and then compared the variance from both groups, by 
using ANalysis Of the VAriance (ANOVA) of one group 
against the other group, certain values are obtained. 
The concept of a ‘continual’ variable synthetically con-
tains factors that, in this case, are not differentiated and 
provide a complete platform. However, it can relate to 
a disjunctive subsection and create the possibility of a 
sensible calibration of the location if the subsections are 
overlapped. The simplest concept of a disjunctive sub-
section is taken to be an example of a model with con-
tinual variance analysis.

Let’s consider a certain road, or more accurately, a 
section of a road, where during an observation period, 
S (sum) accidents happened. Of those, there were SPDO 
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accidents with Property Damage Only (PDO), SINJ ac-
cidents with injuries and SFAT accidents with fatalities. 
The total number of accidents has to comply with the 
following condition:

S = S + S + SPDO INJ FAT .  (1)

By dividing the (total) section into n disjunc-
tive subsections, a sequence is created that distributes 
accidents according to the index of each subsection 
(nPDO(k) – number of traffic accidents with PDO in sub-
section k; nINJ(k) – number of traffic accidents with inju-
ries in subsection k; nFAT(k) – number of traffic accidents 
with fatalities in subsection k).
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The numbers of accidents in each subsection simul-
taneously provide a special sequence of accidents in a 
section that contains complementary values of subsec-
tions (Figs 1 and 2), and those are:

 – when the number of accidents with mate-
rial damage is excluded from the section, 
the complementary value at subsection k is 

( ) ( )= S −PDOPDO k PDO kN n ; 
 – when the number of accidents with injuries is 
excluded from the section, the complementary 
value at subsection k is ( ) ( )= S −INJINJ k INJ kN n ; 

 – when the number of accidents with fatalities is 
excluded from the section, the complementary 
value at subsection k is ( ) ( )= S −FATFAT k FAT kN n

 
. 

Fig. 1. Display of observed groups with traffic accidents

Fig. 2. Distribution of traffic accidents at disjunctive subsections
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This procedure, from the basic group of ac-
cidents in a section { }S S S,  ,  PDO INJ FAT , separates 
two groups: (1) the group of accidents in a subsec-
tion k ( ) ( ) ( ) ( ){ }= ,  ,  sd k PDO k INJ k FAT kA n n n  and (2) the 
complementary group in a subsection k ( ) ( ) ( ) ( ){ }= ,  ,  com k PDO k INJ k FAT kA N N N

( ) ( ) ( ) ( ){ }= ,  ,  com k PDO k INJ k FAT kA N N N .

If each accident with PDO is assigned a numerical 
marking lPDO, each accident with injuries (INJ) a nu-
merical marking lINJ and each accident with fatalities 
(FAT) a numerical marking lFAT, the groups of accidents 
at a subsection Asd(k) and the complementary groups 
Acom(sd) can be written in the following form:
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The mathematical expectation of the numerical 
markings of accidents and the variance of the numeri-
cal markings of accident in the total group on the entire 
observed section are equal to:
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The groups Asd and the complementary group 
Acom(sd) have the following parameters.

The mathematical expectation of the numerical 
markings of accident group Asd(k) at subsection k is:
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The mathematical expectation of the numerical 
markings of accidents in the complementary group 
Acom(k) is:
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The variance of the numerical markings of acci-
dents in group Asd(k) at subsection k is:
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The variance of the numerical markings of acci-
dents in the complementary group Acom(k) is:
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This method for calculating the parameters of 
mathematical expectation and variance is conservative 
in comparison to the total sample-section or road we 
are testing. 

The group of accidents at a subsection usually has 
a much smaller number of data points than the comple-
mentary group:

( ) ( ) ( )+ + <<PDO k INJ k FAT kn n n

( ) ( ) ( )+ +PDO k INJ k FAT kN N N .  (18)

We can expect that the number of data points on 
the complementary section will be stable and smaller 
than – but approximately equal to – the total number of 
accidents at the observed section:

( ) ( ) ( )+ +
≈

S + S + S
1

PDO k INJ k FAT k

PDO INJ FAT

N N N
.  (19)

In case that there are no accidents on the subsec-
tion, the complementary group is equal to the basic 
group:

( ) ( ) ( )+ + = ⇔0PDO k INJ k FAT kn n n

( ) ( ) ( )+ +
=

S + S + S
1

PDO k INJ k FAT k

PDO INJ FAT

N N N
.  (20)

The complementary group has values of numeri-
cal markings and variance that are similar to the values 
of the basic group that have a small variation of math-
ematical expectation and variance:

S ≈ kE E ; S ≈ kV V ,

( )∀ ∉ 1,k n .  (21)

The parameters of the numerical markings of a 
subsection ( )ε ,k kv  will have variation values of math-
ematical expectations and variance that will be directly 
influenced by the number of accidents and their associ-
ated numerical markings.

Along with the existence of the variance of the 
group of numerical markings of accidents at a subsec-
tion k and the complementary group, a null hypothesis 
can also be postulated regarding the equality of the 
mathematical expectations or variance of numerical 
markings of accidents with an importance threshold α. 
This hypothesis can be postulated in relation to the total 

group:

( )S α
ε =kH E ; ( )S α

=kH v V ,  (22)

or, in relation to complementary group:

( )αε =k kH E ; ( )α=k kH v V .  (23)

However, it should be noted that the group of nu-
merical markings of subsection is a subgroup of a total 
group. Because of that, specificities (factors) that lead to 
accidents at a subsection exist even in the total group. 
If null hypotheses are placed in relation to the comple-
mentary group, then the specificities of the subsection 
are preserved and present even in the complementary 
group. This fact is key for the selection of the null hy-
pothesis based on the parameters of the subsection and 
complementary group.

The research of the hypothesis regarding the equal-
ity of mathematical expectations is somewhat in accord-
ance with the previously promoted weighted methods 
(PIARC 2004; Zein 2004; DoT 2006; Oh et  al. 2010; 
Montella 2010; Vadlamani et  al. 2011). However, it is 
known that the tests based on variances are more sen-
sitive than tests based on mathematical expectations. 
Thus, the final choice is testing of the null hypothesis of 
the variance of a group of numerical markings from the 
subsection and complementary group:

( )α=k kH v V .  (24)

The problem arising from a subsection without ac-
cidents represents a potential advantage of the above 
mentioned approach. For the case in which there were 
no accidents on the subsection, the mathematical expec-
tation and the variance of the numerical markings are 
equal to zero. The mathematical expectation and vari-
ance of the numerical markings of the complementary 
group are equal to those of the total group:

ε = ∧ = ⇔0 0k kv

S S= ∧ =k kE E V V .  (25)

To use this circumstance, it is necessary to attach 
the number ‘0’ to the subsections that have no recorded 
accidents in databases of traffic accident data, which 
is explained in detail in the following paragraph. That 
completes the statistical group of accidents. For each 
subsection without traffic accidents, any variance test 
rejects the null hypotheses. The significant difference of 
the variance goes in favour of the desired safety. 

The concept of testing the null hypothesis is based 
on disjunctive groups, that is, the subsection and com-
plementary group, and it has a dual interpretation. If 
the null hypothesis is rejected, the subsection can be 
much more safe or unsafe. Significant safety is observed 
in cases with small numbers of accidents, while signifi-
cant unsafe conditions are observed in cases with large 
numbers of accidents. When traffic accident weights are 
used, significant non-safety can be observed on certain 
subsections even in cases with smaller numbers of ac-
cidents but with more severe consequences. 
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The choice of statistical test for testing the null hy-
pothesis regarding the equality of variances represents a 
key question. It is known that variance tests easily verify 
the null hypothesis if the number of data in the groups 
is small and that they have difficulties identifying the 
null hypothesis when the number of data in groups is 
large, which is the reason to select a large number of 
data. The number of data in groups of numerical mark-
ings of a subsection can be considerably smaller than 
the number of data in the complementary group. That 
brings us to the situation in which the null hypothesis is 
verified for two groups of which one has a small number 
of data and the other has a large number of data. There is 
also an issue when the complementary group has a small 
variation, in which case the null hypothesis is difficult to 
prove. Because of the above mentioned circumstances, a 
preliminary rating of the choice of statistical test could 
not be completed.

We mention one more time that we have adopted 
the application of the standard single-factor variance 
analysis (that is based on F-distribution), where, in this 
case, the continual factor is the length of the subsection, 
which must have a constant length; and the variable fac-
tor is the number of traffic accidents.

1.2. Source of Data
The model is tested with and based on official statistical 
data from the Ministry of Internal Affairs (Serbia) Traffic 
Police Department database. Data regarding the conse-
quences, time of occurrence and location of traffic acci-
dents (kilometre and meter of the road where accidents 
happened) were taken from the database. Modification 
of the existing categorization of traffic accident types 
needed for the research was made within the received 
database, with linear numerical accident markings as-
signed by bijection. This adjusted way of classifying ac-
cident types can be observed as an elementary weighting 
of traffic accidents. For research purposes, in an effort to 
complete a statistical group, a numerical marking of “0” 
is assigned for each subsection where, during one year, 
there were no traffic accidents. In this way, a statistical 
group is produced with adjusted traffic accident types 
joined to a certain kilometre section where the observed 
traffic accident occurred. The database completed in this 
manner for the application of the suggested model offers 
the possibility to choose different subsection lengths as 
well as different time periods of observation. 

1.3. Selection of Road (Section) for Observation
In prior research (Lipovac et al. 2010) it was confirmed 
that in the Serbia on the ‘I class’ state road of Belgrade–
Ribarice, which is 284 km in length, 27.5% of the kilo-
metre-long sections were highly dangerous, so this road 
was chosen for analysis and application of the model. 
On the other hand, the selected road has a geo-strate-
gic importance because it connects central Serbia with 
Montenegro and Southern Serbia–Kosovo. The selected 
road is considered to be a rural road (in a rural area). 
The speed limit on the selected road does not exceed 
80 km/h.

1.4. Selection of the Subsection Length  
for Application of the Suggested Model
There is no clear indicator of the best length for de-
termining dangerous segments or road sections, nor 
can the optimal length be defined. Lengths are chosen 
to limit heterogeneity within each road segment, but 
certain authors recommend constant lengths because 
interpretation of accident data can be complicated for 
different road lengths. Stern and Zehavi (1990) divide 
the road into 1-km-long sections, without any special 
reason for those lengths. Elvik (1988) suggests defining 
a dangerous road section so it is always the same length 
by moving a sliding window (slider) of a certain length 
along the road. Other researchers have used a road seg-
mentation approach (Abdel-Aty, Radwan 2000; Cafiso 
et al. 2008). They often define road segments with fixed 
lengths or simply use the distance between two main 
intersections. Sadeghi et  al. (2013) identified and seg-
mented homogenous road sections based on accident 
factors.

Just as others have assumed in their work (AASHTO  
2010; Harwood et al. 2010; Tegge et al. 2010) that high-
ways in America have the same functional form, we 
assumed in this paper, just without the parameter esti-
mate, that the entire length of a two-lane road has the 
same or approximately the same functional form; fur-
ther, a constant subsection length is used, following the 
experience of others (Okamoto, Koshi 1989; Stern, Ze-
havi 1990; Abdel-Aty, Radwan 2000; Cafiso et al. 2008).

The proposed model can be applied with a constant 
subsection length. The selection of the subsection length 
is arbitrary. The model is flexible, and by using software, 
different subsections of interest can be studied. This pa-
per presents the application of subsections with a con-
stant length of 1 km. A constant subsection length less 
than 0.5 km could also be considered, as well as 0.5, 2, 
3, 4, 5 km, or practically any length, using the software 
that was designed for this purpose. Within the suggested 
methodology there is an option to use the approach of 
the sliding moving window (Kwon et al. 2013).

1.5. Determining the Observational Time Period
The time period for the identification of dangerous loca-
tions in Serbia, within which every accident analysis is 
successfully completed is 5 years, and a detailed analysis 
and case studies happened within the last year. We are 
also aware that the most often used analysis period for 
the identification of dangerous places is from 3 to 5 years 
and that periods longer than 10 years should not be 
used; however, because of the increased sample size and 
estimates of the proposed model and verification of its 
capacity, a representative period of 11 years is selected.

It is well known, that variance tests can easily verify 
the null hypothesis if the number of data in groups is 
small and that the tests have a difficult time verifying 
the null hypothesis when the number of data in groups 
is large. We use this as justification for the use of such a 
long period of time as 11 years (2001–2011). This time 
period encompassed 6079 traffic accidents with PDO, 
2041 traffic accidents with injuries and 322 traffic ac-
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cidents with fatalities, which in total is 8442 traffic acci-
dents (Table). The use of this long time period is further 
justified by plans for a future comparison (research) of 
certain safety parameters of this section of a two-lane 
road to a highway with similar parameters whose con-
struction began in 2012. 

Because of the large number of data used within 
this study, to avoid slow and manual data processing, 
and to automate the data processing, all data are pro-
cessed in mathematical software specially designed for 
this purpose, but also filtering of the anomalous obser-
vation is not taken into account like it was case in re-
search performed by Russo et al. (2014), so it is limita-
tion of presented method.

2. Results

By applying the mathematical expectation-mean value 
ε, variance v and F value in a continual analysis of var-
iance-ANOVA, the primary and secondary goals of the 
proposed method are achieved. During testing of the 
proposed hypothesis H(vk = Vk)α, the variance v, plays 
an important role in determining a large significance 
(significance threshold) between the observed subsec-
tion k and the complementary group K (Fig. 1). For the 
entire observed group of all 284 1-km-long subsections 
and the adopted significance (significance threshold) 
of α  = 0.051, for the continual variance analysis, two 
disjunction data groups are produced, that is, two sub-
section groups. The research produced 102 subsections 
that are significantly different from the complementary 
group for α < 0.05 and 182 subsections (white circles2) 
that are not significantly different from the complemen-
tary group for α ≥ 0.05. Within the 102 subsections 
that are significantly different from the complementary 
group, there are 67 subsections that are significantly safe 
(green circles2) and 35 subsections that are significantly 
not safe (red circles2). All of these values were previ-
ously calculated by applying the described method in ac-
cordance with the adopted significance threshold of α = 
0.05. The mathematical expectation values and variance 

1 Adopted limit (level) of significance in this paper is 0.05, but 
0.01 or some other can also be adopted.

2 The number of circles (subsections) of all colors in Figs 4–6 
does not match completely with the listed exact calculated 
number of circles (subsections) because of complete overlap 
of a certain number of circles (subsection) with the same va-
lues.

values shown in Fig. 3 represent the first filter, that is, 
the first stage in identification, which does not include 
all potentially significant subsections. The approximate 
limit values that note the significance of subsections are 
for values ε < 0.9 (significantly safe – green circles) and 
for ε > 1.3 (significantly not safe – red circles), while for 
group values ε {0.9, 1.3} we have insignificant subsec-
tions (white circles). 

The F values (ANOVA) and the values of math-
ematical expectations shown in Fig.  4 represent the 
second filter, that is, the second stage of identification 
of potentially significant subsections. Significant subsec-
tions are indicated by F > 4, and for ε < 0.9, we have sig-
nificantly safe subsections (green circles) and for ε > 1.3 
we have significantly not safe subsections (red circles), 
for the significance threshold of α < 0.05. Considering 
that there are subsections with the same mathematical 
expectation within the significant subsections, the F val-
ue of ANOVA will note those subsections with higher 
numbers of accidents in comparison to those with lower 
numbers of accidents, as illustrated by higher F values of 
the continual analysis of variance – ANOVA.

The F values of ANOVA and the variance values are 
shown in Fig. 5 and represent a third and final filter, that 
is, a final stage of identification of potentially significant 
subsections. In accordance with the primary goal of the 
paper (excluding non-significant subsections  – white 
circles), the significantly unsafe subsections (red circles) 
are displayed, while the significantly safe subsections 
(green circles) are excluded from the figure. 

Fig. 6 shows a unified three-dimensional zone im-
age of all three observed values (ε, v and F) for all sub-
sections of the observed group (road). The average value 
of the intensity of traffic accidents and the variance are 
independent variables, and the F value is a dependent 
variable. In accordance with the F values of ANOVA, 
a visual zone classification is created whereby all sub-
sections are included with their respective colours, such 
that darker shades of each colour indicate significantly 
safer or more unsafe subsections. Considering the first 
dimension ε, framed by a yellow rectangle in Fig. 6 in-
dicating the limiting values of ε as represented in Fig. 3, 
the group is divided into significantly safe subsections, 
significantly unsafe subsections and subsections that do 
not fall into either group. The same approach can be 
used to display the division of the group for the other 
two dimensions v and F within their respective limit val-
ues, as in Figs 4 and 5.

Table. Data and variations that were used in the number of Traffic Accidents (TA) for the period of 2001–2011

TA per one kilometre Total number of TA for the section

Type of TA Min. number of TA per 
accident type

Max. number of TA per 
accident type Mean Total number of TA per 

accident type [%]

PDO 0 222 21.40 6079 72.01
TA with injuries 0 91 7.19 2041 24.18
TA with fatalities 0 19 1.13 322 3.81
TA with casualties 0 110 8.32 2363 27.99
Σ 0 313 29.73 8442 100
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In this model, there is a calibration of weight acci-
dent factors. In this initial presentation of this model all 
factors are assumed to be linear (values 0, 1, 2, 3). They 
can be calibrated as an exponential, which would lead 
to an expansion of the zone of ‘undetermined subsec-
tions’ or as a logarithm, which would decrease the vari-
ance of the heterogenic group of accidents and establish 
a clearer border between the statistically ‘undetermined’ 
and unsafe subsections. A calibration was not done for 
this initial presentation of the model, and the previously 
described elementary, linear classification of traffic ac-
cidents was maintained. The reason is that this calibra-
tion enables a comparative analysis of the elementary 
conditions of the continual variance analysis with other 
HSID methods.

3. Discussion with Comparative Analysis

The suggested method SM is based on the frequency 
of traffic accidents, and because of that, a comparative 
analysis is completed using only methods that are also 
based on the frequency of traffic accidents. The same, 
previously mentioned accident data were used for the 
period from 2001 to 2011. The method is compared with 
the following HSID: ranking the frequency of accidents 
based on the total number of accidents CF; ranking 

the frequency of accidents based on the total number 
of accidents with casualties CF1; ranking the frequency 
of accidents with PDO EPDOn with ordered numerical 
markings; and ranking the frequency of accidents with 
only equivalent PDO EPDOp with a weighted number of 
accidents (Montella 2010).

3.1. Results of the Comparison with HSID Methods
The identification of potentially dangerous places is 
completed in accordance with each of the previously 
mentioned HSID methods. Then, a comparison is made 
of the significantly safe subsections, whose number is 
limited to the number of subsections that, according to 
the suggested methodology, have a significance factor 
below (α < 0.05). In this case, 35 subsections are identi-

Fig. 5. Display of values F and v for subsections  
that are significantly different

Fig. 6. Common three-dimensional display of ε, v  
and F values for all observed subsections
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fied to be the least safe according to the suggested meth-
odology, i.e., using the comparative methods described 
above. The results of the comparison of the suggested 
method with the other HSID methods show, to a certain 
extent, both good and bad overlaps in the number of 
subsections identified to be potentially least safe. The re-
sults of the suggested method mostly match (with 62.9% 
matching), those of the method for weighting traffic 
accidents EPDOp currently used in the Serbia; 28.6% 
match those for the method using the total number of 
traffic accidents CF, and there is a 54.3% match with the 
method using the total number of traffic accidents with 
casualties CF1. 

The suggested method, whose input accident data 
rely on an ordered numerical marking of traffic acci-
dents, largely matches the EPDOp weighting method 
(with method CF1 the next closest match), which indi-
cates that the suggested method adequately represents 
the seriousness of traffic accidents and that it also in-
cludes the social costs of traffic accidents. 

Conclusions

Within this study, a new methodology for the identifica-
tion of dangerous locations on roads (disjunctive sub-
sections) is presented, which uses the values of math-
ematical expectations ε, variance values v and F values 
in a continual analysis of variance  – ANOVA. Due to 
the testing of the proposed hypothesis H(vk  = Vk)α, a 
comparison of the variance values V of each observed 
subsection k and the variance v of its complementary 
group K played an important role in determining the 
significance values, whose adopted limit in this paper 
was α = 0.05.

The limiting value for significance was α < 0.05, 
and we can increase or decrease the value if we wish to 
identify a larger or smaller number of potentially dan-
gerous places. In other words, the problem of the wide 
zone of ‘undetermined’ subsections is solved by increas-
ing the significance threshold, which shrinks the zone of 
‘undetermined’ subsections.

The significantly safe and unsafe subsections are 
determined based on limiting values of the mathemati-
cal expectation ε and F value for a continual analysis 
of variance – ANOVA, whose limit values we can also 
reduce and increase according to predetermined needs.

For the purpose of evaluating the results, the output 
of the suggested method is compared with four HSID 
methods. The comparison showed that the number of 
significant unsafe subsections identified by the suggested 
method largely matches those of the weighting methods 
EPDOp (62.3%), CF1 (54.3%), and EPDOn (34.3%), and 
the unweighted method CF (28.6%), which tells us that 
the suggested method (SM) has potential and can form 
the basis of a modern method for the identification of 
unsafe subsections that also accounts for the frequency 
and severity of accidents. At the same time, the suggest-
ed method provides a very good visualization, such as in 
Figs 3–6, of which subsections are significantly different 
(safest and most unsafe subsections) and which subsec-
tions are not significantly different. 

Similar to the research of Bíl et al. (2013), the sug-
gested method illustrated great simplicity regarding the 
input data necessary for analysis because it uses only the 
frequency and type of traffic accidents along with the 
kilometre markings of the road where the accident took 
place. In addition to the application of the method to 
rural areas (open roads), there is the possibility for test-
ing, verification and expansion of the model for other 
roads with different characteristics (roads within city 
limits, highways, roads reserved for motor vehicles and 
other roads).

Further development of the presented method 
needs to be directed towards calibration of the observed 
numerical values, optimization of the subsection length 
(the length of subsection influences the variance value) 
and towards the application of continual analysis of vari-
ance on non-disjunction groups of subsections. 

Finally, by presenting this method, we wish to at-
tract the attention of other researchers, opening the door 
for more reliable interpretations and evaluations of the 
quality of results based on traffic accident frequency in 
an effort to identify dangerous locations (subsection) on 
roads.

References

AASHTO. 2010. Highway Safety Manual. 1st edition. Ameri-
can Association of State Highway and Transportation Of-
ficials (AASHTO), Washington, DC.

Abdel-Aty, M. A.; Radwan, A. E. 2000. Modeling traffic ac-
cident occurrence and involvement, Accident Analysis & 
Prevention 32(5): 633–642. 
https://doi.org/10.1016/S0001-4575(99)00094-9 

Aguero-Valverde, J. 2013. Full Bayes Poisson gamma, Poisson 
lognormal, and zero inflated random effects models: com-
paring the precision of crash frequency estimates, Accident 
Analysis & Prevention 50: 289–297. 
https://doi.org/10.1016/j.aap.2012.04.019 

Alver, Y.; Demirel, M. C.; Mutlu, M. M. 2014. Interaction be-
tween socio-demographic characteristics: traffic rule viola-
tions and traffic crash history for young drivers, Accident 
Analysis & Prevention 72: 95–104. 
https://doi.org/10.1016/j.aap.2014.06.015 

Anastasopoulos, P. C.; Mannering, F. L. 2009. A note on mod-
eling vehicle accident frequencies with random-parameters 
count models, Accident Analysis & Prevention 41(1): 153–
159. https://doi.org/10.1016/j.aap.2008.10.005 

Anđelković, D.; Antić, B.; Pešić, D.; Subotić, M. 2014. Polazne 
osnove u identifikaciji opasnih mesta na putevima [Fun-
damentals for identification of dangerous places on the 
roads], Put i saobraćaj [Journal of Road and Traffic Engi-
neering] (2): 45–52. (in Serbian).

Antić, B.; Pešić, D.; Vujanić, M.; Lipovac, K. 2013. The influ-
ence of speed bumps heights to the decrease of the vehicle 
speed – Belgrade experience, Safety Science 57: 303–312. 
https://doi.org/10.1016/j.ssci.2013.03.008 

Bíl, M.; Andrášik, R.; Janoška, Z. 2013. Identification of haz-
ardous road locations of traffic accidents by means of ker-
nel density estimation and cluster significance evaluation, 
Accident Analysis & Prevention 55: 265–273. 
https://doi.org/10.1016/j.aap.2013.03.003 

https://doi.org/10.1016/S0001-4575(99)00094-9
https://doi.org/10.1016/j.aap.2012.04.019
https://doi.org/10.1016/j.aap.2014.06.015
https://doi.org/10.1016/j.aap.2008.10.005
https://doi.org/10.1016/j.ssci.2013.03.008
https://doi.org/10.1016/j.aap.2013.03.003


487 D. Anđelković et al. Identification of hotspots on roads using continual variance analysis

Cafiso, S.; Di Graziano, A.; Di Silvestro, G.; La Cava, G. 2008. 
Safety performance indicators for local rural roads: com-
prehensive procedure from low-cost data survey to acci-
dent prediction model, in TRB 87th Annual Meeting Com-
pendium of Papers DVD, 13–17 January 2008, Washington, 
DC, US, 1–19.

Carey, J. 2001. Arizona Local Government Safety Project Analy-
sis Model. Final Report 504. Arizona Department of Trans-
portation, Phoenix, AZ, US. 136 p. Available from Internet: 
https://apps.azdot.gov/ADOTLibrary/publications/project_
reports/PDF/AZ504.pdf 

Cheng, W.; Washington, S. P. 2005. Experimental evaluation 
of hotspot identification methods, Accident Analysis & Pre-
vention 37(5): 870–881. 
https://doi.org/10.1016/j.aap.2005.04.015 

Connors, R. D.; Maher,  M.; Wood,  A.; Mountain,  L.; Rop-
kins, K. 2013. Methodology for fitting and updating predic-
tive accident models with trend, Accident Analysis & Pre-
vention 56: 82–94. https://doi.org/10.1016/j.aap.2013.03.009 

DoT. 2006. 2005 Valuation of the Benefits of Prevention of Road 
Accidents and Casualties. Highways Economic Note No. 1. 
Department for Transport (DoT), London, UK. 13 p.

El-Basyouny, K.; Sayed, T. 2010. Application of generalized link 
functions in developing accident prediction models, Safety 
Science 48(3): 410–416. 
https://doi.org/10.1016/j.ssci.2009.09.007 

Elvik, R. 1988. Some difficulties in defining populations of 
“entities” for estimating the expected number of accidents, 
Accident Analysis & Prevention 20(4): 261–275. 
https://doi.org/10.1016/0001-4575(88)90054-1 

Ferreira, S.; Couto, A. 2013. Traffic flow-accidents relationship 
for urban intersections on the basis of the translog func-
tion, Safety Science 60: 115–122. 
https://doi.org/10.1016/j.ssci.2013.07.007 

Geedipally, S. R.; Lord, D.; Dhavala, S.S. 2014. A caution about 
using deviance information criterion while modeling traffic 
crashes, Safety Science 62: 495–498. 
https://doi.org/10.1016/j.ssci.2013.10.007 

Gregoriades, A.; Mouskos, K. C. 2013. Black spots identifica-
tion through a Bayesian networks quantification of accident 
risk index, Transportation Research Part C: Emerging Tech-
nologies 28: 28–43. https://doi.org/10.1016/j.trc.2012.12.008 

Harwood, D. W.; Council, F. M.; Hauer,  E.; Hughes, W. E.; 
Vogt, A. 2000. Prediction of the Expected Safety Performance 
of Rural Two-Lane Highways. Publication No. FHWA-
RD-99-207. Federal Highway Administration (FHWA), 
US Department of Transportation, Washington, DC, US. 
200 p. Available from Internet: https://www.fhwa.dot.gov/
publications/research/safety/99207/99207.pdf 

Harwood, D. W.; Torbic, D. J.; Richard, K. R.; Meyer, M. M. 
2010. SafetyAnalyst: Software Tools for Safety Management 
of Specific Highway Sites. FHWA-HRT-10-063. Federal 
Highway Administration (FHWA). 305 p. Available from 
Internet: http://www.dot.ca.gov/newtech/researchreports/
reports/2010/final_report_task_1601.pdf 

Hauer, E. 1997. Observational Before-After Studies in Road 
Safety: Estimating the Effect of Highway and Traffic Engi-
neering Measures on Road Safety. Pergamon. 289 p.

Heydecker, B. G.; Wu, J. 2001. Identification of sites for road 
accident remedial work by Bayesian statistical methods: an 
example of uncertain inference, Advances in Engineering 
Software 32(10–11): 859–869. 
https://doi.org/10.1016/S0965-9978(01)00037-0 

Hinde, J.; Demétrio, C. G. B. 1998. Overdispersion: models and 
estimation, Computational Statistics & Data Analysis 27(2): 
151–170. https://doi.org/10.1016/S0167-9473(98)00007-3 

Jiang, X.; Abdel-Aty, M.; Alamili, S. 2014. Application of Pois-
son random effect models for highway network screening, 
Accident Analysis & Prevention 63: 74–82. 
https://doi.org/10.1016/j.aap.2013.10.029 

Jin, T. G.; Saito, M.; Eggett, D. L. 2008. Statistical comparisons 
of the crash characteristics on highways between construc-
tion time and non-construction time, Accident Analysis & 
Prevention 40(6): 2015–2023. 
https://doi.org/10.1016/j.aap.2008.08.024 

Kwon, O. H.; Park, M.J.; Yeo, H.; Chung, K. 2013. Evaluating 
the performance of network screening methods for detect-
ing high collision concentration locations on highways, Ac-
cident Analysis & Prevention 51: 141–149. 
https://doi.org/10.1016/j.aap.2012.10.019 

Lipovac,  K.; Jovanović,  D.; Vuksanović, B. 2010. Uporedna 
analiza identifikacije opasnih mesta i rizičnih deonica na 
državnim putevima R Srbije, in X međunarodni simpozijum 
‘Prevencija saobraćajnih nezgoda na putevima 2010’, 21–22 
Oktobar 2010, Novi Sad, Srbija. (in Serbian).

Lord, D. 2008. Methodology for estimating the variance and 
confidence intervals for the estimate of the product of 
baseline models and AMFs, Accident Analysis & Prevention 
40(3): 1013–1017. https://doi.org/10.1016/j.aap.2007.11.008 

Lord, D.; Miranda-Moreno, L. F. 2008. Effects of low sample 
mean values and small sample size on the estimation of 
the fixed dispersion parameter of Poisson-gamma models 
for modeling motor vehicle crashes: a Bayesian perspective, 
Safety Science 46(5): 751–770.
https://doi.org/10.1016/j.ssci.2007.03.005 

Manner, H.; Wünsch-Ziegler, L. 2013. Analyzing the severity 
of accidents on the German autobahn, Accident Analysis & 
Prevention 57: 40–48. 
https://doi.org/10.1016/j.aap.2013.03.022 

Miaou, S.-P.; Lord, D. 2003. Modeling traffic crash-flow rela-
tionships for intersections: dispersion parameter, function-
al form, and Bayes versus empirical Bayes methods, Trans-
portation Research Record: Journal of the Transportation Re-
search Board 1840: 31–40. https://doi.org/10.3141/1840-04 

Miaou, S.-P.; Song, J. J. 2005. Bayesian ranking of sites for en-
gineering safety improvements: decision parameter, treat-
ability concept, statistical criterion, and spatial dependence, 
Accident Analysis & Prevention 37(4): 699–720. 
https://doi.org/10.1016/j.aap.2005.03.012 

Miranda-Moreno, L. F.; Labbe, A.; Fu, L. 2007. Bayesian mul-
tiple testing procedures for hotspot identification, Accident 
Analysis & Prevention 39(6): 1192–1201. 
https://doi.org/10.1016/j.aap.2007.03.008 

Montella, A. 2010. A comparative analysis of hotspot iden-
tification methods, Accident Analysis & Prevention 42(2): 
571–581. https://doi.org/10.1016/j.aap.2009.09.025 

Oh,  J.; Washington, S.; Lee, D. 2010. Property damage crash 
equivalency factors to solve crash frequency-severity di-
lemma: case study on South Korean rural roads, Transpor-
tation Research Record: Journal of the Transportation Re-
search Board 2148: 83–92. https://doi.org/10.3141/2148-10 

Okamoto, H.; Koshi, M. 1989. A method to cope with the ran-
dom errors of observed accident rates in regression analy-
sis, Accident Analysis & Prevention 21(4): 317–332. 
https://doi.org/10.1016/0001-4575(89)90023-7 

PIARC. 2004. Road Safety Manual 2004. Recommendations 
from the World Road Association (PIARC).

https://doi.org/10.1016/j.aap.2005.04.015
https://doi.org/10.1016/j.aap.2013.03.009
https://doi.org/10.1016/j.ssci.2009.09.007
https://doi.org/10.1016/0001-4575(88)90054-1
https://doi.org/10.1016/j.ssci.2013.07.007
https://doi.org/10.1016/j.ssci.2013.10.007
https://doi.org/10.1016/j.trc.2012.12.008
https://doi.org/10.1016/S0965-9978(01)00037-0
https://doi.org/10.1016/S0167-9473(98)00007-3
https://doi.org/10.1016/j.aap.2013.10.029
https://doi.org/10.1016/j.aap.2008.08.024
https://doi.org/10.1016/j.aap.2012.10.019
https://doi.org/10.1016/j.aap.2007.11.008
https://doi.org/10.1016/j.ssci.2007.03.005
https://doi.org/10.1016/j.aap.2013.03.022
https://doi.org/10.3141/1840-04
https://doi.org/10.1016/j.aap.2005.03.012
https://doi.org/10.1016/j.aap.2007.03.008
https://doi.org/10.1016/j.aap.2009.09.025
https://doi.org/10.3141/2148-10
https://doi.org/10.1016/0001-4575(89)90023-7


Transport, 2018, 33(2): 478–488 488

Poch, M.; Mannering, F. 1996. Negative binomial analysis of 
intersection-accident frequencies, Journal of Transportation 
Engineering 122(2): 105–113. 

    https://doi.org/10.1061/(ASCE)0733-947X(1996)122:2(105) 
Qu, X.; Yang, Y.; Liu, Z.; Jin, S.; Weng, J. 2014. Potential crash 

risks of expressway on-ramps and off-ramps: a case study 
in Beijing, China, Safety Science 70: 58–62. 
https://doi.org/10.1016/j.ssci.2014.04.016 

Russo, F.; Biancardo S. A.; Dell’Acqua, G. 2014. Consistent ap-
proach to predictive modeling and countermeasure deter-
mination by crash type for low-volume roads, The Baltic 
Journal of Road and Bridge Engineering 9(2): 77–87. 
https://doi.org/10.3846/bjrbe.2014.10 

Sadeghi, A.; Ayati, E.; Neghab, M. P. 2013. Identification and 
prioritization of hazardous road locations by segmenta-
tion and data envelopment analysis approach, Promet  – 
Traffic&Transportation 25(2): 127–136.

Savolainen, P. T.; Mannering, F. L.; Lord, D.; Quddus, M. A. 
2011. The statistical analysis of highway crash-injury se-
verities: A review and assessment of methodological alter-
natives, Accident Analysis & Prevention 43(5): 1666–1676. 
https://doi.org/10.1016/j.aap.2011.03.025 

Shen, J.; Gan, A. 2003. Development of crash reduction factors: 
methods, problems, and research needs, Transportation Re-
search Record: Journal of the Transportation Research Board 
1840: 50–56. https://doi.org/10.3141/1840-06 

Sokolovskij, E.; Prentkovskis, O. 2013. Investigating traffic ac-
cidents: the interaction between a motor vehicle and a pe-
destrian, Transport 28(3): 302–312. 
https://doi.org/10.3846/16484142.2013.831771 

Stern, E.; Zehavi, Y. 1990. Road safety and hot weather: a study 
in applied transport geography, Transactions of the Institute 
of British Geographers 15(1): 102–111. 
https://doi.org/10.2307/623096 

Tegge, R. A.; Jo, J.-H.; Ouyang, Y. 2010. Development and Ap-
plication of Safety Performance Functions for Illinois. FH-
WA-ICT-10-066. Illinois Department of Transportation, 
Springfield, IL, US. 181 p.

Tunaru, R. 2002. Hierarchical Bayesian models for multiple 
count data, Austrian Journal of Statistics 31(2–3): 221–229.

Vadlamani, S.; Chen, E.; Ahn, S.; Washington, S. 2011. Identi-
fying large truck hot spots using crash counts and PDOEs, 
Journal of Transportation Engineering 137(1): 11–21. 
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000183 

Vistisen, D. 2002. Models and Methods for Hot Spot Safety 
Work: PhD thesis. Technical University of Denmark. 168 p.

Wang, C.; Quddus, M. A.; Ison, S. G. 2013. The effect of traffic 
and road characteristics on road safety: a review and future 
research direction, Safety Science 57: 264–275. 
https://doi.org/10.1016/j.ssci.2013.02.012 

Washington,  S.; Haque,  M.; Oh,  J.; Lee, D. 2014. Applying 
quantile regression for modeling equivalent property dam-
age only crashes to identify accident blackspots, Accident 
Analysis & Prevention 66: 136–146. 
https://doi.org/10.1016/j.aap.2014.01.007 

Weiss, H. B.; Kaplan, S.; Prato, C. G. 2014. Analysis of factors 
associated with injury severity in crashes involving young 
New Zealand drivers, Accident Analysis & Prevention 65: 
142–155. https://doi.org/10.1016/j.aap.2013.12.020 

Yu, H.; Liu, P.; Chen, J.; Wang, H. 2014. Comparative Analysis 
of the spatial analysis methods for hotspot identification, 
Accident Analysis & Prevention 66: 80–88. 
https://doi.org/10.1016/j.aap.2014.01.017 

Zein, S. 2004. Canadian Guide to In-Service Road Safety Re-
views. Transportation Association of Canada, Ottawa, On-
tario, Canada. 232 p.

Zou, Y.; Geedipally, S. R.; Lord, D. 2013. Evaluating the dou-
ble Poisson generalized linear model, Accident Analysis & 
Prevention 59: 497–505. 
https://doi.org/10.1016/j.aap.2013.07.017 

https://doi.org/10.1061/(ASCE)0733-947X(1996)122:2(105)
https://doi.org/10.1016/j.ssci.2014.04.016
https://doi.org/10.3846/bjrbe.2014.10
https://doi.org/10.1016/j.aap.2011.03.025
https://doi.org/10.3141/1840-06
https://doi.org/10.3846/16484142.2013.831771
https://doi.org/10.2307/623096
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000183
https://doi.org/10.1016/j.ssci.2013.02.012
https://doi.org/10.1016/j.aap.2014.01.007
https://doi.org/10.1016/j.aap.2013.12.020
https://doi.org/10.1016/j.aap.2014.01.017
https://doi.org/10.1016/j.aap.2013.07.017

