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Abstract. This paper describes the use of data mining tools for predicting the non-linear layer moduli of asphalt 
road pavement structures based on the deflection profiles obtained from non-destructive deflection testing. The de-
flected shape of the pavement under vehicular loading is predominantly a function of the thickness of the pavement 
layers, the moduli of individual layers, and the magnitude of the load. The process of inverse analysis, more commonly 
referred to as ‘backcalculation’, is used to estimate the elastic (Young’s) moduli of individual pavement layers based 
upon surface deflections. A comprehensive synthetic database of pavement response solutions was generated using 
an advanced non-linear pavement finite-element program. To overcome the limitations associated with conventional 
pavement moduli backcalculation, data mining tools such as support vector machines, neural networks, decision trees, 
and meta-algorithms like bagging were used to conduct asphalt pavement inverse analysis. The results successfully 
demonstrated the utility of such data mining tools for real-time non-destructive pavement analysis.

Keywords: road, transportation, artificial neural network (ANN), infrastructure, statistical analysis.

Introduction

Since the 1960s, nondestructive deflection testing has 
been used to assess the structural capacity and integrity 
of pavement sections. For the last two decades, the pre-
dominant form of deflection testing for both project-lev-
el and network-level pavement evaluation has been the 
falling weight deflectometer (FWD, Fig. 1). Typically, the 
FWD deflection measurements are used to estimate the 
in-situ elastic moduli of each pavement layer as material 
input parameters for rehabilitation and overlay design 
(Alavi et al. 2008).

A conventional Asphalt Concrete (AC) pavement 
is typically consists of three layers: a surface layer paved 
with AC mixture (known as surface course or wearing 
course), a granular base made up of relatively high-
quality aggregates (base course), and a subgrade layer 
made up of existing soil. Sometimes, an optional sub-
base layer comprised of relatively low-quality aggregates 
is also included. The deflection of a pavement represents 
the combined system response of the pavement layers to 
an applied load. Based on this mechanical concept, the 
in situ moduli of individual layers can be estimated from 
FWD measurements through appropriate analysis meth-

ods. This procedure is referred to as pavement modulus 
backcalculation. The backcalculation of layer modulus 
of asphalt pavement has been recognized as a complex 
problem (Sharma, Das 2008).

Fig. 1. Close-up of truck-mounted falling weight 
deflectometer (FWD) used in non-destructive testing  

(NDT) of pavements
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In recognition of the limitations of the current 
American Association of State Highway and Transporta-
tion Officials (AASHTO) pavement design guide which 
are based on empirical regression techniques relating 
simple material characterizations, traffic characterization 
and measures of performance, mechanistic-empirical (M-
E) pavement design and analysis approaches have been 
developed. For example, the new AASHTO pavement de-
sign guide is the new Mechanistic Empirical Pavement 
Design Guide (MEPDG) and its software developed 
through National Cooperative Highway Research Pro-
gram (NCHRP) 1-37 A project (NCHRP 2004).

The mechanistic part of M-E design is the applica-
tion of the engineering mechanics principles to calculate 
pavement responses (stresses, strains, and deflection) 
under loads for the prediction of the pavement perfor-
mance history. The empirical nature of the M-E design 
stems from the fact that the laboratory-developed pave-
ment performance models are adjusted or calibrated to 
the observed performance measurements (distress) from 
the actual pavements. With the evolution and adoption 
of mechanistic-empirical pavement design, the need to 
obtain reliable material properties has increased. Fur-
ther, when new materials are being used in the rehabili-
tation design (such as for an asphalt concrete overlay), 
a combination of laboratory-measured properties for 
some layers and field-derived parameters for others may 
result. While the field-derived parameters may be valu-
able, in the sense of characterizing the damaged in-situ 
characteristics, the values may be seemingly in conflict 
with the laboratory values for new materials.

The interpretation of FWD data to characterize ma-
terial properties in pavement structure are carried out 
using empirical equations or correlation and/or the use 
of mechanistic based approaches. The mechanistic-based 
approaches under the umbrella of ‘backcalculation’ re-
fer to the calculation of the pavement layer properties 
which best describe the measured deflection in layered 
elastic or finite element models to represent the pave-
ment system. The FWD backcalculation procedure in-
volves two calculation directions, namely forward and 
inverse. In the forward direction of analysis, theoretical 

deflections are computed under the applied load and the 
given pavement structure using assumed pavement layer 
moduli. In the inverse direction of analysis, these theo-
retical deflections are compared with measured deflec-
tions and the assumed moduli are then adjusted in an 
iterative or an optimization procedure until theoretical 
and measured deflection basins match acceptably well. 
The moduli derived in this way are considered represen-
tative of the pavement response to load, and can be used 
to calculate stresses or strains in the pavement structure 
for analysis purposes. This is an iterative or an optimiza-
tion method to solve the inverse problem, and will not 
have a unique solution for most cases.

Although several traditional and non-traditional 
pavement backcalculation techniques have been pro-
posed over the years (Gopalakrishnan et al. 2010), which 
are briefly reviewed later, researchers are always inter-
ested in exploring advanced techniques that have the 
potential of more accurately characterizing pavement 
system responses.

1. Objective and Scope

The primary objective of this paper is to introduce some 
of the advanced data mining tools to the pavement com-
munity and examine their usefulness in solving an in-
verse problem encountered in the non-destructive con-
dition evaluation of existing pavements.

Conventional three-layered flexible (asphalt) pave-
ments are considered in this paper although the over-
all methodology is applicable to other pavement types. 
A 2-D Finite Element (FE) flexible pavement response 
model is used to generate a comprehensive synthetic da-
tabase of pavement surface deflections corresponding to 
a wide range of pavement layer moduli and thicknesses. 
Advanced data mining tools are used to develop pave-
ment layer moduli prediction (backcalculation) models 
based on deflection and thickness inputs. The predic-
tive models are then applied to actual FWD deflection 
data acquired in the field to demonstrate their validity 
and robustness for real-time non-destructive pavement 
structural evaluation. The overall proposed approach de-
scribed in this paper is illustrated in Fig 2.

Fig. 2. Schematic of overall proposed approach to real-time flexible pavement inverse analysis with knowledge discovery and data mining
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2. Pavement Inverse Analysis: Existing Traditional 
and Non-Traditional Approaches

2.1. Traditional Approaches
A number of the backcalculation approaches with soft-
ware programs for flexible pavements have been devel-
oped over the years to backcalculate material properties 
from FWD data. 

The traditional backcalculation approaches are 
briefly discussed as follows: 

•	backcalculation equations: regression equations 
have been developed to predict subgrade modulus 
using the deflection testing data (Newcomb 1987). 
The 1993 design guide (AASHTO 1993) presents 
a backcalculation equation for subgrade modulus; 

•	equivalent thickness concept; 
•	optimization and iterative methods.
The AREA method for flexible pavements (Hoff-

man, Thompson 1981), AREA method for rigid pave-
ments (Ioannides et al. 1989; Ioannides 1990; Barenberg, 
Petros 1991), ILLI-SLAB (Foxworthy, Darter 1989), IL-
LI-BACK (Ioannides 1990), best fit algorithm (Hall et al. 
1997, Smith et al. 1998), ELMOD (Ullidtz 1987), WES-
DEF (Cauwelaert et al. 1989), DIPLOBACK (Khazano-
vich, Roesler 1997), and MODCOMP (Irwin, Szenbenyi 
1991; Irwin 1994) are examples of FWD interpretation 
programs and algorithms for rigid, flexible, and com-
posite pavements. 

Backcalculation programs based on multilayer elas-
tic layer theory are generally used for AC pavements. 
For rigid pavements, plate theory for a slab resting on a 
Winkler foundation or elastic solid foundation is mod-
eled. There is no widely accepted methodology for AC 
overlaid PCC-type of composite pavements on a Win-
kler foundation. The backcalculation programs WES-
DEF, BISDEF, and ELSDEF are based on multilayer 
elastic analysis programs WESLEA, BISAR and ELSYM, 
respectively. These programs require the thickness, Pois-
son’s ratio, and a seed modulus as inputs. The forward 
elastic layer program iterates the given seed modulus 
until the observed deflections match with calculated de-
flections. Thus, the modulus of pavement layer is highly 
affected by the seed modulus. Consequently, experi-
enced engineers are required to use these backcalcula-
tion programs (Lytton 1989).

2.2. Non-Traditional Approaches
The use of a new class of computational intelligence 
paradigm, known as soft computing techniques, in the 
field of geomechanical and pavement engineering has 
steadily increased over the past decade owing to their 
ability to admit approximate reasoning, imprecision, un-
certainty and partial truth (Gopalakrishnan et al. 2010). 
Since real-life infrastructure engineering decisions are 
made in ambiguous environments that require human 
expertise, the application of soft computing techniques 
has been an attractive option in pavement and geome-
chanical modeling. 

The term ‘soft computing’ applies to variants of and 
combinations under the four broad categories of evolu-

tionary computing, artificial neural networks (ANNs), 
fuzzy logic, and Bayesian statistics. Although each one 
has its separate strengths, the complementary nature of 
these techniques when used in combination (hybrid) 
makes them a powerful alternative for solving complex 
problems where conventional mathematical methods fail.

Among various soft computing techniques, the in-
terests in ANNs have been increased for use in pavement 
systems applications over the past 15 years (Use of Ar-
tificial Neural… 1999).There have been several success-
ful studies of using ANNs to predict the pavement layer 
moduli using the falling weight deflectometer (FWD) 
deflection data (Gucunski, Krstic 1996; Khazanovich, 
Roesler 1997; Kim, Y., Kim, Y. R. 1998; Meier, Rix 1994). 
The NCHRP1-37A research project team in charge of 
developing the Mechanistic-Empirical Pavement De-
sign Guide (MEPDG) incorporated the ANN models 
(Ceylan 2002) in preparing the MEPDG concrete pave-
ment analysis package. Recently, data mining tools are 
attracting attention among researchers in various fields 
for discovering knowledge and underlying relationships 
in simulated or actual data (Miradi 2009).

3. Data Mining Tools: Brief Review

3.1. Linear Regression
Linear regression probably the oldest and most widely 
used predictive model, which commonly represents a re-
gression that is linear in the unknown parameters used 
in the fit. The most common form of linear regression is 
least squares fitting (Weher 1977). 

3.2. Pace Regression
It evaluates the effect of each feature and uses a cluster-
ing analysis to improve the statistical basis for estimating 
their contribution to overall regression. It can be shown 
that pace regression is optimal when the number of co-
efficients tends to infinity. We use a version of Pace Re-
gression described in (Wang 2000; Wang, Witten 2002).

3.3. Additive Regression
It is a meta learner that enhances the performance of 
a regression based classifier. Each iteration fits a mod-
el to the residuals left by the classifier on the previous 
iteration (Friedman 2002). The predictions of each of 
the learners are added together to get the overall pre-
diction. It is generally used with Decision Stump as the 
base learner. 

3.4. Instance-Based
This is a lazy classification technique which implements 
nearest-neighbour classifier. It uses normalized Euclid-
ean distance to find the training instance closest to the 
given test instance, and predicts the same class as this 
training instance (Aha et al. 1991). 

3.5. Conjunctive Rule
This is a rule-based learner that can predict both numer-
ic and nominal class labels. The goal of rule induction 
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is to induce rules from data capturing all generalizable 
knowledge within it, while being as small as possible 
(Cohen 1995). 

3.6. Decision Table
Decision table typically constructs rules involving differ-
ent combinations of attributes, which are selected using 
an attribute selection search method. Simple decision 
table majority classifier (Kohavi 1995) has been shown 
to sometimes outperform state-of-the-art classifiers.

3.7. Decision Stump
A decision stump (Witten et  al. 2011) is a weak tree-
based machine learning model consisting of a single-lev-
el decision tree with a categorical or numeric class label. 
Decision stumps are usually used in ensemble machine 
learning techniques.

3.8. Artificial Neural Networks (ANNs)
ANNs are networks of interconnected artificial neurons, 
and are commonly used for non-linear statistical data 
modeling to model complex relationships between in-
puts and outputs. Several good descriptions of neural 
networks are available (Bishop 1996; Fausett 1993).

3.9. Support Vector Machines
SVMs are based on the Structural Risk Minimization 
(SRM) principle from statistical learning theory. A 
detailed description of SVMs and SRM is available in 
(Vapnik 1995). In their basic form, SVMs attempt to 
perform classification by constructing hyperplanes in a 
multidimensional space that separates the cases of dif-
ferent class labels. It supports both classification and re-
gression tasks and can handle multiple continuous and 
nominal variables. 

3.10. Reduced Error Pruning Trees
REPTree (Witten et al. 2011) is a implementation of a 
fast decision tree learner. REPTree builds a decision/
regression tree using information gain/variance and 
prunes it using reduced-error pruning (with backfit-
ting). It deals with missing values by splitting the cor-
responding instances into pieces.

3.11. M5 Model Trees
M5 Model Trees (Wang, Witten 1997) are a reconstruc-
tion of Quinlan’s M5 algorithm (Quinlan 1992) for 
inducing trees of regression models, which combines 
a conventional decision tree with the option of linear 
regression functions at the nodes. It also uses the tech-
niques used in CART (Breiman et al. 1984) to effectively 
deal with enumerated attributes and missing values. 

3.12. Random SubSpace
The Random Subspace classifier (Ho 1998) constructs a 
decision tree based classifier that also consists of multi-
ple trees. It tries to achieve a balance between over fitting 
and achieving maximum accuracy. The algorithm main-

tains highest accuracy on training data and improves on 
generalization accuracy as it grows in complexity. 

3.13. Bagging
Bagging (Breiman 1996) is a meta-algorithm to improve 
the stability of classification and regression algorithms by 
reducing variance. Bagging is usually applied to decision 
tree models to boost their performance. It involves gen-
erating a number of new training sets (called bootstrap 
modules) from the original set by sampling uniformly 
with replacement. The bootstrap modules are then used 
to generate models whose predictions are averaged to 
generate the final prediction. 

4. Theoretic Database Development

The synthetic data used in conducting pavement inverse 
analysis with data mining in this study were generat-
ed from a two-dimensional axi-symmetric pavement 
FE software developed at the University of Illinois at 
Urbana-Champaign (Raad, Figueroa 1980). It incorpo-
rates stress-sensitive geo-material models and has been 
reported to provide a more realistic representation of the 
flexible pavement structure and its response to loading. 
Numerous research studies have analyzed and validated 
this FE model’s AC pavement structural response pre-
diction for highway and airfield pavements (Thompson, 
Elliott 1985; Garg et al. 1998). 

FWD tests are generally performed by dropping 
a 9000-lb (40-kN) load on the top of a circular plate, 
in contact with the pavement surface, with a radius of 
150 mm (6 inches). Deflections are measured at offsets 
of 0 (D0), 300 (12) (D12), 600 (24) (D24), 900 (36) (D36), 
1200 (48) (D48), 1500 (60) (D60) mm (inches) from cen-
ter of loading plate. The FWD loading was simulated 
using the flexible pavement FE program.

The AC surface layer was treated as linear elastic 
material with Young’s Modulus, Eac, and Poisson ra-
tio, μ. Stress-dependent elastic models along with Mohr-
Coulomb failure criteria were applied for the unbound 
aggregate base and fine-grained soil subgrade layers. 
The (stress-hardening) Kb – θ model (Hicks, Monismith 
1971) was used for the base layer (ER = Kb∙ θn; ER is re-
silient modulus (psi), q is bulk stress (psi) and K and 
n are statistical parameters). Based on extensive testing 
of unbound aggregate materials, (Rada, Witczak 1981) 
proposed the following relationship between K and n: 
log10(Kb) = 4.657–1.807∙ n. The (stress-softening) bilin-
ear model (Thompson, Robnett 1979) was used for the 
subgrade layer.

Asphalt concrete modulus Eac, granular base K –q 
model parameter K, and the subgrade soil break point 
deviator stress Eri in the bilinear model were used as the 
layer stiffness inputs for all the different conventional 
flexible pavement FE simulations. The 40-kN (9-kip) 
wheel load was applied as a uniform pressure of 550 kPa 
(80 psi) over a circular area of radius 6 in. The thickness 
and moduli ranges used in the database generation are 
provided elsewhere (Ceylan et al. 2007).
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A total of 30000 FE runs were conducted by ran-
domly choosing the pavement layer thicknesses and 
input variables within selected ranges to generate a 
knowledge database for inverse analysis using data min-
ing tools. All the datasets were normalized within the 
range of 0.1 to 0.9 to facilitate learning. A scatterplot for 
each pair of variables (pavement layer thickness, surface 
deflections and layer moduli values) from the synthetic 
database used in data mining is displayed in a matrix 
arrangement and compiled in Fig. 3.

5. Experiments and Discussion of Results:  
Theoretic Data

A suite of data mining tools discussed in a previous sec-
tion was employed in the experimental runs using theo-
retic data. The goal was to identify the best-performance 
predictive models which could be applied on the actual 
field FWD data for real-time inverse analysis of pave-
ments. The following variables define the inputs and 

outputs in the knowledge discovery and data mining 
process:

•	inputs: Surface deflections (D0, D12, D24, D36, D48, 
and D60); AC layer thickness (Tac); and base layer 
thickness (Tb);

•	outputs: Modulus of the AC surface layer (Eac); 
Modulus of the base layer (Kb); and Modulus of 
the Subgrade layer (Eri).

Thus, data mining based backcalculation models 
were developed with eight input parameters and one 
output parameter per model. However, the unbound 
aggregate base layer modulus could not be predicted 
using just the eight inputs (deflections and thicknesses). 
Therefore, in the development of Kb backcalculation 
model, the predicted Eac and Eri were used as additional 
inputs along with the six FWD deflections as well as the 
thicknesses of the AC surface and base layer. The results 
for both scenarios are discussed later in the paper.

The data were divided randomly into two differ-
ent subsets of the training data subset and the testing 

Fig. 3. Scatterplot matrix of input and output variables in the theoretic database
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data subset in such a way that they are representative of 
same statistical population. Both datasets were normal-
ized within the range of 0.1 to 0.9 for input and output 
values to facilitate the training process. The training data 
subset was used for model learning and the testing data 
subset was used to examine the statistical accuracy of 
the developed models. Further, 5-fold cross-validation 
was employed to increase the robustness of prediction 
accuracy and avoid any over-training. The R (R: A Lan-
guage and Environment… 2009) and WEKA (Hall et al. 
2009) software toolkits were used in this study for data 
mining.

Quantitative assessments of the degree to how 
close the models could predict the actual outputs are 
used to provide an evaluation of the models’ predictive 
performances. A multi-criteria assessment with various 
goodness-of-fit statistics was performed using all the 
data vectors to test the accuracy of the trained models. 
The criteria that are employed for evaluation of models’ 
predictive performances are the coefficient of correla-
tion (R), Mean Absolute Error (MAE), and Root-Mean-
Squared Error (RMSE) between the actual and predicted 
values. The definitions of these evaluation criteria are as 
follows:
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values, respectively; t
iy and p

iy are the mean of the tar-
get and predicted modulus values corresponding to n 
patterns.

R is a measure of correlation between the predicted 
and the measured values and therefore, determines ac-
curacy of the fitting model (higher R equates to higher 
accuracy). The MAE and RMSE indicate the relative 
improvement in prediction accuracy. Relative smaller 
magnitudes indicate better prediction accuracy.

The values of performance statistics for the de-
veloped data mining based inverse prediction models 
are summarized in Figs 4–7, for Eac, Eri, and Kb. It is 
observed that excellent performance is achieved using 
REPTree and M5 Model trees as underlying regression 
algorithms with Bagging meta-learner for all three pave-
ment layer moduli. Among the three pavement layers, 
the prediction accuracy for Kb is the worst as expected 
even after including Eac and Eri as additional inputs. This 
is further confirmed by the prediction error histograms 
plotted in Fig.  8 for Eac, Kb (using Eac and Eri as ad-
ditional inputs), and Eri using Bagging_M5P (Bagging 
meta-learning technique with M5 model trees as the 
base learner), for instance. The Bagging_M5P predictor 
was chosen as the best-performance data mining predic-
tive technique to be used in real-time pavement inverse 
analysis described in the next section.

Fig. 4. Summary of asphalt layer moduli (Eac) prediction 
performance with data mining techniques using theoretic 

deflection basins

Fig. 5. Summary of subgrade layer moduli (Eri) prediction 
performance with data mining techniques using theoretic 

deflection basins

Fig. 6. Summary of base layer moduli (Kb) prediction 
performance with data mining techniques (without including 
Eac and Eri as additional inputs) using theoretic deflection basins

6 K. Gopalakrishnan et al. Knowledge discovery and data mining in pavement inverse analysis



Fig. 7. Summary of base layer moduli (Kb) prediction 
performance with data mining techniques (including Eac and 

Eri as additional inputs) using theoretic deflection basins

Fig. 8. Histograms of prediction errors with Bagging_M5P: a – Eac; b – Kb (using Eac and Eri as inputs); c – Eri

Fig. 9. Asphalt pavement moduli predictions with Bagging_M5P using actual FWD deflections basins acquired in the field:  
a – Eac; b – Eri
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6. Experiments and Discussion of Results: Field Data

Bagging_M5P models constructed on the theoretic data 
were applied on the actual FWD data acquired from an 
airport flexible pavement test section at the U.S. Nation-
al Airport Pavement Test Facility (NAPTF). The selected 
test section is a typical conventional granular base flex-
ible pavement resting over a medium-strength subgrade. 
It consists of 127-mm (5-in) thick AC surface course, 
200-mm (8-in) thick crushed stone granular base, 307-
mm (12-in) thick granular subbase on top of the sub-
grade. For this analysis, the granular base and subbase 
layer thicknesses were combined. 

A clayey material known as Dupont Clay (DPC) 
was used for the subgrade (target California Bearing 
Ratio of 8). The naturally-occurring sandy-soil material 
at the full-scale test site underlies the subgrade layer. 
Detailed information related to NAPTF flexible test sec-
tions, material properties, analysis of NDT data can be 
found in (Gopalakrishnan 2004). The FWD data ref-
erenced in this paper is accessible for download at the 
Federal Aviation Administration (FAA) Airport Tech-
nology Website: http://www.airporttech.tc.faa.gov.

Nondestructive tests using the FWD equipment 
were conducted on the selected test section prior to 
traffic testing to verify the uniformity of pavement and 
subgrade construction and strength. Surface deflection 
basins from FWD tests conducted on June 14, 1999 
(pavement temperature = 21.2 0C) at nominal force am-
plitudes of 40-kN (9-kip) were used in this study. 

For the sake of comparison, WESDEF (Cauwelaert 
et al. 1989), a traditional pavement inverse analysis pro-
gram, was also used for backcalculating the pavement 
layer moduli from field FWD data. The WESDEF back-
calculation program uses the WESLEA multi-layer elas-
tic analysis program. It utilizes an iterative procedure to 
obtain a set of moduli that, when used in linear-elastic 
calculations, will produce deflections similar to the mea-
sured values. The program has the ability to backcalcu-
late moduli values using deflections with depth, such 
as those obtained using Multi-Depth Deflectometers 
(MDDs), as well as with surface deflections. The material 
type, entered for each layer in the pavement structure, 
is used to establish the default seed modulus, minimum 
and maximum moduli, the Poisson’s’ ratio, and the in-
terface slip values. 

In WESDEF, the modulus for the stiff layer was set 
to 6.9 GPa (1000000 psi) with a Poisson’s ratio of 0.50. 
The pavement layer moduli predicted by Bagging_M5P 
predictor based on field data are plotted together with 
those predicted by WESDEF in Fig.  9. In general, the 
Bagging_M5P moduli predictions are consistent and 
agreeable with those predicted by WESDEF. Note that 
WESDEF assumes the subgrade to be linear elastic and 
requires seed moduli values to start the optimization 
process while Bagging_M5P considers the non-linear 
stress-dependent subgrade properties and employs 
knowledge discovery and data mining principles to find 
the solutions.

Irrespective of the high prediction accuracy of any 
developed backcalculation model, there are some major 
factors that can lead to erroneous results in pavement 
backcalculation (Irwin 2002; Von Quintus, Killing-
sworth 1998). For instance, major cracks in the pave-
ment, or testing near a pavement edge can cause the 
deflection data to depart drastically from the assumed 
conditions. Pavements with cracks or various discon-
tinuities and other such features are ill-suited for any 
backcalculation analysis or moduli determination. Also, 
layer thicknesses are not uniform in the field, nor are 
materials in the layers completely homogeneous. The 
spatial and seasonal variations of pavement layer prop-
erties in the field should also be considered. 

Summary and Conclusions

The Falling Weight Deflectometer (FWD) is one of the 
most widely used test methods for assessing the struc-
tural integrity of existing pavements in a non-destructive 
manner. Used in combination with sampling and labora-
tory testing techniques, the FWD provides an effective 
and efficient means for evaluation of existing pavement 
structures, and for development of input parameters for 
design procedures. Typically, the FWD deflection meas-
urements are used to backcalculate the in-situ elastic 
moduli of each pavement layer. Backcalculation is the 
inverse process of characterizing the stiffness properties 
of the paving layers through the deflection data collect-
ed by the FWD. The backcalculated moduli themselves 
provide an indication of layer condition. They are also 
used in an elastic layered or finite element program to 
predict the critical pavement responses (stresses, strains 
and deflections) under applied loads.

This paper introduced some of the existing data 
mining techniques to pavement community which 
were also successfully used to conduct real-time asphalt 
pavement inverse analysis (i.e., backcalculation). Non-
parametric modeling techniques in data mining such 
as decision trees are known to be useful in cases when 
it is not easily possible to formulate any credible and 
useful assumption about the data distributions. Among 
the examined data mining techniques, Bagging_M5P 
predictors (Bagging meta learning technique with M5 
model trees as the base learner) produced the best re-
sults using both theoretic pavement deflection basins 
as well as actual FWD deflection basins acquired in the 
field, which were consistent and in agreement with the 
WESDEF predictions.
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