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Abstract. This paper compares two metaheuristic approaches in solving a constrained transportation scheduling 
problem, which can be found in transporting goods in emergency situations. We compared Greedy Search, Parameter-
less Evolutionary Search and Ant-Stigmergy Algorithm. The transportation scheduling/allocation problem is NP-hard, 
and is applicable to different real-life situations with high frequency of loading and unloading operations; like in de-
pots, warehouses and ports. To evaluate the efficiency of the presented approaches, they were tested with four tasks 
based on realistic data. Each task was evaluated using group and free transportation approach. The experiments proved 
that all tested algorithms are viable option in solving such scheduling problems, however some performing better than 
others on some tasks.
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Introduction

One type of transportation is the movement of goods 
from one location to another. It can be performed by 
different modes, such as air, rail, road and water. Its ef-
ficiency depends on infrastructure, vehicles, and opera-
tions. The growth of the transportation, especially road 
transport, increases congestion and environmental pol-
lution, and decreases safety (Sivilevičius 2011), therefore 
it should be performed as optimal as possible.

In emergency situations we are often limited to 
road transportation, since air, rail or water transporta-
tion are either unavailable, damaged, or slow. Since usu-
ally the infrastructure cannot be optimized ad-hoc, the 
efficiency can be improved mainly by the optimization 
of vehicle fleet and the operations sequence/schedule. 
Despite numerous publications on efficient schedul-
ing methods for vehicle routing, very few address the 
loading schedule with multiple constraints; on differ-
ent types of cargo, different vehicle capacities, different 
loading bay capacities, and overall transportation time 
minimization.

In this paper we describe a special version of ve-
hicle routing problem (VRP) (Dantzig, Ramser 1959; 
Bertsimas, Van Ryzin 1991; Toth, Vigo 2001; Zeng et al. 
2007; Lin et al. 2009), where the vehicles circulate be-
tween two depots only (Salhi, Petch 2007). The stress is 

on optimal schedule of vehicles and allocations of vehi-
cles to loading bays for loading and unloading of cargo, 
at the depots, and can be treated as job shop schedul-
ing problem (Beck et al. 2003). Here, each vehicle can 
be represented as a resource and each visit to loading/
unloading bay with a selected cargo type as an activity. 
Such transformation proves that our problem is also NP-
hard (Garey, Johnson 1979).

The transportation scheduling case is especially 
useful in emergency/rescue situations (like floods, earth-
quakes, etc.), when large amounts of goods have to be 
transported from one depot to another as quickly as 
possible, with the limited number of available vehicles. 
Like VRP, this is also a combinatorial optimization prob-
lem (Lenstra, Rinnooy Kan 1981). The emergency/res-
cue situations and disaster relief situations are covered 
in number of papers (Doerner, Hartl 2008; Özdamar, 
Yi 2008); some of them also solve the problem with ge-
netic algorithm (GA) (Bae et al. 2007; Salhi, Petch 2007; 
Saadatseresht et al. 2009) and ant-colony optimization 
(Tatomir, Rothkrantz 2006; Rizzoli et al. 2007; Yi, Kumar 
2007; Lee et al. 2010).

For solving scheduling problems, many scheduling 
methods are reported in the literature (Chiong, Dhakal 
2009; Guo et al. 2009; Jarboui et al. 2009; Wang, Tang 
2009; Xing et al. 2010). One of the nature-inspired ap-
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proaches (Chiong 2009) is the GA. A heuristic for the 
open job shop scheduling problem using the GA to 
minimize makespan was developed by (Senthilkumar, 
Shahabudeen 2006). On the other hand, a scheduling 
method based on the GA was developed by considering 
multiple criteria in (Chryssolouris, Subramaniam 2001). 

To solve the loading schedule problem we used 
two metaheuristic techniques that have already proven 
as efficient methods for solving combinatorial optimiza-
tion problems. The first approach was Parameter-Less 
Evolutionary Search (PLES) (Papa 2008), and the second 
one was Ant-Stigmergy Algorithm (ASA) (Korošec, Šilc 
2008). The PLES was used in the process of the search 
for an optimal production plan (Papa et al. 2012), and 
in the process of geometry optimization of an electrical 
motor stator and rotor (Papa 2008). The ASA was used 
in the process of geometry optimization of an electrical 
motor stator and rotor, geometry optimization of radial 
impeller, and geometry optimization of electrical motor 
case (Oblak et al. 2007; Tušar et al. 2007).

In comparison to the previous paper (Papa, Korošec 
2009), this paper deals with more transportation tasks. 
These tasks differ in number of vehicles, capacities of 
loading bays, as well as in amount of cargo to be trans-
ported. The tasks used in this paper are based on the pos-
sible scenarios of Civil Protection, however the approach 
is also useful when selecting logistic centers locations 
(Turskis, Zavadskas 2010). Furthermore, in this paper the 
graph construction process of the ASA was changed, to 
achieve better performance in dealing with constraints. 
Special care was given to the constraints regarding capa-
bilities of loading different cargo types at each loading 
bay. Also, the PLES encoding was slightly improved to 
achieve faster convergence regardless of the task. 

The rest of the paper is organized as follows: in 
Section 1 we formally define the problem; in Section 2 
we describe approaches used for the search of the best 
schedule; in Section 3 we present the evaluation proce-
dure; in Section 4 we describe the experimental environ-
ment; in Section 5 we show the experimental results; and 
in end of paper we list some conclusions and possible 
future work.

1. Definitions

A problem includes v vehicles, and c types of cargo (i.e., 
container, box, barrel, pallet...), with quantities Vj, where 
j =  1,  ..., c. For each vehicle we know the capacity for 
cargos wij, where i = 1, ..., v and j =1, ..., c. The capacity 
wij is measured in a cargo-relevant unit, i.e., ton, cubic 
meter, number of containers, etc. Not all cargo types are 
suitable for each vehicle. If the vehicle i is not capable 
of loading type j of a cargo, then its capacity is wij = 0.

Each vehicle can load in each run one type of a car-
go only, however in different runs the same vehicle can 
load different cargos. The vehicle is always fully loaded; 
unless the remaining cargo is smaller than the capacity 
of the vehicle.

For each vehicle the maximum speed is known 
(for loaded and empty vehicle). With the distance be-

tween depot A and B we can calculate the driving times 
tl1, ..., tlv from A to B for loaded vehicles, and te1, ..., tev 
from B to A for empty vehicles.

At depot A there are m loading bays, each capable 
of loading azj of cargo j per hour, z = 1, ..., m. If the load-
ing bay is not appropriate for type j of the cargo, then 
azj = 0. Similarly, at depot B there are n unloading bays, 
capable of unloading buj of cargo j per hour, u = 1, ..., n. 
There can be only one vehicle at a time on each loading 
or unloading bay.

A vehicle with self-loader is capable of loading a0j 
of cargo j per hour, and unloading b0j of cargo j per hour. 
The vehicle with a self-loader does not have to wait in 
a queue for the empty loading/unloading bay. It can be 
loaded/unloaded either at the appropriate and available 
loading bay, or outside the loading bay (e.g., somewhere 
at the warehouse/depot area).

The aim is to transport different types of cargo from 
depot A to B. Since the cargo cannot be transported in 
one run, vehicles have to come back from B to A and per-
form several runs. Each run starts in A and consists of:

•	waiting in queue till assigned loading bay is avail-
able;

•	loading at loading bay;
•	driving from A to B;
•	waiting in queue till assigned unloading bay is 

available;
•	unloading at unloading bay;
•	driving from B to A.
The scheduling operation consists of assigning a 

type of a cargo for each vehicle, a loading bay and an un-
loading bay. The aim is to find a schedule of cargo types 
and loading/unloading bays for all vehicles to finish the 
transportation of all cargos in the shortest possible time. 
The general approach for solving this problem is repre-
sented in Algorithm 1, while the whole transportation 
process for each vehicle is presented in Fig. 1.

The evaluation of each proposed schedule was done 
using a problem-specific simulator. The simulator fol-
lowed the schedule and considered all the constraints, 
defined with the problem.

Algorithm 1. An approach to transportation problem 
solving:
while all cargo not transported do

for all vehicles do
if current vehicle will be used then

Choose among available cargo types for this 
vehicle.
Reduce cargo according to vehicle’s capacity.
Choose among possible loading bays for a cho-
sen cargo type.
Choose among possible unloading bays for a 
chosen cargo type.

end if
end for

end while
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1.1. Problem Representation
In our case, each vehicle run is represented with a num-
ber of parameters. The first parameter represents the type 
of cargo and a special value that denotes idle run (i.e., 
this vehicle run is omitted from schedule), followed by a 
number of parameters in pairs, which represent possible 
loading and unloading bay for each cargo type repre-
sented in the first parameter. So, if we had two cargo 
types defined in the first parameter, then we would need 
four additional parameters which will represent possible 
loading and unloading bays for both types. Due to such 
presentation, only one pair of parameters is used when 
the solution is being evaluated according to the selected 
cargo type and all others are being omitted. So, for r 
runs and v vehicles we need 1(1 2 )v

iik r l== +∑ values, 
where li is the number of possible cargos for vehicle i.

1.2. Problem Variations
In this paper, we will be solving two variations of the 
basic problem. The first variation, called the group trans-
portation, has a constraint that all vehicles must travel 
in a convoy formation. This means, that no vehicle can 
leave the depot until all vehicles are fully (un)loaded 
and the traveling speed of a convoy equals the speed of 
the slowest vehicle. The second variation, called the free 
transportation, has no such constraints. This means, that 
a vehicle leaves the depot as soon as it is (un)loaded and 
it travels at its own speed. Both scenarios are possible 
and the choice mainly depends on the characteristics of 
the emergency situation. If safety is the main concern 
then convoy is the preferred way, if speed is more impor-
tant, then a free transportation is a more suitable option 
as it will be shown in Section 5.

2. Algorithms

2.1. The Parameter-Less Evolutionary Search
The PLES (Papa 2008) is based on a basic GA (Gold-
berg 1989), except that it does not need any control 
parameter, e.g., population size, number of generations, 
probabilities of crossover and mutation, to be set in ad-
vance. They are set virtually, according to the size of the 
problem and according to the statistical properties of 
the solutions found. In its search process the PLES tries 
to efficiently explore the whole search space in order to 
find the optimal solution (see Algorithm 2).

Algorithm 2. Parameter-Less Evolutionary Search:
SetInitialPopulation(P)
Evaluate(P)
Statistics(P)
while not EndingCondition() do

ForceBetterSolutions(P)
MoveSolutions(P)
Evaluate(P)
Statistics(P)

end while
Population Initialization and Termination Criterion

The vehicle schedule was encoded into one chro-
mosome with k genes, as presented in Section 2.1. The 
initial population P consists of PopSize0 chromosomes. 
In each chromosome the distribution of cargo type and 
loading/unloading bays are randomly distributed. The 
initial population size is set according to the following 
equation:

0 14 10lg( ),k
iiPopSize v k combinations== + ∑

where: combinationsi is the number of possible combina-
tions of the i-th variable (either the number of possible 
cargo types or the number of possible loading/unloading 
bays).

The EndingCondition() function checks to see if 
there was no improvement for several generations; then 
the system is assumed to be in the steady state, and the 
optimization is then ended. The number of generations 

Fig. 1. Transportation process for each vehicle
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depends on the convergence speed of the best solution 
found. The optimization keeps running while a better 
solution is found every few generations. But when there 
is no improvement of the best solution for a few genera-
tions (Limit), the optimization process stops. It depends 
on the current size of the population:

Limit = 10 lg (PopSize).

It is proportional to the population size, where 
larger populations are used to quickly exploit the search 
space to find some near-optimal regions, while smaller 
populations are used to explore this region more pre-
cisely. The rough search of the large population should 
have enough time, while the fine-tuning within the opti-
mal regions should not take too many generations with-
out improvement.

Force a Better Solution
In every generation the worse solutions are replaced 

with better solutions, and up to 25% of the genes in the 
chromosomes are switched. This operator incorporates 
the function of elitism, while forcing the replacement 
of worse solutions with better ones, and the function of 
crossover, while taking the good solutions and slightly 
changing them at some positions.

Solution Moving
Typically, every chromosome is the subject of a mu-

tation in the basic GA. In the PLES, the mutation is real-
ized by moving some positions in the chromosome ac-
cording to the population’s statistical properties. Namely, 
the positions are not mutated to some random value, but 
are moved in a direction towards the best chromosome 
in the population.

First, only the solutions that were not changed 
within the ‘Force better’ operator are handled here. In 
other words, the solutions of the previous generation 
that were better than the average are changed. The num-
ber of positions in the chromosome (Ratio) to be moved 
is calculated on the basis of the standard deviation of the 
solutions in the previous generation and the maximum 
standard deviation as stated in the following equation:

1

3
,i

i
i

StDev
Ratio k

StDev
−

−
=

where: StDevi–1 and StDevi–3 are the standard deviation 
of the solution fitness of the previous generation, and 
the standard deviation three generations ago, respec-
tively. Here, the Ratio∈[0, k], and the Ratio positions in 
the chromosome are selected to be moved. When the 
standard deviation of the current population is high, i.e., 
the chromosomes are distributed far from the optimal 
regions, the number of mutated positions in the chromo-
some is high so as to allow larger jumps to other, proba-
bly better, regions in the search space. When the standard 
deviation is low, only a few positions are mutated to allow 
for a finer search inside the regions that are close to the 
optimal solution. The moves are implemented by changes 
of the cargo type and/or by changes of (un)loading bays.

Solution Evaluation and Statistics
Each population is statistically evaluated. Here the 

best, the worst, and the average fitness value in the gen-

eration are found. Furthermore, the standard deviation 
of the fitness values of all solutions in the generation, the 
maximal standard deviation of the fitness value over all 
the generations, and the average value of each parameter 
in the solution are calculated.

2.2. The Ant-Stigmergy Algorithm
The ASA (Korošec, Šilc 2008) is an approach to solving 
multi-parameter optimization problems and it is based 
on stigmergy, a type of collective work that can be ob-
served in ant colonies. It roots can be found in the ant-
colony optimization (ACO) metaheuristic first proposed 
by Dorigo and colleagues (Dorigo 1992; Dorigo et  al. 
1999). The basic concept of the algorithm is as follows: 
first, the multi-parameter problem is translated into a 
search graph and then an optimization technique is used 
to find the cheapest path in the constructed graph; this 
path consists of the values of the optimized parameters.

Search Graph Construction
The search graph construction (SearchGraphCon-

struction) consists of the translation of the discrete pa-
rameter values of the problem into a search graph G = 
(V, E) with a set of vertices, V, and a set of edges, E, 
between the vertices. For each parameter xd, d = 1, ..., D 
the set of parameter values, Vd = {vd,1, ..., vd,nd

}, is con-
structed. For all vertices vd,i, i = 1, ..., nd, the path length 
from the start vertex to any of the vertices is equal to d, 
and d is also called the vertex distance in graph G. Here, 
nd depends on the number of values that are possible for 
the d-th parameter. A vertex vd,i represents one vertex 
in a search graph, and each vertex of the parameter xd 
is connected to all the vertices that belong to the next 
parameter xd+1 (see Fig. 2). In this way, the constrained 

Fig. 2. Search graph representation
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multi-parameter optimization problem is transformed 
into a problem of finding the cheapest path.

Optimization
Optimization consists of finding the cheapest path. 

Prior to the actual optimization an initial amount of 
pheromone, τ0, is deposited equally on all the vertices 
in the search graph (SearchGraphInitialization). There 
are a number of ants in a colony, all of which begin 
simultaneously from the start vertex. The probability 
with which they choose the next vertex depends on the 
amount of pheromone on the vertices. Ants use a prob-
ability rule to determine which vertex will be chosen 
next. More specifically, ant in step d moves from vertex  
vd–1, i ∈{vd–1,i , ..., vd–1,nd–1

} to vertex vd,j∈{vd,1, ..., vd,nd
} 

with the probability given by:

,
,

,1

( ) ,
d

d j
ij

d jk n

p dα
≤ ≤

τ
=

τ∑
where: τd,k is the amount of pheromone on vertex vd,k. 
The ants repeat this action until they reach the ending 
vertex (FindPath). Then, the gathered parameter values 
of each ant (which can be found on its path) are evalu-
ated (Evaluate). Next, each ant returns to the start vertex 
and on the way it deposits pheromone on the vertices 
according to the evaluation result: the better the result 
the more pheromone is deposited on the vertices, and 
vice versa (UpdatePheromone). After all the ants have 
returned to the start vertex a so-called daemon action 
is made, which in this case consists of depositing some 
additional pheromone on what is currently the best path 
(DaemonAction). Afterwards, pheromone evaporation 
from all the vertices occurs (EvaporatePheromone), i.e. 
the amount of pheromone is decreased by some prede-
termined percentage on each vertex vd,k in the search 
graph G:

, ,(1 ) .d k d kpτ ← − τ

The whole procedure is then repeated until some 
ending condition is met. The outline of the ASA pseudo 
code is shown in Algorithm 3.

Algorithm 3. Ant-Stigmergy Algorithm:
graph = SearchGraphConstruction(parameters)
SearchGraphInitialization(initial pheromone amount)
while not current level ending condition do

for all ants in colony do
path = FindPath(graph)
Evaluate(path)

end for
UpdatePheromone (all found paths vertices)
DaemonAction(best path)
EvaporatePheromone(all vertices)

end while

3. Evaluation

Table 1 presents an example of short schedule produced 
by one of the algorithms. The first column presents the 
vehicle to be used; the second column presents the cargo 

type; while the third and the fourth column present the 
loading and unloading bay, respectively. Loading/un-
loading bay marked as 0 denotes the usage of the self-
loader outside the loading bay.

Since we are dealing with two different variations, 
the schedule shown in Table 1 has also two different 
evaluation ‘executions’.

Table 1. Example of the vehicles’ schedule  
and loading bay allocation

Vehicle Cargo type Loading bay Unloading bay

1 3 3 3
2 1 4 4
3 1 4 1
5 2 2 2
7 2 1 0
9 2 1 4

10 3 4 2
13 1 0 1
17 3 2 3
19 2 1 2
20 3 5 4
2 3 3 3
5 2 5 2
6 1 4 4
7 2 1 4
9 2 1 4

12 2 5 0
14 1 0 0
17 3 2 3
20 3 5 4

3.1. Group Transportation
At group transportation, we look at all vehicles and their 
corresponding scheduled run. At first run, we notice 
that only vehicles 1, 2, 3, 5, 7, 9, 10, 13, 17, 19, and 20 
will be used to transport cargo (Fig. 3a), while all the 
other vehicles stay at the depot. Since vehicle 3 is load-
ing from the same bay as vehicle 2, it must first wait 
until vehicle 2 is loaded, before it can be loaded. So, at 
any time only one vehicle can be loaded at one bay. The 
time from the start of loading to convoy release from the 
depot equals the time needed for the last vehicle to be 
loaded with cargo. Only then the convoy can start their 
trip to destination depot B (Fig. 3b). The time needed 
for a convoy to reach destination equals the time of the 
slowest vehicle. The time of unloading is determined by 
the time that is needed for all vehicles to unload the 
cargo. Here also only one vehicle can be unloaded on 
one bay (Fig. 3c). Only after then, the convoy can return 
to starting depot A with a speed of the slowest vehicle 
(Fig. 3d). When the vehicles reach the depot the whole 
procedure is repeated for all subsequent runs until all 
cargo is transported (Fig. 3e).
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3.2. Free Transportation
At free transportation, we look at the schedule on vehi-
cle per vehicle basis. So the first vehicle that is scheduled 
is vehicle 1. Since it is the first, it is put on bay 3. Since 
next vehicle (in this example it is number 2) is scheduled 
for different bay than vehicle 1, it can be also put there at 
the same time as vehicle 1. On the other hand, vehicle 3 
is put in a queue of bay 4, since vehicle 2 is already there. 
It must wait until the cargo is loaded on vehicle 2, before 
being put for loading. This continues until we come to 
the next scheduled run of vehicle 2 (line 12 of example 
schedule in Table 1). Since vehicle  2 has not finished 
previously planned run, we wait with this schedule un-
til vehicle 2 comes back from destination depot B. But 
this does not stop us to check if there exists any other 
vehicle, further down the schedule, that is not on route. 

In this example, we can see that vehicle 6 is not on the 
route yet, so it is put on a queue of bay 4. In Fig.  4a, 
we see the situation at the depot A after all vehicles are 
placed in scheduled queues. The vehicle leaves for des-
tination depot B at the very moment it is loaded with 
cargo. So, vehicle does not wait for other vehicles like it 
was the case at group transportation (Fig. 4b). The time 
needed to get to the destination depot B depends only 
on its own speed. As like with the loading, it must wait 
for a free bay and only then unload the cargo (Fig. 4c). 
After unloading, it does not wait for other vehicles, but 
goes back immediately (Fig. 4d). When it returns, it is 
put on the bay that is scheduled next. In case of vehi-
cle  5, this would be bay 5 (Fig. 4e). This procedure is 
being repeated until all cargo is transported to destina-
tion depot B.

Fig. 3. Group transportation example: a – initial loading at A; b – moving of a group of vehicles from A to B;  
c – unloading at the B; d – returning of empty vehicles to A; e – loading of the next group of vehicles
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4. Experimental Environment

The computer platform used to perform the experi-
ments was based on Intel i7 3.5-GHz processor, 12 GB 
of RAM running Windows 7 x64 operating system. The 
PLES was implemented in Microsoft Visual C++, while 
the ASA was implemented in Borland Delphi. The main 
reason for usage of different program languages is in a 
fact that the basic algorithms were already implemented 
in those programming languages. Therefore, we did not 
have to do any time-consuming recoding.

4.1. Task Description
The experiments presented in this paper consist of four 
tasks. These tasks differ in properties of the loading bays, 

in the number of vehicles, and in the quantity of cargos. 
In all tasks for each loading/unloading bay the capaci-
ties vary for different cargo types. The tasks were made 
on the basis of possible scenarios that might be used by 
national Civil Protection. This includes sizes of various 
national civil-protection depots, as well as their distance 
from several larger cities. The number of vehicles is set 
by a possible number of vehicles located at some depots, 
and also some additional vehicles that might be enrolled 
in case of emergency. Since the vehicles and personnel 
have to gather at some depot, there is some time available 
to run the program to produce the optimal schedule of 
the vehicles for the given situation (distance, amount of 
cargo, etc.). So, considering that time, the scheduler was 
constrained to give a result in a period of 5÷10 minutes.

Fig. 4. Free transportation example: a – initial loading at A; b – moving of loaded vehicles from A to B and loading of queued 
vehicles; c – unloading of the vehicles at B; d – returning of the empty vehicles to A and unloading of the remaining at B;  

e – loading of the of vehicles in the second run
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Table 2. Cargo quantities to be transported

Tasks 1, 2, and 3
Cargo type 1 2 3
Quantity 30 1000 200000

Task 4
Cargo type 1 2 3
Quantity 35 1800 200

Table 3. Vehicle capacities for different cargo types

Tasks 1, 3, and 4
Number of vehicles 2 4 6 4 4
Type 1 capacity 2 2 – 1 –
Type 2 capacity 38 50 12 8 8
Type 3 capacity 15000 20000 5000 – 3000
Self-loader no no yes yes no

Task 2
Number of vehicles 1 1 2
Type 1 capacity 2 2 –
Type 2 capacity 38 50 8
Type 3 capacity – 20000 10
Self-loader no yes yes

Table 4. Loading/unloading bays capacities for different 
cargo types

Tasks 1, 2, and 4

Bay Bay number
Capacity

Type 1 Type 2 Type 3
Loading 1 4 30 5000
Loading 2 – 50 5000
Loading 3 – – 40000
Loading 4 4 35 4000
Loading 5 – 40 7000
Unloading 1 4 30 10000
Unloading 2 – 50 5000
Unloading 3 – – 50000
Unloading 4 3 35 4000

Task 3

Bay Bay number
Capacity

Type 1 Type 2 Type 3
Loading 1 4 30 5000
Loading 2 – 50 50
Loading 3 – – 40000
Loading 4 40 3 4000
Loading 5 – 40 7000
Loading 6 – 40 –
Loading 7 67 – –
Loading 8 45 40 7000
Loading 9 – – 7000
Unloading 1 10 30 10
Unloading 2 – 50 5000

For all experiments we had three types of a cargo. 
In Task 1 there were: 20 vehicles (consisting of five dif-
ferent types of vehicles); five loading bays and 4 unload-
ing bays. In Task 2 there were only four vehicles (three 
different types). In Task 3 there were nine loading bays 
and only 2 unloading bays. In Task 4 the cargo capaci-
ties were changed. Table 2, Table 3, and Table 4 present 
the detailed properties for each Task. The vehicles differ 
in different cargo capacities as well as they had different 
speeds. Also, not all vehicles were able to transport every 
type of cargo and some vehicles also had self-loaders. 
The capacities of loading bays at depot A and unloading 
bays at depot B are different. Self-loading capacity was 
defined by the vehicles, and was always lower compared 
to the loading bay capacity.

For all four Tasks the distance between depots A 
and B was 90 kilometers, with three equally long sec-
tions, each having the different highest possible speed 
(80, 130, and 90 km/h). Indeed, the real speed of each 
vehicle depends on their capacities and on regarding 
whether they were full (on their way from A to B) or 
empty (returning from B to A).

4.2. Experiments
Two algorithms (PLES and ASA) were used to find the 
shortest time for a task of transportation of cargos from 
depot A to B. The greedy search approach (Plestenjak 
et al. 2008) was used for acquiring comparative results 
presented in Table 5 based on arranging vehicles accord-
ing to their efficiency of transporting certain types of 
cargos. According to approach (Plestenjak et al. 2008), it 
would be ideal if one could use the same amount of time 
to transfer each of the cargo types. To attain this goal, at 
a loading bay such a cargo was chosen for each vehicle 
at each run, so that the cargo volume ratio V1:V2:V3 of 
transported cargo was maintained the same throughout 
the whole transportation process. And at depot B, the 
unloading bay was chosen to unload the cargo in the 
shortest time possible.

Table 5. Greedy search results for each Task

Task Result

Group Free
1 32.25 18.56
2 79.99 76.41
3 68.63 43.34
4 53.79 24.18

We determined the lower bound of the number of 
runs for all vehicles. The lower bound was set according 
to the capacity of all cargos and capacities of all vehicles 
for each cargo. It is calculated as follows:

31 2

1 2 31 1 1

* .
v v v

i i ii i i

VV V
r

w w w= = =

= + +
∑ ∑ ∑

This lower bound was used to determine the upper 
bound, which was used to narrow the search space and 
decrease the search time. The upper bound used for the 
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PLES and ASA was set to r = 2r*. The reason for using 
the upper bound was due to the fact that some vehicles 
can be omitted in some runs, therefore in general more 
runs are needed and only few solutions are feasible with 
r  =  r*. With r set to some higher value the algorithm 
is able to find quickly more feasible solutions and then 
successfully converge to lower values, which are usually 
close to r*.

Since the PLES is parameter-less algorithm, there 
was no need to set any control parameters. Stopping cri-
teria was automatically set according to the convergence 
progress, i.e., approximately 30000 evaluations or when 
maximal number of evaluations is reached, i.e., 500000 
evaluations. The ASA parameters were set as follows: the 
number of ants was 200, ρ = 0.001 and stopping crite-
ria was determined by maximal number of evaluations, 
500000, or 50000 evaluations without improvement. To 
set these parameters several test executions of the algo-
rithm were done.

To obtain final solution the algorithms needed ap-
proximately 200000 to 500000 evaluations, which in 
time took up to 10 minutes. Regardless of the algorithm, 
to transport the cargos, all vehicles had to perform about 
7 runs in Task 1, 33 runs in Task 2, and 11 runs in Tasks 
3 and 4. Each algorithm was executed 20 times.

5. Results

5.1. Group Transportation
Tables 6–9, corresponding to Tasks 1–4, respectively, pre-
sent the best, worst, mean, and standard deviation value 
of the group transportation time (measured in hours). 
The fifth row presents standard error of the mean (SEM).  

The sixth row presents the median. The seventh row pre-
sents the confidence interval for the mean value with 
the confidence range of 99%. The last row presents the 
average number of evaluations needed to finish the al-
gorithm run.

Table 10 presents a set of non-parametric statisti-
cal tests (Wilcoxon 1945; Mann, Whitney 1947; Brandt 
1976; Press et  al. 1992; Demšar 2006) for both algo-
rithms for group transportation in all Tasks. The level 
of F-test shows that the results of both algorithms can 
be treated as having equal variance in all four Tasks. Ac-
cording to T-test for two samples with equal variance 
the difference between results of PLES and ASA algo-
rithms is extremely statistically significant for all Tasks, 
with the level of significance a = 0.01. T-test requires 
normal distributions of samples, but since the size of the 
samples is relatively small (i.e., 20) the distribution shape 
could not be verified. Therefore, additional U-test was 
used to evaluate the results of a T-test. The results of 
U-test with a = 0.01 are again smaller than 0.0001 for 
all Tasks, which additionally proves the statement above.

Table 10. Statistical test of the PLES and the ASA 
performance for group transportation in all Tasks

Task 1 Task 2 Task 3 Task 4
F-test p 0.0008 0.0006 0.0341 0.5966
T-test t(38) 14.45 13.49 18.04 10.84

p 0.0000 0.0000 0.0000 0.0000
U-test z 5.42 5.42 5.42 5.29

U 1 0 0 5
p < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 6. Performance of the PLES and the ASA  
for group transportation in Task 1

PLES ASA
Best 37.04 26.69
Worst 50.05 33.01
Mean 43.84 30.79
St. dev. 3.69 1.63
SEM 0.83 0.37
Median 44.32 31.32
Conf. int. 99% ±2.13 ±0.94
Avg. evaluations 500000 418320

Table 7. Performance of the PLES and the ASA  
for group transportation in Task 2

PLES ASA
Best 85.83 76.42
Worst 99.66 80.97
Mean 91.64 78.47
St. dev. 4.01 1.73
SEM 0.90 0.39
Median 90.96 77.91
Conf. int. 99% ±2.31 ±1.00
Avg. evaluations 290719 290930

Table 8. Performance of the PLES and the ASA  
for group transportation in Task 3

PLES ASA
Best 79.93 56.84
Worst 105.31 70.12
Mean 95.96 63.76
St. dev. 6.83 4.13
SEM 1.53 0.92
Median 97.35 65.24
Conf. int. 99% ±3.93 ±2.38
Avg. evaluations 500000 402030

Table 9. Performance of the PLES and the ASA for group 
transportation in Task 4

PLES ASA
Best 46.09 41.82
Worst 52.41 46.95
Mean 49.61 44.25
St. dev. 1.66 1.47
SEM 0.37 0.33
Median 49.57 44.23
Conf. int. 99% ±0.96 ±0.84
Avg. evaluations 490253 426210
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Since we have found out that there exists statistical-
ly significant difference between compared algorithms, 
we must determine which one is better. So further sta-
tistical tests were performed, which enables us to de-
termine just that. We used pairwise comparisons with 
the Wilcoxon signed-ranks test (Wilcoxon 1945) and 
the Bergmann–Hommel dynamic post-hoc procedure 
(Bergmann, Hommel 1988). Table 11 presents average 
rankings, while Tables 12 and 13 present pairwise com-
parisons with the Wilcoxon signed-ranks test and with 
the Bergmann–Hommel dynamic post-hoc procedure, 
respectively. Both tests confirm that the ASA returned 
significantly better solutions than the PLES in all four 
Tasks with the level of significance 0.01.

Fig. 5 presents the performance of both algorithms 
in all Tasks, where the average, minimal and maximal 
values are presented in the graph.

From results shown in this section we can conclude 
that the ASA performs significantly better than the PLES 
in all Tasks and has a smaller standard deviation. At the 
same time, the average results of both algorithms outper-
form greedy search in Task 4, while only the ASA out-
performs greedy approach also on all remaining Tasks. 
This indicates that the ASA is a preferred approach in 
dealing with a group transportation scheduling problem.

5.2 Free Transportation
Similar to the above comparison, Tables 14–17, corre-
sponding to Tasks 1–4 for free transportation approach, 
present the best, worst, mean, and standard deviation 
value of the transportation time (measured in hours). 

Fig. 5. Performance of the PLES and the ASA for group transportation in: a – Task 1; b – Task 2; c – Task 3; d – Task 4

Table 11. Average rankings of the algorithms  
for group transportation

Algorithm
Task

1 2 3 4
PLES 2.0 2.0 2.0 2.0
ASA 1.0 1.0 1.0 1.0

Table 12. Pairwise comparisons with the Wilcoxon test  
for group transportation

Hypothesis Task R+ R– p-value
ASA vs. PLES 1 210 0 < 0.0001
ASA vs. PLES 2 210 0 < 0.0001
ASA vs. PLES 3 210 0 < 0.0001
ASA vs. PLES 4 210 0 < 0.0001

Table 13. Multiple comparisons with the  
Bergmann–Hommel procedure for group transportation

Hypothesis Task Adjusted p-value
ASA vs. PLES 1 < 0.0001
ASA vs. PLES 2 < 0.0001
ASA vs. PLES 3 < 0.0001
ASA vs. PLES 4 < 0.0001

The fifth row presents SEM. The sixth row presents the 
median. The seventh row presents the confidence inter-
val for the mean value with the confidence range of 99%. 
The last row presents the average number of evaluations 
needed to finish the algorithm run.

Transport, 2013, 28(1): 46–59 55



Table 14. Performance of the PLES and the ASA  
for free transportation in Task 1

PLES ASA
Best 20.00 17.82
Worst 24.44 21.76
Mean 22.38 19.71
St. dev. 1.36 1.03
SEM 0.30 0.23
Median 22.51 19.50
Conf. int. 99% ±0.78 ±0.59
Avg. evaluations 475305 331110

Table 15. Performance of the PLES and the ASA  
for free transportation in Task 2

PLES ASA
Best 66.17 65.05
Worst 74.85 68.33
Mean 70.59 66.36
St. dev. 2.25 1.18
SEM 0.50 0.26
Median 70.61 66.11
Conf. int. 99% ±1.29 ±0.68
Avg. evaluations 433490 325420

Table 16. Performance of the PLES and the ASA  
for free transportation in Task 3

PLES ASA
Best 42.53 42.04
Worst 47.99 103.02
Mean 45.56 62.54
St. dev. 1.80 22.76
SEM 0.40 5.09
Median 45.29 62.58
Conf. int. 99% ±1.04 ±13.11
Avg. evaluations 493332 380910

Table 17. Performance of the PLES and the ASA for free 
transportation in Task 4

PLES ASA
Best 25.07 23.77
Worst 27.07 27.01
Mean 25.93 25.09
St. dev. 0.59 0.79
SEM 0.13 0.18
Median 25.98 25.09
Conf. int. 99% ±0.34 ±0.46
Avg. evaluations 369487 419620

Table 18 presents a set of non-parametric statistical 
tests for both algorithms in all Tasks for free transporta-
tion approach. The level of F-test shows that the results 
of both algorithms can be treated as having an equal 
variance in Tasks 1, 2 and 4. According to T-test for two 
samples with equal variance the difference between re-

sults of PLES and ASA algorithms is extremely statisti-
cally significant for Tasks 1, 2, and 4 with the level of 
significance a = 0.01. The results of U-test with a = 0.01 
are again smaller than 0.001 for Tasks 1, 2, and 4, which 
additionally proves the statement above.

Table 19 presents average rankings, while Tables 20 
and 21 present pairwise comparisons with the Wilcoxon 
signed-ranks test and with the Bergmann–Hommel dy-
namic post-hoc procedure, respectively. Both tests con-
firm that the ASA returned significantly better solutions 
than the PLES in Tasks 1, 2, and 4, while in Task 3 there 
is no significant difference between two algorithms with 
the level of significance 0.01.

Fig. 6 presents the performance of both algorithms 
in all Tasks, where the average, minimal and maximal 
values are presented in the graph.

From results shown in this section we can conclude 
that the ASA performs significantly better than the PLES 
in three Tasks and has only in two Tasks smaller stan-
dard deviation. The average results of both algorithms 
outperform greedy search only in Task 2. But neverthe-

Table 18. Statistical test of the PLES and the ASA 
performance for free transportation in all Tasks

Task 1 Task 2 Task 3 Task 4
F-test p 0.2315 0.0074 < 0.0001 0.2078
T-test t(38) 7.04 7.46 3.33 3.79

p < 0.0001 < 0.0001 0.0020 0.0005
U-test z 4.73 4.91 1.15 3.44

U 25.5 19 158 73.5
p < 0.0001 < 0.0001 0.2501 0.0006

Table 19. Average rankings of the algorithms  
for free transportation

Algorithm
Task

1 2 3 4
PLES 2.0 2.0 1.4 2.0
ASA 1.0 1.0 1.6 1.0

Table 20. Pairwise comparisons with the Wilcoxon test  
for free transportation

Hypothesis Task R+ R– p-value
ASA vs. PLES 1 210 0 < 0.0001
ASA vs. PLES 2 210 0 < 0.0001
ASA vs. PLES 3 36 174 0.01
ASA vs. PLES 4 210 0 < 0.0001

Table 21. Multiple comparisons with the  
Bergmann–Hommel procedure for free transportation

Hypothesis Task Adjusted p-value
ASA vs. PLES 1 < 0.0001
ASA vs. PLES 2 < 0.0001
ASA vs. PLES 3 0.371
ASA vs. PLES 4 < 0.0001
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less the best results obtained by the ASA are better than 
greedy search in all Tasks, while the PLES is better in 
Tasks 2 and 3. This indicates that if we have more time, 
the ASA is a preferred approach in dealing with a free 
transportation scheduling problem, but if this is not the 
case then greedy search is currently a better option.

Conclusion

The results show that the ASA found better solutions 
than the PLES in all Tasks except in Task 3 for free trans-
portation approach. The main reason for lower perfor-
mance in Task 3 is in “strong” local optima from which 
the ASA was not able to escape. But when it did, it still 
found better solutions then the PLES. Obviously, the 
constrained problems observed at the ASA graph con-
struction process in (Papa, Korošec 2009) are with this 
new problem representation almost gone.

If we compare results obtained by all algorithms 
on group and free transportation approaches, we notice 
that on average greedy search performs better at free 
transportation, while it is much worse at group trans-
portation. This indicates that the implemented version 
of greedy search is more adapted for solving free trans-
portation. But since the ASA provides significantly bet-
ter or even the best results than greedy search, a further 
investigation in providing more stable (smaller standard 
deviation) results is needed.

For further improvements to solutions of both al-
gorithms a multi-restart approach is a viable possibil-
ity. This would be especially true for the ASA, since it 
could avoid strong local minima in Task 3 and decrease 
standard deviation. But this would further increase al-
ready high calculation time. So, next logical improve-
ment would be to start from the solution obtained by the 
greedy search approach, since we would start with rela-
tively high quality solution and with it decreased the cal-
culation time. For the PLES the encoding should be fur-
ther improved to achieve stable and better performance. 
Its poor behavior is seen as being prematurely stopped, 
by the number of evaluation limitation, in Tasks 1 and 
3 of group transportation. Since its progress depends on 
the chromosome size, the improvement must be in the 
direction of chromosome encoding change.

In general, both algorithms performed well in all 
transportation cases, and could be easily used to solve 
this type of problems. The ASA was able to surpass 
the quality of solutions acquired by the greedy search 
approach in all instances, while the PLES in some of 
them. One advantage of the greedy search approach is 
its speed. To overcome this, an exploration of parallel-
ization possibilities of the ASA and the PLES is planned 
in our future work. This is a sensible research direction 
since the number of cores per processor is increasing 
rapidly and not to mention the increasing popularity of 
GPU computing.

Fig. 6. Performance of the PLES and the ASA for free transportation in: a – Task 1; b – Task 2; c – Task 3; d – Task 4
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