
TRANSPORT
ISSN 1648-4142 print / ISSN 1648-3480 online

Copyright © 2012 Vilnius Gediminas Technical University (VGTU) Press Technika 
http://www.tandfonline.com/TRAN

2012 Volume 27(2): 158–164

doi:10.3846/16484142.2012.692710

impRoVED iTERATiVE pREDicTion FoR mUlTiplE STop  
ARRiVAl TimE USing A SUppoRT VEcToR mAcHinE

chang-Jiang Zheng1, Yi-Hua Zhang2, Xue-Jun Feng3

College of Civil and Transportation Engineering, Hohai University,  
1 Xikang Road, 210098 Nanjing, PR China 

E-mails: 1zheng@hhu.edu.cn (corresponding author); 2yhzhang@hhu.edu.cn; 3fxj@hhu.edu.cn

Submitted 26 March 2011; accepted 1 June 2011

Abstract. The paper presents an improved iterative prediction method for bus arrival time at multiple down-
stream stops. A multiple-stop prediction model includes two stages. At the first stage, an iterative prediction model is 
developed, which includes a single stop prediction model for arrival time at the immediate downstream stop and an 
average bus speed prediction model on further segments. The two prediction models are constructed with a support 
vector machine (SVM). At the second stage, a dynamic algorithm based on the Kalman filter is developed to enhance 
prediction accuracy. The proposed model is assessed with reference to data collected on transit route No 23 in Dalian 
city, China. The obtained results show that the improved iterative prediction model seems to be a powerful tool for 
predicting multiple stop arrival time.
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1. introduction

Accurate prediction for bus arrival time plays an im-
portant role in advanced public transportation systems 
(APTS). It can be used for transportation planning and 
operation. Forecasting bus arrival time is especially criti-
cal for operators to make a decision or plan schedules, 
while it can also reduce passenger waiting time and 
improve transit service level. Arrival time estimates are 
subject to a number of factors such as traffic congestion 
and passenger arrivals at stops. Therefore, predicting ar-
rival time in an accurate and timely manner is a chal-
lenging task. 

There is plenty of literature on predicting arrival 
time published in the past decade. Dailey et  al. (2000) 
presented an algorithm for predicting bus arrival time 
based on time and location received from an automated 
vehicle location system. Chien et  al. (2002) developed 
a link-based artificial neural network (ANN) and a 
stop-based ANN to predict bus arrival time where a 
dynamic algorithm was also presented to dynamically 
improve outputs. Cathey and Dailey (2003) made up a 
general prescription to indentify the factors necessary 
for forecasting bus arrival/departure. The prescription 
consisted of a tracker, a filter and a predictor and cor-
responding algorithms were adopted in the predictor 
component. Chen et  al. (2004) introduced a dynamic 
model consisting of an artificial neural network model 

and the Kalman filter technique to predict bus arrival 
times based on data collected by a real world APC. 
Chien et  al. (2007) designed a probabilistic model for 
disseminated bus arrival time which took the total wait-
ing time caused by pre-trip passengers as its aim. Yu 
et  al. (2006, 2011) proposed a SVM-based model for 
forecasting bus arrival time, in which the weather, seg-
ment and traffic conditions were considered. Wu et al. 
(2004) provided support vector regression (SVR) to pre-
dict highway travel time. Hellinga and Fu (2002) devel-
oped a methodology of adjusting bias in arrival time. 
The methodology can effectively use stratified sampling 
techniques to provide simulation results for a single 
intersection approach and an arterial corridor. Li and 
McDonald (2002) adopted an approach to analyzing 
the speed time profile reflecting the difference between 
travel time and the mean travel time of the probe vehi-
cle. Vanajakshi et  al. (2009) used the Kalman filtering 
technique to predict bus travel time by using global po-
sitioning system data. 

Most of the methods proposed in previous work 
have gained successful results to predict bus arrival 
time at the immediate downstream stop. To the best of 
our knowledge, the existing literature is rarely found to 
predict arrival times at multiple downstream stops as 
well as at the immediate downstream stop. The paper 
denotes prediction for arrival time at the immediate 
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downstream stop (e.g., the stop k + 1) as a single-stop 
prediction while the prediction of arrival times at mul-
tiple downstream stops (e.g., the stop k + 1…k + i) is 
defined as multi-stop prediction.

Single-stop and multi-stop predictions are shown 
in Fig. 1. 

If arrival times at multiple downstream stops were 
available, it would provide operators with more reliable 
and timelier information on dispatching and schedul-
ing for transit operation. This can provide passengers 
with more convenience and greatly improve transit ser-
vice quality. This paper focuses on predicting bus arrival 
times at multiple downstream stops.

The support vector machine (SVM) (Vapnik 
1999a, 1999b), which is a very specific type of learning 
algorithms, can map the relationship between the input 
and output of a complex system. It has been success-
fully applied to solve some transportation problems (Yu 
et al. 2006; Wu et al. 2004; Yuan, Cheu 2003; Ren et al. 
2002). Furthermore, the studies presented by Yu et  al. 
(2006, 2010, 2011) and Wu et al. (2004) suggested that 
the SVM model was suitable for predicting travel time 
in transportation field. These successful results of time 
varying applications with SVM prediction motivate our 
research to use the SVM for modelling prediction for 
multiple stop arrival time.

The paper first develops the SVM-based model for 
forecasting bus arrival time at the immediate down-
stream stop. Then, the SVM-based model for estimating 
traffic conditions on the road links after the immediate 
downstream stop is proposed to improve the accuracy 
of multi-stop prediction. The structure of this paper is 
organized as follows: Section 2 provides the structure 
of the iterative method predicting bus arrival times at 
multiple downstream stops and a dynamic algorithm; 
Section 3 contains results and analyses including the 
performance evaluation of the methodology; finally, 
conclusions are presented in Section 4.

2. model Development

2.1. Support Vector Machines for Regression
The support vector machine is a kind of a learning ma-
chine based on the statistical learning theory developed 
by Vapnik (1999a, 1999b) and is gaining popularity due 
to many attractive features. The support vector machine 
(SVM) implements the principle of structural risk mini-

mization (SRM), which shows to be more superior to 
a traditional principle of empirical risk minimization 
(ERM) carried out by conventional neural networks. 
Thus, the SVM usually achieves optimum network 
structure. The SVM regression function (Vapnik 1999a, 
1999b; Cao, Tay 2003; Dong et al. 2005) can be formu-
lated as follows:

( )f x x b= w + .  (1)

Coefficients ω and b are estimated by minimizing 
the following cost function:
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where: C is the regularization constant. The first term 
2w  is called the regularized term and is used for mak-

ing regular weight sizes and penalizes large weights. The 
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∑  is a penalty function pe-

nalizing large errors.
The minimization of Eq. (2) is a standard prob-

lem in the optimization theory: minimization with 
constraints. This can be solved by applying Lagrangian 
theory and the weight vector. w equals a linear combi-
nation of training data:

( )
1

.
l

i i i
i

a a x∗

=
w = −∑   (3)

In this formula, ai and ∗
ia are Lagrange multipliers 

associated with a specific training point. The asterisks 
again denote the difference between data above and 
below the regression line. Putting this formula into Eq. 
(1), the following solution is obtained with unknown 
data point x:
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By introducing kernel function K (xi, xj) Eq. (4) 
can be rewritten as follows:

( ) ( )
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( ) , .
l

i i i
i

f x a a K x x b∗

=
= − +∑   (5)

By using kernels, all necessary computations can 
be performed directly in input space without comput-
ing map x .

Fig. 1. An example of single-stop and multi-stop predictions
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2.2. Single Stop Arrival Time Prediction Model
Road traffic condition is one of the most important vari-
ables that may contribute to the variation of bus run-
ning. However, traffic conditions are complicated and 
difficult to measure, and thus this research uses bus 
speed on the road link for estimating traffic conditions 
of the links. Assume that there are stops numbered from 
k – 1 to k + i, as shown in Fig. 2. While vehicle m reaches 
stop k, arrival time at stop k +1 can be predicted by us-
ing a single stop arrival time prediction model.

The speed ( )1
P
k kV − →  that the vehicle has just fin-

ished on the proceeding segment and the current aver-
age speed ( )1

N
k kV → + on the predicted segment are used 

for acting as input variables (Fig. 1). For example, if the 
current stop is stop k, 1

P
k kV − →  is speed on the segment 

between stop k – 1 and stop k, and 1
N
k kV → +  is the aver-

age speed of several proceeding vehicles that have just 
passed through stop k + 1 on the predicted segment 
(segment k → k + 1):

1 , 1
1

1 n
N N
k k m j k k

j
V V

n→ + − → +
=

= ×∑ ,  (6)

where: , 1
N
m j k kV − → +  is the observed speeds of proceed-

ing vehicles that have just passed through stop k + 1 on 
segment k → k +1; n is the number of the considered 
proceeding vehicles.

The output of the single-stop arrival time predic-
tion model is the forthcoming speed ( )1

ˆ P
k kV → +  

of the 
vehicle on the predicted segment. Then, arrival time 
( )1

ˆ
kT +  at the immediate downstream stop can be indi-

rectly obtained. The structure of the single stop arrival 
time prediction model is shown in Fig. 3. 

2.3. Average Bus Speed Prediction Model  
on a Further Segment
Average bus speeds on further segments are predicted by 
using the observed speeds on the segments in advance. 
If the single stop method was used to recursively forecast 
arrival times at the following stops after the immediate 
downstream stop, prediction errors would greatly in-
crease along the bus route. Even small prediction errors 
existing at the beginning of the horizon will accumulate, 
propagate and finally lead to poor prediction accuracy. 
In fact, there may be some other reasons. One of those is 
a lack of measurements when predicting arrival times at 
downstream stops after the immediate downstream stop.

If we assume the current stop is stop k using the 
single-stop prediction model to forecast arrival times at 
the stops after stop k + 1, traffic conditions on further 
segments should be estimated. The observed speeds of 
the vehicles that have just passed through the immedi-
ate downstream stop are used as inputs so as to find re-
lation with traffic conditions on further segments.

When forecasting average bus speeds on further 
segments, there are several inputs: the segment and ob-
served speeds on the immediate downstream segment 
(segment k → k + 1). The segment is the predicted route 
section between two stops. The output of the model is 
the estimated average speed ( )1

ˆN
k i k iV + − → + on the pre-

dicted segment. The proposed average bus speed pre-
diction model on a further segment is displayed in the 
structure shown in Fig. 4.

2.4. Dynamic Algorithm
Although speeds in the above models have some ‘dy-
namic’ feature, they are still based on a historical data 
pool of bus trips. To improve prediction accuracy, an 
adaptive algorithm (Chien et al. 2002; Chen et al. 2004) 
should be developed to adjust prediction results in  
real time.

Therefore, to adjust prediction results, a dynamic 
algorithm is developed based on the Kalman filter-
ing technique that uses the observed bus information 
together with the estimated speeds generated by SVM 
models. The Kalman filter is a minimum mean square 
error estimator that can estimate an instantaneous ‘state’ 
of a linear dynamic system corrupted by white noise. 
The resulting estimator is statistically optimal with re-
spect to any quadratic function of estimation error. 
Consider the following state space model:

1 1 1;m m m mx x w− − −= Φ +   (7)

1 1 1,m m m my H x v− − −= +   (8)

where: xm is the state vector (in this case, it denotes the 
speed of the current vehicle (m) from the single stop 
prediction mode or the average speed from the average 
speed prediction mode on the estimated segment); ym 
is the observation vector denoting the observed speed 
of the current vehicle or the observed average speed on 
the estimated segment; Φm–1 and Hm–1 are state transi-
tion matrix and observation matrix respectively. Here, 
xm–1 and ym–1 denote speed and are one dimensional 
variables, and thus Φm–1 = (1) and Hm–1 = (1). wm–1 and 
vm–1 represent the process and measurement noise with 
zero means and covariance matrices Qm–1 and Rm–1 re-
spectively.

Fig. 2. An example of predicting arrival time at the 
immediate downstream stop

Fig. 3. The structure of the single-stop prediction model
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Fig. 4. The structure of the average bus speed prediction 
model on a further segment
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Let 1ˆmx− −  be a prior state estimate at step m  – 1 
given knowledge of the prior process, and 1ˆmx −  be a 
posterior state estimate at step m  – 1 given measure-
ment ym–1. The two state estimates can be computed as 
follows:

1 1ˆ ˆ ;m m mx x−
− −= Φ   (9)

( )ˆ ˆ ˆ .m m m m m mx x K y H x− −= + −   (10)

Kalman gain Km reflects the stochastic nature of 
the process and measurement computed by an optimal 
linear estimator that minimizes the squared error on 
the expected value of state estimation ˆmx .

We can then define prior and posterior esti-

mate errors as ( )21 1 1ˆm m mP E x x− −
− − −

 = −  
and ( )21 1 1ˆm m mP E x x− − −

 = −  
( )21 1 1ˆm m mP E x x− − −
 = −  

respectively. One form of resulting 

K is given by (11): 

( ) 1
.T T

m m m m m m mK P H H P H R
−− −= +

 
 (11)

For more details about the Kalman filter, refer to 
Grewal and Andrews (2001).

2.5. Improved Iterative Prediction Model  
for Multiple Stop Arrival Times
In the improved iterative prediction model for multiple 
stop arrival times, the single stop prediction model is 
first used for forecasting arrival time at the immediate 
downstream stop. Then, the average speeds on further 
segments are estimated based on the average bus speed 
prediction model. Following this, arrival times at further 
downstream stops are forecasted by using outputs at the 
previous stops as inputs. For example, forecasted arrival 
time at stop k + i, using the iterative approach, can be 
computed with the estimated speed on segment k + I – 
1 → k + i that can be predicted by two input variables: 
estimated speeds on segment k + i – 2 → k + i – 1 and 
segment k + i – 1 → k + i. 

( )1 2 1 1
ˆˆ ˆ ˆ , ,P N

k i k i k i k i k i k i k iT V f V V+ + − → + + − → + − + − → +′ ′→ =   (12)

where: 2 1
ˆ P
k i k iV + − → + −′  and 1

ˆ N
k i k iV + − → +′  denote the pre-

dicted outputs adjusted by the dynamic algorithm.
For example, when the bus arrives at stop k, 1

ˆ P
k kV → +  

can be predicted by the single stop prediction model 
with 1

P
k kV − → and 1

N
k kV → + . Then, arrival time ( )1

ˆ
kT +  at 

the immediate downstream stop (k + 1) can be indi-
rectly obtained. To predict arrival time at downstream 
stop k + 2, 1

ˆ P
k kV → +  and 1 2

ˆN
k kV + → +  are acted as two input 

variables. 1
ˆ P
k kV → +  can be acquired by the single stop 

prediction model and 1 2
ˆN
k kV + → +  can be acquired by the 

average bus speed prediction model. The two variables 
from the prediction model have some estimation errors. 
To decrease the estimated errors, 1

ˆ P
k kV → +  and 1 2

ˆN
k kV + → +  

will be adjusted by the dynamic algorithm to 1
ˆ P
k kV → +′  

and 1 2
ˆ N
k kV + → +′  respectively. Arrival time at downstream 

stop k+2 can be predicted in Fig.  5. As arrival time at 
downstream stop k+2 is predicted, arrival time from 
downstream stop k+3 to the last one can also be pre-
dicted. 

Based on the improved iterative prediction model, 
the dynamic algorithm is introduced to enhance predic-
tion accuracy. The process of the improved iterative pre-
diction model is shown in Fig. 6.

3. numerical Test

The improved iterative prediction model has been tested 
using data obtained on transit route No  23 in Dalian 
city, China, the road that passes from Ligongdongmen to 
Waiguoyuxueyuan with a total amount of 19 stops at one 
direction  (Yu et al. 2012). A part of route segments from 
stop Tiyuchang (the stop 1) to terminal Waiguoyuxu-
eyuan (the stop 7) is chosen as the study bed (Fig. 7). 
Assume that prediction action occurs at Stop 1 only, i.e. 
while a vehicle reaches Stop 1, all arrival times at down-
stream stops (Stop 2 … Stop 7) can be predicted.
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Fig. 6. The structure of the improved iterative prediction model
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To gain test data, we have collected arrival times at 
7 stops on each individual trip at peak time (7:00 A.M. – 
8:00 A.M.) and off-peak time (10:00 A.M. – 11:00 A.M.) 
during weekdays from September to October, 2006. The 
total amount of data acquired at peak and off-peak time 
is 3360. Then, speed on each segment can be computed 
based on arrival times at the stops.

The basic strategy used for the training process 
consisted of utilizing three data subsets, including train-
ing, cross-validation and testing. First, about 10% (330) 
of the samples of the obtained data were set aside as 
testing data. The remaining data are randomly assigned 
into two groups, the first one makes about 70% (2350) 
of the samples for training and the second one goes 
with data containing 680 samples for cross validation. 

C is the regularization constant that reflects the im-
portance of empirical risk. ε is the tube size that tunes 
approximation accuracy on training data points. The 
values of C and ε are determined by the users. The value 
of γ will affect the performance of the kernel function. 

In this paper, the parameters are calibrated by 
grid-search (Yu et al. 2006; Dong et al. 2005) where all 
combinations (C, ε and γ) are tried and, finally, the one 
with the best performance is chosen (2–2, 2–5, 1.58). 
Furthermore, in single stop prediction and average 
speed prediction models, the number of the considered 
proceeding vehicles is set to three by simulation.

To examine the performance of the improved it-
erative prediction model for multiple stop arrival times 
(IMATP), we have implemented work compared with 
a history mean prediction model (HMP), a single stop 

arrival time prediction model (OATP) and an iterative 
multiple stop arrival time prediction model (MATP). In 
the HMP model, the speeds between two stops are di-
rectly computed by test data, and therefore arrival times 
at the stops can be obtained. The structure of the OATP 
is as shown in Fig.  3 and arrival times at downstream 
stops are recursively estimated. The difference between 
the IMATP model and the MATP model is that no dy-
namic algorithm in the MATP model exists. In order to 
have the same basis of comparison, the same training 
and verification sets are used for four models. Prediction 
accuracy is evaluated by computing the mean absolute 
percentage error (MAPE) that can be obtained from:

+ +

+=

−
= ×∑

1

ˆ| |1MAPE 100%,
J

k j k j

k jj

T T
J T

  (13)

where: J is the number of test samples; Tk+j is the ob-
served arrival time at stop k + j.

Fig.  8 shows a comparison of the MAPEs of the 
four models at all stops. Interestingly, the MAPEs of 
the four approaches in the peak period are less than the 
ones in the off-peak period. It can be attributed that the 
test bed locates in the centre of Dalian city where traffic 
at peak time slows to a near standstill. This reduces var-
iability in travel times and decreases prediction errors 
at the peak period. However, there is no heavy traffic 
congestion at the off-peak period while traffic volume 
in the area is still large. This brings some uncertainty of 
predicting and decreasing prediction accuracy. Further-
more, one can observe that predicting Stop 4 using all 
four approaches have acutest changes in the peak or off-
peak period. It can be attributed that the stop locates on 
the central business district (CBD) of Dalian city. Traffic 
conditions around Stop 4 are always complex. This can 
decrease prediction accuracy.

In addition, the MAPEs of each approach at the 
peak or off-peak period show a trend towards an in-
crease along the bus route. This can be attributed to 
the propagation of preceding prediction errors since 
each prediction is based on the prediction output of 
the preceding stop. As a simple statistical approach, 
the HMP model only uses the average speeds from test 
data to predict arrival times at multiple downstream 
stops and yields the largest MAPE among the four ap-

Fig. 7. The configuration of transit route No 23

Fig. 8. A comparison of the MAPEs of four methods: a – peak period; b – off-peak period

HMP OATP MATP IMATP

2 3 4 5 6 7

Stop

0

20

40

60

80

100

M
A

P
E

a)

HMP OATP MATP IMATP

2 3 4 5 6 7

Stop

0

20

40

60

80

100

M
A

P
E

b)

162 C.-J. Zheng et al. Improved iterative prediction for multiple stop arrival time using a support vector machine 



proaches. The performance of the OATP model is good 
and slightly inferior to the one of the IMATP model 
forecasting arrival time at the immediate downstream 
stop. However, since the OATP model cannot consider 
traffic conditions on further segments after the immedi-
ate downstream stop, MAPEs predicting arrival times 
at further downstream stops are greatly increased. The 
MATP can provide better performance than HMP and 
OATP models. This indicates that the average bus speed 
prediction model on a further segment is effective. Fur-
thermore, according to test results, adding a dynamic 
algorithm to MATP can also improve the performance 
of the model. Meanwhile, using IMATP can yield better 
solutions than the other stated approaches. So the IM-
ATP model seems to be a powerful tool for predicting 
multiple stop arrival time. 

4. conclusions

Along with the development of automatic vehicle lo-
cation or identification systems and automatic passen-
ger counters, there is a growing interest in providing 
real-time bus arrival information, especially multi-stop 
prediction. However, the above presented study on pre-
dicting arrival time at multiple downstream stops is not 
receiving increasing attentions to transportation man-
agement.

The purpose of this paper is to develop a prediction 
method for bus arrival times at multiple downstream 
stops. First, an iterative prediction model that consists 
of a single stop prediction model for arrival time at the 
immediate downstream stop and an average bus speed 
prediction model on a further segment is presented. 
Then, the two prediction models are used to recursive-
ly forecast arrival times at multiple downstream stops. 
Furthermore, in order to enhance prediction accuracy, a 
dynamic algorithm based on the Kalman filter is devel-
oped. To evaluate the performance of the proposed ap-
proaches, transit data obtained from Dalian city are used 
for testing information. The received results show that 
the improved iterative prediction model for multiple 
stop arrival times outperforms the other three methods.

The compatibility of the method with real-world 
data is essentially an important aspect of research. 
Moreover, SVM-based models would be retrained at 
regular schedules to increase its reliability in perfor-
mance when new data were obtained. In addition, these 
methods have important implications for practitioners 
and model developers. Practitioners could use the ac-
curate prediction results of multi-stop arrival time to 
timely improve transit operation and provide passen-
gers with convenient and good service. Model develop-
ers could validate the performance of the methods in 
the transit systems of other cities or fields. The method 
can also be explored in other applications such as pre-
dicting road traffic on speed/condition/time, predicting 
financial time series, exponents, etc. To improve the 
performance of the proposed prediction models, fur-
ther studies should consider integrating more factors 
such as weather and incident.
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