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Abstract. Large scale applications of behaviorally realistic transport models pose several challenges to transport 
modelers on both the demand and the supply sides. On the supply side, path-based solutions to the user assignment 
equilibrium problem help modelers in enhancing the route choice behavior modeling, but require them to generate 
choice sets by selecting a path generation technique and its parameters according to personal judgments. This paper 
proposes a methodology and an experimental setting to provide general indications about objective judgments for 
an effective route choice set generation. Initially, path generation techniques are implemented within a synthetic net-
work to generate possible subjective choice sets considered by travelers. Next, ‘true model estimates’ and ‘postulated 
predicted routes’ are assumed from the simulation of a route choice model. Then, objective choice sets are applied for 
model estimation and results are compared to the ‘true model estimates’. Last, predictions from the simulation of mod-
els estimated with objective choice sets are compared to the ‘postulated predicted routes’. A meta-analytical approach 
allows synthesizing the effect of judgments for the implementation of path generation techniques, since a large number 
of models generate a large amount of results that are otherwise difficult to summarize and to process. Meta-analysis 
estimates suggest that transport modelers should implement stochastic path generation techniques with average vari-
ance of its distribution parameters and correction for unequal sampling probabilities of the alternative routes in order 
to obtain satisfactory results in terms of coverage of ‘postulated chosen routes’, reproduction of ‘true model estimates’ 
and prediction of ‘postulated predicted routes’.

Keywords: path-based route choice modeling, meta-analysis, path generation, model estimation, model predic-
tion, large scale model applications, path size correction, logit structure.

1. Introduction

In recent years, technological and theoretical enhance-
ments allowed transport planning to move towards 
large scale applications of behaviorally realistic models. 
A number of activity-based model systems have been 
designed for large metropolitan areas such as Portland 
(Bowman et  al. 1998), San Francisco (Bradley et  al. 
2001), New York (Vovsha et al. 2002), Columbus (Vov-
sha et al. 2004), Atlanta (PBConsult 2004), Sacramento 
(Bradley et  al. 2007), Dallas (Pinjari et  al. 2008), Tel-
Aviv (Cambridge Systematics 2008) and Jakarta (Yagi, 
Mohammadian 2011), and agent-based model systems 
have been developed for even larger areas such as Swit-
zerland (Meister et  al. 2010). Large scale applications 
pose several challenges to transport modelers from the 
computational perspective, and judgments supported 
from theoretical and empirical considerations enable 
transport modelers to search for effective estimation and 
running procedures. 

While travel demand representation has flourished 
with the development of micro-simulation activity-based 
model frameworks that are theoretically advanced and 
behaviorally realistic, travel supply representation for 
large scale networks has not equally thrived. Path-based 
solutions to the user equilibrium assignment problem 
have the potential to help transport modelers in enhanc-
ing route choice models in static or dynamic large scale 
applications. 

Conceptual and empirical reasons suggest that 
explicit path generation prior to discrete choice model 
estimation or path-based traffic assignment is prefer-
able. Conceptually, choice set formation and choice 
from alternatives are distinct mental processes that call 
for separate modeling: choice set formation is trial-and-
error determined (Richardson 1982), preference-driv-
en (Horowitz, Louviere 1995) and constraint-related 
(Kaplan, Prato 2010), while choice from alternatives is 
usually represented as a compensatory decision (see, 
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e.g., Bovy 2009; Prato 2009). Empirically, various case-
studies show advantages of explicit choice set forma-
tion: higher flow prediction accuracy is illustrated for 
path-based solutions to the Stochastic User Equilibrium 
(SUE) problem (Cascetta et al. 1997), unrealistic and in-
efficient paths are found within implicit choice sets for 
link-based assignment (Bekhor, Toledo 2005), and theo-
retical and computational advantages are shown when 
the choice set generation is separately performed prior 
to traffic assignment (Bliemer, Taale 2006).

Several solutions have been proposed to the explicit 
path generation problem. Deterministic solutions in-
clude variations of shortest path algorithms (e.g., Hunt, 
Kornhauser 1996; Lombard, Church 1993; Van der Zijpp, 
Fiorenzo-Catalano 2005), minimization of generalized 
cost functions (Ben-Akiva et  al. 1984), application of 
heuristic rules combined with the shortest path search-
es (e.g., Azevedo et  al. 1993; De la Barra et  al. 1993), 
and implementation of a branch-and-bound algorithm 
(Prato, Bekhor 2006). Stochastic solutions include single 
stochastic simulation (e.g., Ramming 2002; Bekhor et al. 
2006), doubly stochastic simulation (Nielsen 2000; Bovy, 
Fiorenzo-Catalano 2007) and a random walk algorithm 
(Frejinger et al. 2009). Advantages and disadvantages re-
lated to the implementation of existing path generation 
techniques are extensively discussed by Bovy (2009) and 
Prato (2009). 

Even though several solutions have been proposed 
to the explicit path generation problem, guidelines for 
the implementation of path generation techniques have 
never been provided. As transport modelers cannot ob-
serve the subjective choice sets that contain the routes 
considered by travelers, they generate objective choice 
sets by selecting a path generation technique and its pa-
rameters according to personal judgments. 

Although the impact of choice sets on choice prob-
abilities and model performances has received increas-
ing attention recently, the role of path generation tech-
niques on model estimates and flow predictions has not 
been documented. Model performances of several route 
choice models estimated with different choice sets have 
been compared in terms of likelihood values (Bekhor, 
Prato 2006; Prato, Bekhor 2007), but the comparison 
fails to evaluate which technique better represents the 
observed behavior because of the absence of informa-
tion with respect to actual values of model estimates. 
Choice probabilities from several route choice modes 
estimated for a small synthetic network have been par-
alleled to choice probabilities from a postulated probit 
model (Bliemer, Bovy 2008), but the analysis fails to as-
sess the effects of the implementation of path genera-
tion techniques because of the peculiar context with a 
universal realm of only 12 alternatives. The influence of 
choice set size on objective function values and conver-
gence times of solutions to the SUE problem have been 
examined (Bekhor et al. 2008), but the comparison fails 
to investigate path generation techniques other than the 
k-shortest path algorithm. In a nutshell, existing stud-
ies about the choice set effects on route choice models 
focus on the analysis of the robustness of models and 
methods, rather than on actual effects of path generation 

techniques and on the provision of general indications 
about judgments for generating objective choice sets. 

This study presents the first systematic analysis of 
the judgments that the transport modelers are required 
to apply efficient and unbiased path generation, and 
proposes guidelines for effective implementation of path 
generation techniques.

The analysis implements several path generation 
techniques to a synthetic network. Initially, choice sets 
generated with different techniques are used for defin-
ing possible subjective choice sets for the postulation of 
‘true model estimates’ of a route choice model and the 
simulation of ‘postulated chosen routes’. Next, choice 
sets generated with different techniques are employed 
for constructing objective choice sets for model estima-
tion. Then, route choice models are estimated for all the 
possible combinations of subjective and objective choice 
sets. Last, predictions from the simulation of models es-
timated with objective choice sets are compared to the 
‘postulated chosen routes’. The advantage of this ap-
proach is three-fold: 

•	assuming subjective choice sets according to be-
havioral assumptions behind various path genera-
tion techniques allows covering a large variety of 
possible behavior in the absence of any indication 
about actual subjective choice sets considered by 
travelers; 

•	estimating the same model specification with-
in the same synthetic network allows isolating 
choice set effects from model and network effects; 

•	analyzing the possible combinations of subjective 
and objective choice sets allows comparing the 
relative ability of path generation techniques in 
accurately generating ‘postulated chosen routes’ 
and reproducing ‘true model estimates’. 

The appraisal of the coverage of the postulated 
behavior with the objective choice sets and the assess-
ment of the effects of path generation techniques on 
estimation and prediction accuracy are performed with 
a meta-analytical approach. Even though meta-analysis 
is generally used to review findings across different 
empirical studies, this paper proposes the application 
of meta-analysis to synthesize the effect of judgments 
within the same study when a large number of models 
generate a large amount of results that are otherwise dif-
ficult to summarize and to process. Judgments concern 
the path generation technique to be implemented and its 
parameters to be defined, and the meta-analysis exam-
ines a large number of combinations of subjective and 
objective choice sets to provide modelers with general 
guidelines for obtaining better coverage of postulated 
behavior and higher accuracy in model estimates and 
flow predictions. 

The remainder of the paper is structured as follows. 
Section 2 presents the rationale behind the consider-
ation of path generation techniques for constructing 
subjective and objective choice sets. Section 3 describes 
the synthetic data and the methods for evaluating model 
estimates and flow predictions. Section 4 synthesizes es-
timation and prediction results. Section 5 summarizes 
the findings from the analysis.
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2. Generating Subjective and Objective Choice Sets

Judgments about path generation techniques and pa-
rameters to be implemented are examined by consider-
ing a variety of techniques that are included in the analy-
sis according to the rationale presented in four points.

The first point concerns the distinction between de-
terministic and stochastic techniques. Even though intu-
itively superior, considering only stochastic approaches 
would bias the current analysis by providing answers 
before questions about path generation effectiveness are 
even formulated. 

The second point involves the selection of deter-
ministic approaches. Even though their evolution sug-
gests the superiority of more recent developments with 
respect to the shortest path algorithms, considering the 
only one deterministic technique would bias again the 
current analysis. The first deterministic technique is con-
sidered to be the largely applied and the most straight-
forward approach to the choice set generation problem 
consisting in the computation of k-shortest paths. The 
second deterministic technique is considered to be the 
iteration of the shortest path search after heuristic rules 
which penalize links on the last shortest path computed 
in the iterative process (De la Barra et al. 1993), which is 
preferable to link elimination (Azevedo et al. 1993) that 
introduces network disconnection problems. The third 
deterministic technique is considered to bethe enumera-
tion of the paths connecting the origin and destination 
of a trip under behavioral and logical constraints within 
a branch-and-bound algorithm (Prato, Bekhor 2006). 

The third point concerns the selection of stochastic 
approaches. The current analysis examines the effects of 
three techniques most recently developed and used in 
the literature about route choice modeling. The first sto-
chastic technique considered is the most straightforward 
stochastic simulation approach to the path generation 
problem consisting in the iteration of the shortest path 
search after randomization of link impedances (e.g., 
Bekhor et al. 2006; Bovy, Fiorenzo-Catalano 2007). The 
second stochastic technique considered is the natural 
evolution of the previous approach considering an er-
ror term for traffic network variations and an error term 
for traveler taste heterogeneity (e.g., Nielsen 2000; Bovy, 
Fiorenzo-Catalano 2007). 

The third stochastic technique considered is a ran-
dom walk algorithm that is biased towards the search for 
the shortest path (Frejinger et al. 2009). 

The fourth point playing a role in the selection of 
path generation techniques involves the parameters for 
their implementation being relevant for model estima-
tion and model implementation. Considering only one 
set of parameters (e.g., number of iterations, specific 
parameters, probability distributions) it would bias the 
current analysis that intends to provide general guide-
lines about judgments concerning the selection of path 
generation techniques.

With respect to the k-shortest path, five values of 
k cover from a fairly small to a very large window of 
admissible path costs. With respect to the link penalty, 

five combinations with increasing penalizing factor cov-
er from a small to a large variation of the alternatives in 
the generated choice sets. With respect to the branch-
and-bound, five combinations of the thresholds of the 
branching rule allow assessing the effect of increasing 
choice set size and route heterogeneity in the genera-
tion process.

With respect to the stochastic simulation, as unfor-
tunately normal distribution produces the negative link 
impedances and truncated normal distribution is not 
additive over the links, five combinations of shape and 
scale of a gamma distribution with mean equal to the 
link impedance and a range of increasing variances as-
sure a large variety of positive link impedances. With re-
spect to the doubly stochastic simulation, five variations 
of a gamma distribution for the first error component 
representing travel time variation and a log-normal dis-
tribution for the second error component capturing taste 
heterogeneity cover a range of alternatives with growing 
variances. With respect to the random walk algorithm, 
five values of the parameters of the Kumaraswami dis-
tribution of the weights encompass a range of variance 
with respect to the shortest path in the generation pro-
cess. 

In summary, five variations are considered for each 
of the six path generation techniques selected in order 
for the analysis to account for judgments in terms of 
selection of the type of technique, application of the spe-
cific technique, definition of the level of variance of the 
parameters, and generation of small or large choice sets.

3. Experimental Setting

3.1. Synthetic Data
The experimental setting applies path generation tech-
niques to the synthetic network represented in Figure 
that consists of 38 nodes and 64 links, with link length 
proportional to the length of the figure and some links 
with speed bumps. The network is originally a part of a 
real network of the city of Borlänge (Sweden) and has 
been presented by Frejinger et al. (2009) for testing the 
random walk algorithm. The universal realm consists of 
170 alternative routes between origin O and destination 
D, among which 29 have equal minimum length.

Fig. Network for experimental design (Frejinger et al. 2009)
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Subjective choice sets are unknown and hence their 
definition is hypothesized according to the behavioral 
assumptions behind the six path generation techniques 
applied. Table 1 reports parameters of five variations for 
each path generation technique. Parameters are defined 
from very small to very large variance, where very large 
(small) variance suggests that the resulting choice set is 
fairly large (small) since increasing the number of itera-
tions or the variance of distribution parameters produc-
es (does not produce) additional routes. 

Datasets of 4000 observations for estimation pur-
poses and 1000 observations for prediction purposes 
are generated from the variations of path generation 
techniques applied. This procedure creates 30 datasets 
of 4000 subjective choice sets for model estimation and 
30 datasets of 1000 subjective choice sets for model pre-
diction. 

For each dataset of subjective choice sets, a PSC-
Logit model (Bovy et al. 2008) is postulated. The advan-
tage in using the PSC-Logit is two-fold: 

•	the model accounts for similarities across alterna-
tives while maintaining a simple Logit structure;

•	MNL modifications are robust with respect to 
variations in the number of alternatives and in 
the composition of the choice sets (e.g., Bliemer, 
Bovy 2008; Prato, Bekhor 2007). 

The following utility function is specified for each 
alternative j and observation n:

jn length j bumps jU Length SpeedBumps= β +β +

,turns j PSC j jnTurns PSCβ +β + e   (1)

where: Lengthj is the length; SpeedBumpsj is the number 
of speed bumps; Turnsj is the number of turns; PSCj is 
the Path Size Correction of alternative j. The ‘true model 
estimates’ are assumed equal to –1 for βlength, –0.10 for 
βbumps, –0.30 for βturns, 1 for βPSC, and error terms ejn are 
independently and identically distributed extreme value 
with scale 1 and location 0. The Path Size Correction of 
alternative j is defined as (Bovy et al. 2008, 2009):
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where: Lj is the length of route j; La is the length of link 
a; Γj is the set of links belonging to route j; dal is the link-
path incidence dummy (equal to one if links a belongs 
to route l and zero otherwise). 

For each dataset of subjective choice sets, 4000 ‘pos-
tulated chosen routes’ for estimation purposes and 1000 
‘postulated predicted routes’ for prediction purposes are 
simulated by selecting the alternative with the highest 
utility within the choice set of each observation n.

Table 1. Implementation of path generation techniques

Path generation technique parameter very small 
variance

small 
variance

average
variance large variance very large 

variance

k-shortest path
define length limit in order to define k-shortest paths

length limit 35 36 37 40 51
k 33 51 88 104 170

link penalty
Iterate the shortest path searches and penalize the shortest path links

penalty factor 2% 3% 5% 10% 20%
iterations 50 50 50 100 100

branch-and-bound

connect origin and destination of the trips with five behavioral and logical thresholds
directional 100% 100% 110% 110% 110%
temporal 17 25 33 44 62

detour 100% 100% 110% 110% 120%
similarity 85% 80% 80% 75% 70%
movement 4 4 4 5 5

stochastic simulation
iterate the shortest path searches after extracting link length from gamma distribution

mean length length length length length
st.dev 0.25 length 0.50 length length 2 length 3 length

doubly stochastic simulation

iterate the shortest path searches after extracting link length from gamma distribution  
and travelers’ preferences from log-normal distribution

mean length length length length length
st.dev 0.50 length 0.50 length length length 2 length
mean –1 –1 –1 –1 –1
st.dev 0.25 0.25 0.5 1 1

random walk

calculate route probabilities from link probabilities based on link weights that are Kumaraswami 
distributed with two parameters b1 and b2

b1 10 7 5 3 1
b2 1 1 1 1 1
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3.2. Evaluation of Model Estimates  
and Flow Predictions
Objective choice sets are generated for model estimation 
and model prediction purposes from the same 30 varia-
tions of path generation techniques. 

For each dataset of objective choice sets, 30 models 
are estimated while considering as chosen alternatives 
the ‘postulated chosen routes’ from the 30 datasets of 
subjective choice sets. Observations where the objective 
choice sets do not contain the ‘postulated chosen routes’ 
are not considered for model estimation, and the cover-
age of the ‘postulated chosen routes’ is evaluated for each 
of the 900 objective-subjective combinations:

( ), ,

100,
sub n obj n

n
obj sub

I R C
Cov

N−

∈
= ⋅
∑

  (3)

where: Covobj-sub is the coverage of the dataset obj of ob-
jective choice sets with respect to the ‘postulated chosen 
routes’ from the dataset sub of subjective choice sets; I(·) 
is an indicator function equal to 1 when the ‘postulated 
chosen route’ Rsub,n belongs to the objective choice set 
Cobj,n of observation n, and N is the total number of ob-
servations.

Models are estimated by defining the utility func-
tion:

(jn length j bumps jV Length SpeedBumps= m β +β +

),turns j PSC jTurns PSCβ +β   (4)

where: m is the scale parameter. It should be noted that 
βlength is fixed to –1 and m, βbumps, βturns and βPSC are 
estimated to have the same scale for all models and to 
compute the t-test with respect to the corresponding 
‘true model estimates’. When the random walk algorithm 
is used to generate datasets of objective choice sets, the 
utility function is:

(jn length j bumps jV Length SpeedBumps= m β +β +

) ( )ln ,turns j PSC j jn jTurns PSC k qβ +β +   (5)

where: kjn is the number of time route j is sampled for 
observation n; qj is the probability of sampling route j; 
the additional logarithmic term corrects for the unequal 
sampling probabilities of the routes.

Accuracy of the model estimates with respect to the 
‘true model estimates’ of the postulated model is calcu-
lated for each of the 3600 estimated parameters:
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where: Accpar,obj–sub is the accuracy of the estimate of the 
parameter for the model with dataset obj of objective 
choice sets and ‘postulated chosen routes’ from dataset 
sub of subjective choice sets; estpar,obj–sub is the estimate; 
stderrestpar,obj–sub is its standard error; expestpar is the ex-
pected ‘true model estimate’; t is the critical value of the 
Student distribution with n degrees of freedom. 

For each dataset of subjective choice sets, Monte-
Carlo simulation is applied from the estimates of the 30 
models using the same dataset for obtaining the ‘postu-
lated chosen routes’. The obtained ‘simulated predicted 
routes’ are compared to the ‘postulated predicted routes’ 
after translating both into network flows by counting the 
number of travelers on each link. Predictions from the 
estimated models are evaluated with the calculation of 
the following error measures for each combination of 
estimated model with the respective dataset of subjec-
tive choice sets:
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where: RMSEsim–pos is the root mean square error; 
MAPEsim–pos is the mean absolute percentage error be-
tween simulated and predicted routes; A is the number 
of links in the network; Nsim,a is the flow on link a as 
calculated by translating the ‘simulated predicted routes’; 
Npos,a is the flow on link a as calculated by translating 
the ‘postulated predicted routes’.

Given the 900 coverage values, the 3600 accuracy 
values from model estimation, and the 900 mean abso-
lute percentage errors, a meta-analysis considers cover-
age, estimation accuracy and prediction error as depen-
dent variables and characteristics of the choice sets as 
independent variables. Characteristics of the objective 
choice sets for model estimation include the technique 
applied and the degree of variance, while characteristic 
of the subjective choice sets for obtaining ‘postulated 
chosen routes’ comprise choice set size (i.e., small for 
less than 30 alternatives, medium for 30 to 50 alterna-
tives, large for more than 50 alternatives), degree of het-
erogeneity across routes (i.e., homogeneous for average 
path size less than 0.10), and consistency with the objec-
tive choice sets (i.e., both generated with the same path 
generation technique and same parameters).

4. Results

4.1. Subjective and Objective Choice Sets
Table 2 summarizes the characteristics of the choice sets 
from the implementation of the 30 variations of path 
generation techniques. Expectedly:

•	the increase in the variance of the parameters for 
each path generation technique produces larger 
choice sets;

•	deterministic techniques generate the same alter-
native routes for the same origin-destination pair, 
an unreasonable outcome when considering that 
most likely different travelers have different sub-
jective choice sets;

•	stochastic techniques produce different alternative 
routes for the same origin-destination pair, a be-
haviorally plausible trait. 

Table 3 summarizes the coverage of the dataset of 
objective choice sets with respect to the ‘postulated cho-
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Table 2. Summary of characteristics of generated choice sets

Path generation technique measure very small 
variance small variance average

variance large variance very large 
variance

k-shortest path

min 33 51 88 104 170
max 33 51 88 104 170

mean 33 51 88 104 170
st.dev. – – – – –

link penalty

min 22 29 43 53 49
max 22 29 43 53 49

mean 22 29 43 53 49
st.dev. – – – – –

branch-and-bound

min 17 25 33 44 62
max 17 25 33 44 62

mean 17 25 33 44 62
st.dev. – – – – –

stochastic simulation

min 24 28 33 44 49
max 38 44 56 72 76

mean 30.9 35.2 43.8 57.5 62.3
st.dev. 4.3 5.8 8.3 11.0 11.4

doubly stochastic simulation

min 24 28 34 37 47
max 40 46 59 64 73

mean 31.7 35.7 45.6 49.9 58.6
st.dev. 4.6 6.1 8.7 9.6 11.1

random walk

min 25 27 33 36 44
max 42 50 55 66 71

mean 33.2 38.5 44.0 51.8 58.7
st.dev. 6.0 7.8 9.1 10.8 11.6

Table 3. Coverage of objective choice sets with respect to ‘postulated chosen routes’

Path generation technique variation k-path link 
penalty

branch 
and bound

stochastic 
simulation

doubly stochastic 
simulation

random 
walk

k-shortest path

very small var 54.7 41.0 50.0 42.2 42.2 41.3
small var 82.0 71.7 76.9 70.8 70.8 69.7

average var 94.7 87.3 87.2 87.3 87.3 86.8
large var 97.6 91.3 92.2 93.0 95.6 91.2

very large var 100.0 100.0 100.0 100.0 100.0 100.0

link penalty

very small var 73.5 69.2 71.1 66.8 66.7 65.2
small var 61.1 75.8 66.7 64.7 64.4 62.6

average var 79.4 84.8 83.6 75.0 74.5 73.8
large var 72.4 85.1 78.0 75.3 75.4 73.6

very large var 61.4 77.1 70.1 62.8 62.8 61.5

branch-and-bound

very small var 59.6 61.7 73.7 56.0 55.4 54.3
small var 76.4 77.6 91.0 73.6 73.5 72.1

average var 81.2 82.3 93.2 77.4 77.4 75.8
large var 87.2 92.0 97.3 87.3 86.9 85.4

very large var 99.5 99.9 100.0 99.7 99.7 99.1

stochastic simulation

very small var 95.5 96.4 96.5 96.4 95.8 94.9
small var 94.9 95.8 96.1 96.3 95.4 94.4

average var 93.1 93.8 94.4 94.8 93.5 92.5
large var 85.6 87.6 87.6 88.9 86.5 85.5

very large var 80.0 82.7 82.5 85.0 81.2 80.3

doubly stochastic 
simulation

very small var 95.7 96.4 96.7 95.9 96.8 95.0
small var 94.8 96.0 96.3 95.4 96.5 94.4

average var 92.3 93.3 93.7 92.8 94.1 91.9
large var 90.5 92.0 92.1 91.1 92.8 90.4

very large var 84.4 87.1 86.7 85.7 88.2 84.9

random walk

very small var 84.8 87.2 87.2 86.5 86.0 88.5
small var 83.0 85.5 85.6 85.8 84.4 87.6

average var 79.5 82.7 83.1 82.0 81.7 85.3
large var 73.9 77.5 77.3 76.8 76.0 80.7

very large var 59.2 65.7 65.4 64.5 63.5 71.0
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sen routes’. As 900 comparisons are computed, the table 
summarizes the relationship of the 30 variations of the 
path generation techniques with respect to ‘postulated 
chosen routes’ by combining results for the five varia-
tions of each technique. Expected findings are found 
from this snapshot, regardless of the postulated behavior:

•	enlarging the number of alternatives considered 
in the k-shortest path and relaxing the thresholds 
in the branch-and-bound the algorithm increases 
in coverage; 

•	among deterministic techniques, the branch-and-
bound outperforms competing techniques; 

•	among stochastic techniques, doubly stochastic 
simulation outperforms competing techniques. 

The most unexpected finding from this snapshot 
is that increasing the variance and enlarging objective 
choice sets does not boost the coverage. Possibly, the 
snapshot is limited because ‘postulated predicted routes’ 
consider jointly all five variations for each technique and 
lose part of the information. Also, larger variance of the 
parameters of path generation techniques most likely 
generates irrelevant routes that are not created under 
different parameters. 

The difficulty in interpreting coverage results from 
Table 3 motivates the meta-analysis for the 900 com-
binations between datasets of objective choice sets and 
‘postulated chosen routes’. Table 4 presents estimates 
of the regression model that suggest how coverage of 
postulated behavior increases with the implementation 
of stochastic techniques, average to large variance of 
their parameters, and obviously application of the same 
technique for generating objective and subjective choice 
sets. Among deterministic techniques, branch-and-
bound and link penalty contribute increasing coverage 
with respect to the k-shortest paths. Among stochastic 
techniques, the doubly stochastic simulation contributes 
augmenting coverage with respect to the stochastic sim-
ulation and even more the random walk. If the finding 
for deterministic techniques is expected, as the increase 
in coverage agrees with the growth in realism of the 
behavioral assumptions, the finding for stochastic tech-
niques is less expected, as the more recently developed 
random walk does not outperform stochastic simulation. 
Coverage of ‘postulated chosen routes’ benefits also from 
the analysis of large and homogeneous subjective choice 
sets, suggesting that path generation techniques perform 
better when the subjective choice sets are numerous and 
the alternatives are similar.

Meta-analysis estimates suggest that results from 
the snapshot of the coverage in Table 3 might indeed be 
unexpected not only because of actual characteristics of 
the choice sets, but also because of results aggregated in 
the attempt to summarize findings from a large amount 
of models. The proposed approach allows not only con-
sidering every single combination of datasets of objec-
tive and subjective choice sets, but also suggesting gen-
eral judgments in the implementation of path generation 
techniques regardless of the postulated behavior.

4.2. Accuracy of Parameter Estimates
Table 5 illustrates the model estimates for the ‘postu-
lated chosen routes’ from the dataset of subjective choice 
sets corresponding to complete path enumeration (i.e., 
k-shortest path with 170 routes). This snapshot allows 
initial considerations about model estimates. Firstly, all 
the variations of the random walk algorithm allow ob-
taining unbiased model estimates, most likely because 
of the correction term for unequal sampling probabili-
ties of routes. None of the competing path generation 
techniques allows obtaining unbiased model estimates 
consistently, and only large to very large variance in 
their parameters allows reproducing the ‘true model 
estimates’, suggesting that a larger generated choice set 
helps increasing estimation accuracy. Secondly, link pen-
alty, branch-and-bound and both stochastic approaches 
fail almost in every circumstance to reproduce the ‘true 
model estimates’, suggesting that obtaining higher cov-
erage is not a synonym of having higher accuracy in 
model estimation. Thirdly, k-shortest path shows some 
promise, but most likely because the ‘postulated chosen 
routes’ are generated with a k-shortest path algorithm 
rather than for actual higher accuracy. Lastly, the param-
eter βbumps seems to be recovered almost consistently, 
while the scale parameter m appears to be recovered only 
sporadically.

Table 4. Meta-analysis estimates of the coverage

Parameter est. t-stat
characteristic related to the technique 

used to generate choice sets
deterministic techniquea – –
stochastic technique 26.718 23.76
k-shortest patha – –
link penalty 22.826 20.18
branch-and-bound 27.185 24.04
stochastic simulation 4.418 5.61
doubly stochastic simulation 8.060 8.87
random walka – –
small variance –10.896 –20.04
average variancea – –
large variance 4.064 7.63

characteristic related to the technique 
used to postulate choices

low heterogeneitya – –
medium/high heterogeneity –26.576 –30.99
small choice set size –8.345 –10.64
medium choice set sizea – –
large choice set size 7.655 15.77
consistent with generation 16.478 17.20
constant 39.122 62.36
N 3600
R2 0.751
Notes: areference category
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Table 5. Example of model estimates for generated choice sets from different path generation techniques

k-shortest path very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
m 1.00 0.556 13.1 0.627 11.7 0.780 7.4 0.969 1.2 0.972 1.1
βbumps –0.10 –0.132 –1.2 –0.127 –1.2 –0.101 0.0 –0.106 –0.3 –0.107 –0.3
βturns –0.30 –0.137 5.6 –0.092 13.0 –0.288 0.9 –0.283 1.2 –0.283 1.2
βPSC 1.00 1.250 4.1 1.100 2.5 0.967 –0.8 0.943 –1.4 0.942 –1.4
LL(0) –9430.7 –12894.6 –15648.7 –18420.7 –20543.2
LL(β) –7284.0 –10369.2 –12311.0 –13471.8 –13472.3
rho-bar2 0.227 0.196 0.213 0.268 0.344

link penalty very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
m 1.00 0.626 13.9 0.714 10.9 0.953 1.7 0.782 8.6 0.979 0.8
βbumps –0.10 –0.182 –3.9 –0.129 –1.3 –0.501 –14.9 –0.181 –3.5 –0.415 –13.0
βturns –0.30 –0.134 10.8 –0.261 2.6 –0.092 15.3 –0.249 3.9 –0.062 17.1
βPSC 1.00 0.757 –6.1 0.475 –13.0 0.389 –14.5 0.509 –11.9 0.252 –18.8
LL(0) –13875.3 –14134.3 –15063.8 –15897.2 –15594.6
LL(β) –12688.1 –12244.1 –12021.2 –12142.4 –11591.2
rho-bar2 0.085 0.133 0.202 0.236 0.256

branch-and-bound very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
m 1.00 1.300 –9.6 0.872 4.9 0.853 5.7 0.834 6.3 0.796 7.7
βbumps –0.10 –0.620 –14.1 –0.469 –18.1 –0.400 –14.2 –0.261 –7.7 –0.105 –0.2
βturns –0.30 –0.530 –10.7 –0.458 –7.6 –0.460 –7.4 –0.060 15.9 –0.281 1.4
βPSC 1.00 –1.050 –43.3 0.256 –17.2 0.399 –14.1 0.465 –12.9 0.924 –1.9
LL(0) –11441.2 –12923.5 –13367.1 –15151.7 –16509.2
LL(β) –8997.5 –10413.5 –10575.6 –11303.3 –11863.4
rho-bar2 0.213 0.194 0.209 0.254 0.281

stochastic sim very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
m 1.00 0.392 22.5 0.578 15.6 0.729 10.1 0.841 5.9 0.873 4.7
βbumps –0.10 –0.097 0.1 –0.099 0.0 –0.103 –0.1 –0.110 –0.5 –0.118 –0.8
βturns –0.30 –0.264 2.6 –0.263 2.6 –0.261 2.8 –0.257 3.1 –0.259 2.9
βPSC 1.00 0.851 –3.7 0.846 –3.8 0.826 –4.3 0.751 –6.2 0.715 –7.1
LL(0) –13718.3 –14239.5 –15112.8 –16207.6 –16533.5
LL(β) –11919.4 –11527.9 –11610.2 –12146.6 –11610.5
rho-bar2 0.131 0.190 0.231 0.250 0.298

stochastic sim2 very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
m 1.00 0.439 20.8 0.590 15.2 0.750 9.3 0.789 7.8 0.849 5.6
βbumps –0.10 –0.098 0.1 –0.100 0.0 –0.106 –0.3 –0.106 –0.3 –0.111 –0.5
βturns –0.30 –0.264 2.6 –0.264 2.6 –0.259 2.9 –0.259 2.9 –0.256 3.1
βPSC 1.00 0.851 –3.7 0.846 –3.8 0.818 –4.5 0.799 –5.0 0.744 –6.4
LL(0) –13818.3 –14299.9 –15278.2 –15637.4 –16284.3
LL(β) –11765.2 –11444.2 –11447.5 –11064.4 –11043.7
rho-bar2 0.148 0.199 0.250 0.292 0.322

random walk very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
m 1.00 0.950 1.9 0.976 0.9 0.977 0.9 0.974 1.0 0.973 1.0
βbumps –0.10 –0.110 –0.5 –0.114 –0.6 –0.124 –1.1 –0.104 –0.2 –0.109 –0.4
βturns –0.30 –0.285 1.1 –0.284 1.1 –0.288 0.9 –0.289 0.8 –0.287 0.9
βPSC 1.00 0.938 –1.5 0.942 –1.4 0.940 –1.5 0.939 –1.5 0.943 –1.4
βlnkq 1.00 1.000 – 1.000 – 1.000 – 1.000 – 1.000 –
LL(0) –14011.3 –14606.8 –15141.3 –15799.5 –16307.9
LL(β) –11810.5 –11240.6 –11777.5 –11422.2 –10813.9
rho-bar2 0.157 0.230 0.222 0.277 0.337
Notes: βlength = –14000 observations; t-statistic with respect to the ‘true value’
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Again, the difficulty in interpreting estimation re-
sults from Table 5 motivates the meta-analysis of the 
accuracy of parameter estimates for the 900 models. 
Table 6 presents the regression model over all the 3600 
parameters, while Table 7 focuses on each single param-
eter. Unbiased estimates require considering the first and 
the foremost which is the same path generation tech-
nique for objective and subjective choice sets and that 
obviously increases its estimation accuracy the most. 
An increase in accuracy is related to the implementa-
tion of stochastic approaches, preferably random walk 
rather than stochastic simulation. Large variance does 
not increase estimation accuracy with respect to average 
variance, and small variance decreases it significantly. 
Estimation accuracy grows when models are estimated 
with respect to postulated behavior from large choice 
sets with high degree of similarity across alternatives.

Similar results are found when regression models 
consider single parameters. Notable differences are the 
comparable effectiveness in estimating scale parameters 
with choice sets generated with different stochastic tech-
niques, the inferior relevance of stochastic techniques in 
estimating scale parameters, and the superior relevance 
of random walk in estimating path size estimates. The 
general interpretation of these differences does not seem 
intuitive, since different techniques are not expected 
having different effects on the various estimates.

Table 6. Meta-analysis estimates of the accuracy  
of model parameters

Parameter est. t-stat
characteristic related to the technique

used to generate choice sets
deterministic techniquea – –
stochastic technique 16.197 30.00
k-shortest patha – –
link penalty 3.544 6.53
branch-and-bound 3.630 6.68
stochastic simulation –6.971 –18.45
doubly stochastic simulation –8.580 –19.67
random walka – –
small variance –5.347 –20.48
average variancea – –
large variance 0.344 1.35

characteristic related to the technique
used to postulate choices

low heterogeneitya – –
medium/high heterogeneity –7.810 –18.97
small choice set size –5.914 –15.71
medium choice set sizea – –
large choice set size 6.484 27.82
consistent with generation 33.748 73.38
constant 10.712 35.56
N 3600
R2 0.698
Notes: areference category

4.3. Accuracy of Flow Predictions
Table 8 summarizes the RMSE and MAPE when esti-
mated models are applied to the dataset used for obtain-
ing the ‘postulated chosen routes’ and ‘simulated pre-
dicted routes’ are compared to the ‘postulated predicted 
routes’ in terms of link flows. Similarly to the coverage, 
as 900 comparisons are computed, the table summarizes 
the relationship of the 30 variations of path generation 
techniques with respect to ‘postulated chosen routes’ by 
combining results for five variations of each technique. 
Expectedly, stochastic techniques outperform determin-
istic ones significantly, most likely because of better be-
havioral assumptions that for example allow generating 
different choice sets for different travelers. Less predict-
ably, link penalty outperforms both k-shortest path and 
branch-and-bound, even though its behavioral assump-
tion is simpler and estimation results do not suggest 
better modeling performances. None of the three sto-
chastic techniques emerges as preferable for prediction 
purposes, an interesting result when considering that 
the random walk produces better estimates. Most likely, 
the fact that for prediction purposes the correction term 
is not used reduces the advantage for the random walk 
ability of predicting correct routes. 

Again, the difficulty in interpreting prediction 
results from Table 8 suggests the meta-analysis of the 
MAPE. Table 9 presents the regression model for the 
900 comparisons, whose interpretation should consider 
that modeling the error implies negative estimates which 
should be interpreted as positive relation to prediction 
accuracy. As for the estimation accuracy, an increase in 
prediction accuracy is related to the implementation of 
stochastic approaches, preferably random walk rather 
than stochastic simulation and doubly stochastic simu-
lation. Unlike for the estimation accuracy, enlarging 
variance helps in prediction, suggesting that modelers 
should generate large choice sets for traffic assignment 
in order to reproduce predicted flows better, regardless 
of the postulated behavior.

Obviously, correct predictions are influenced by 
correct reproduction of the ‘true values’ of the model 
estimates. Thus, conclusions about the effects of path 
generation techniques on model predictions are more 
complex to discern and to generalize because results are 
dependent on the estimation accuracy.

5. Summary and Conclusions

Path-based solutions to the user equilibrium assignment 
problem help transport modelers in enhancing the route 
choice models in large scale applications. The imple-
mentation of path-based solution requires modelers to 
generate objective choice sets by selecting a path genera-
tion technique and its parameters according to personal 
judgments. The literature demonstrates that these per-
sonal judgments affect model estimates and predictions 
(e.g., Bekhor, Prato 2006; Bekhor et  al. 2008; Bliemer, 
Bovy 2008; Prato, Bekhor 2007), but fails to suggest 
guidelines for the implementation of path generation 
techniques. This paper provides the first comprehensive 
guidelines about judgments in the implementation of 
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Table 7. Meta-analysis estimates of the accuracy of single parameters

m βbumps βturns βPSC

Parameter est. t-stat est. t-stat est. t-stat est. t-stat
Characteristic related to the technique used to generate the choice sets

deterministic techniquea – – – – – – – –
stochastic technique 3.976 4.28 19.375 16.85 22.559 19.90 19.861 20.78
k-shortest patha – – – – – – – –
link penalty 4.218 4.52 –0.627 –0.54 7.176 6.29 4.310 4.48
branch-and-bound 6.491 6.95 –3.286 –2.84 4.115 3.61 8.102 8.43
stochastic simulation –1.739 –2.68 –6.262 –7.78 –5.055 –6.37 –15.105 –22.58
doubly stochastic simulation –1.102 –1.47 –8.667 –9.33 –7.529 –8.22 –17.395 –22.52
random walka – – – – – – – –
small variance –9.866 –21.98 –3.986 –7.17 –5.193 –9.47 –2.659 –5.75
average variancea – – – – – – – –
large variance –0.524 –1.19 –0.072 –0.13 0.338 0.63 0.518 1.14

Characteristic related to the technique used to postulate the choices
low heterogeneitya – – - – – – – –
high heterogeneity 1.568 2.22 –9.401 –10.72 –13.334 –15.43 –10.537 –14.45
small choice set size –2.069 –3.20 –8.610 –10.74 –8.876 –11.23 –4.493 –6.74
medium choice set sizea – – – – – – – –
large choice set size 4.235 10.57 9.240 18.61 8.018 16.39 4.823 11.69
consistent with generation 31.043 39.26 28.993 29.59 39.628 41.04 33.498 41.14
constant 8.914 17.21 15.598 24.31 11.162 17.65 6.720 12.60
N 900 900 900 900
R2 0.626 0.790 0.870 0.648
Notes: areference category

Table 8. Prediction errors of generated choice sets with respect to postulated choice sets

Path generation technique variation k-path link 
penalty

branch 
and bound

stochastic 
simulation

doubly stochastic 
simulation

random 
walk

k-shortest path RMSE 0.5765 0.9234 1.0198 0.4390 0.4136 0.4663
MAPE 0.0950 0.1105 0.1114 0.1092 0.1052 0.1172

link penalty RMSE 0.2508 0.1420 0.2213 0.1597 0.1658 0.1882
MAPE 0.0670 0.0412 0.0569 0.0514 0.0547 0.0622

branch-and-bound RMSE 0.4654 0.3755 0.2920 0.4158 0.4275 0.4534
MAPE 0.1195 0.0982 0.0739 0.1201 0.1234 0.1335

stochastic simulation RMSE 0.2092 0.1476 0.2177 0.1088 0.1019 0.1728
MAPE 0.0505 0.0401 0.0554 0.0372 0.0356 0.0583

doubly stochastic simulation RMSE 0.2055 0.1488 0.2212 0.1092 0.1006 0.1731
MAPE 0.0495 0.0403 0.0560 0.0372 0.0351 0.0584

random walk RMSE 0.2081 0.1769 0.2340 0.1190 0.1016 0.1837
MAPE 0.0459 0.0452 0.0571 0.0388 0.0339 0.0594

path generation techniques by proposing a methodol-
ogy and an experimental setting that evaluate the effect 
of path generation techniques on model estimates and 
flow predictions. 

Initially, path generation techniques are imple-
mented to generate the possible subjective choice sets 
considered by travelers. Next, ‘true model estimates’ and 

‘postulated predicted routes’ are assumed from the simu-
lation of a route choice model. Then, path generation 
techniques are applied to generate objective choice sets 
for model estimation and estimates are compared to the 
postulated ‘true model estimates’. Last, predictions from 
the simulation of models estimated with objective choice 
sets are compared to the ‘postulated predicted routes’.
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Results that provide guidelines for efficient path 
generation by evaluating three requirements for route 
choice sets: 

•	the generation of plausible routes that travelers 
would consider; 

•	the estimation of route choice models that accu-
rately represent the behavior of travelers; 

•	the prediction of traffic flows that accurately and 
consistently measure the network performances 
in terms of level-of-service. 

With respect to the generation of plausible routes 
that travelers would consider, experimental results sug-
gest that the coverage of observed routes increases with 
the implementation of stochastic techniques and the se-
lection of average to large variance in their distribution 
parameters. Moreover, better results are obtained when 
covering behavior postulated from large choice sets con-
taining mainly similar alternatives. 

Because of the accurate estimation of route choice 
models, experimental results show that the accuracy of 
model estimates grows with stochastic methods and in 
particular with the random walk algorithm that corrects 
for the unequal sampling probabilities of the generated 
routes. Variance of the parameters and estimation of 
models with the aforementioned characteristics of large 
size and high similarity also increase estimation accuracy. 

With respect to the consistent prediction of network 
performance, experimental results illustrate that the ac-
curacy of flow prediction parallels one of the model es-
timation, with the difference that generating even larger 
choice sets seems to improve prediction performances.

The extension of the findings from the analyzed 
network to large scale applications concerns only com-
putational issues that memory and multiple-core imple-
mentation are currently able to resolve. Experimental 
results suggest that transport modelers should generate 
routes by applying stochastic approaches with the pos-
sibility of correcting for unequal sampling probability 
while maintaining a reasonable level of variance and 
generating a large number of routes. Estimation of mod-
els would greatly improve and the issue of the coverage 
of observed behavior would not be raised because the 
correction would allow accounting for the addition of 
alternatives not generated. On the one hand, results sug-
gest that transport modelers would greatly benefit from 
the implementation of the random walk algorithm, since 
this is the only algorithm that currently provides this 
opportunity. On the other hand, transport modelers 
would greatly benefit from the implementation of dou-
bly stochastic path generation techniques that are simple 
to implement and also for large scale networks, as il-
lustrated for example for the Greater Copenhagen Area 
(Larsen et al. 2010). 

In addition, this paper shows the importance of 
a meta-analytical approach in the synthesis of a large 
number of models generating a large amount of results 
that are otherwise difficult to summarize and to process. 
Summary statistics only partially capture the influence 
of the characteristics of path generation techniques on 
model estimates and flow predictions. On the contrary, 
meta-analysis successfully summarizes the relevance of 
judgments in the selection of path generation techniques 
and their parameters for increasing coverage of observed 
behavior and augmenting accuracy of model estimation. 

The approach seems easily transferable to any study 
concentrating on the estimation of a large number of 
models and requiring a summary of the results without 
involving data mining or Bayesian inference that would 
be much more expensive from a conceptual and a com-
putational perspective (Leamer 1983). It should be noted 
that the fit of the meta-analytical models indicates that 
the variation in the results can indeed be explained by 
modeling judgments.

Further research should address the need for a 
correction term for unequal sampling probabilities of 
alternative routes when both stochastic simulation ap-
proaches are applied, and the need for the experimental 
evaluation of the performance of traffic assignment pro-
cedures on large scale networks providing that stochastic 
path generation techniques are implemented.
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Table 9. Meta-analysis estimates of the mean average 
prediction error

Parameter est. t-stat
characteristic related to the technique

used to generate choice sets
deterministic techniquea – –
stochastic technique –0.400 –15.54
k-shortest patha – –
link penalty –0.376 –14.52
branch-and-bound –0.209 –8.06
stochastic simulation 0.107 5.92
doubly stochastic simulation 0.143 6.85
random walka – –
small variance 0.123 9.84
average variancea – –
large variance –0.035 –2.89

characteristic related to the technique
used to postulate choices

low heterogeneitya – –
medium/high heterogeneity 0.181 9.20
small choice set size –0.019 –1.06
medium choice set sizea – –
large choice set size –0.089 –8.00
consistent with generation –0.101 –4.60
constant 0.121 25.31
N 900
R2 0.835
Notes: areference category
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