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Abstract. The paper deals with the situation when a low populated area is in need of public transport service. It 

is necessary to design a bus route, passing through the area and meeting the accessibility and efficiency requirements. 

The article presents a mathematical formulation of the problem in terms of the network theory together with two exact 

and several heuristic methods for finding a solution. The paper describes that the problem is NP-hard, and therefore 

computing experience is outlined.
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1. Introduction

Network design problems can be considered one of the 
main streams of recent network research. A similar situ-
ation is faced when discussing transport networks, both 
freight (Chen, Zeng 2010; Janáček, Gábrišová 2009) and 
passenger ones (e.g. Matuška 2010). Several authors are 
oriented to design techniques, e.g. Fan and Machemehl 
(2006) while the others deal with the evaluation of the 
already existing networks, e.g. Hu et al. (2010).

Among the above introduced problems, a notable 
position belongs to the optimal choice of some elements 
of the given network. Janáček and Gábrišová choose a 
compact node subset as a location of facilities. Other au-
thors look for some routes in networks, e.g. Jakimavičius 
and Burinskienė (2010, 2009a, 2009b) find several types 
of the shortest route (in km or hours) for a traveller in-
formation system, Matis (2010) resolves the street rout-
ing problem of freight transport, Szűcs (2009) applies it 
for cooperative transport systems.

Routing problems are especially important for pub-
lic transport and mainly for the urban one. Erlander 
and Scheele (1974) supposed a set of routes constructed 
manually by a transport engineer, Cipriani et al. (2005) 
let the computer create a set of routes, each one as the 
shortest path connecting a pair of important (= large de-
mand) nodes. Both dealt with sufficient demand areas. 
Yang et al. (2007) use a similar approach. They start with 
the O-D matrix and aim for a set of routes maximizing 
the number of direct travellers per unit of length. The 
paper by Fan and Machemehl (2006) deals with the net-
work design minimizing a complex objective function 

encompassing user costs, operator costs and unsatisfied 
demand costs. Borndörfer et al. (2007) describe the use 
of the column-generation approach to a similar prob-
lem. Agrawal and Mathew (2004) present the parallel 
genetic algorithm.

Our approach is slightly different. We do not as-
sume sufficient demand for the possibility of designing a 
set of (quasi straightforward) routes. Therefore, our goal 
is to construct a single route (curvilinear) satisfying pas-
sengers distributed in the given area. Our model differs 
from those suggested by Peško (2003, 2004) who seeks a 
circular route passing through all demand points while 
we admit to reducing this set. In the second one, Peško 
allows refusing a part of demand, whereas we do not.

Suppose that there is a low populated area in need 
of a new bus route. The area might be a new residential 
district consisting of family houses and other sources of 
passenger demand, e.g. shops, sports and cultural cen-
tres, offices etc. The points of passenger demand can be 
represented by a set of vertices V of network (graph) 
G = (V, E, q, d) where edge set E represents walkways 
between neighbouring vertices, q(v), v  V is the size 
of passenger demand (outgoing and ingoing together) 
during a time unit and d(e) is the length of edge e. Some 
vertices from set W  V are suitable for bus stopping. 
The road segments connecting neighbouring vertices 
from W are denoted by F and the length of e  F by 

(e). Graph GW = (W, F, ) represents the network suit-
able for bus service in the area.

However, the desired bus route cannot pass through 
all possible bus stops w  W since service would be-



come too expensive. Then, public administration and 
the management of a transport company are looking for 
shorter route r = (s1, …, sn), si  W covering demand 
‘satisfactorily’ both for the company and passengers. In 
other words, the new route has to meet two contradic-
tory claims: economy for a provider and accessibility for 
clients – passengers.

Our problem is related to that introduced in the 
paper by Schöbel (2005) and starts from demand points 
similarly as we do. Difference is that it begins with the 
given network and looks for the location of stops; how-
ever, we start with the given possible stops and look for 
the best ‘simple’ network represented by a route. The 
generalization of Schöbel’s approach can be found in the 
paper by Groß et al. (2009).

1.1. Economical Aspects of Bus Route Design

Economy claim can be oriented to two directions:
1.1.1: a minimal length of the route with a minimum 

number of stops;
1.1.2: minimal frequency, i.e. the number of services 

(courses) during one time unit.
This paper deals with 1.1.1 since 1.1.2 can be solved 

independently of route design.

1.2. Accessibility

Accessibility to passengers is usually postulated in one 
of the following ways:
1.2.1: for given limit , each passenger source or destina-

tion ought to have the closest bus stop not more 
than distance ;

1.2.2: for given distance limit  and percentage limit , 
the percentage of passengers having the distance 
of their source or destination from the closest bus 
stop greater than  ought to be less than ;

1.2.3: for given distance , the mean value of passenger 
sources and destination distance from the closest 
bus stop ought not to be more than .

In the sequel, we shall deal with form 1.2.3 only. 
Nevertheless, it is easy to see that the adjustment of our 
methodology to 1.2.1 or 1.2.2 is easy. As concerns 1.2.1, 
however, we have to emphasize the results of Černá 
(2003a, 2003b; Černá et al. 2007) showing that rigorous 
insistence on 1.2.1 often leads to inefficient solutions to 
both passengers and providers.

2. Optimization Problem

Following 1.1 and 1.2, we can formulate a mathemati-
cal version of the problem looking for bus route r = (s1, 
…, sn) where the mean value of passenger sources and 
destination distance from the closest bus is less than  
and the length of r is minimal.

2.1. Basic Problem

Let G = (V, E, q, d) be a (non-oriented) graph with de-
mand function q: V  0; ) and length d: E  (0; ). 
Let d(u, v) be the distance of u, v  V obtained by the 
extension of the length of edges. Let W  V and GW = 
(W, F, ) be a graph with edge length  (not necessarily 
equal to d even on E  F). Let (S) be the length of the 

shortest path connecting the vertices of S on GW for 
each S  W. Let   (0; ) and q = ( )

v V

q v .

The problem is to find S  W such that:

2.1.1: 
1

( ) ( ) ( , )
v V

S q v d v S
q

;

2.1.2: (S)  min.

2.2. Appended Problem

If there were several solutions to problem 2.1, then the 
problem is to take set S with a minimum number |S| of 
elements inside it.

3. Methods of a Solution to Problems 2.1 and 2.2

Since problem 2.1 contains the open travelling salesman 
problem (OTSP) as a sub-problem, it is obviously NP-
hard in the sense of Garey and Johnson (1979). There-
fore, we have to propose some heuristics for finding a 
solution in addition to the integer linear programming 
(LP) model and the combinatorial exact method we shall 
start with.

3.1. Exact Method (EM)

The basic principle of EM is passing through the set 
of possible subsets of vertices and solving OTSP for 
the subsets fulfilling 2.1.1 which is of the ‘Depth-First-
Search’ type.

Initial step: We first find S fulfilling 2.1.1. Then, we 
find the first record (S) solving OTSP.

Recursive step: Once set S fulfilling 2.1.1 is found, 
each of its extensions is omitted, since it cannot shorten 
length (S). Then, we look for the next S fulfilling 2.1.1 
in the adjacent branch of solution structure.

The computational complexity of this method is 
very high and depends on the number of vertices and 
distance limit . Resulting computational time was ac-
ceptable at least for our small test networks and increased 
very rapidly dealing with more difficult problems. There-
fore, we have had to make some optimizations in order 
to speed up the algorithm thus outlining them briefly. 
Further details can be found in Přibyl (2009).

The first one is omitting extended sets mentioned 
in the recursive step.

The second step of optimization is based on the re-
cursive construction of the path solving OTSP. Follow-
ing each step, the achieved length is compared with the 
record. Once it is reached, construction is interrupted.

Optimal solutions achieved using the above intro-
duced method are very important for testing heuristic 
methods described in 3.2÷3.4.

3.2. General Greedy Heuristics (GGH)

Initial step: We put S = {m} where m = m(GW) is 
the median of GW.

Recursive step: If S fulfils 2.1.1, then we consider 
S a solution.

If S does not fulfil 2.1.1, we find w  W – S such 
that (S  {w}) is minimal, put S  {w}  S and turn to 
the recursive step again. If w does not exist, i.e. if S = W, 
then the problem is unsolvable.

Transport,  2011, 26(3): 248–254 249



3.3. Neighbour Greedy Heuristics (NGH)

We shall use denotation N(S  ) = {w  W: w  S ,  s  
S , (w, s)  F} for the neighbourhood of S  in GW.

Initial step: put S = S  = {m} where m = m(GW).
Recursive step: if S fulfils 2.1.1, then, we consider S 

a solution. In case it does not, we look for:

s   (W – S)  N(S  ) that

( ) ( )
( ) ( , { }) min ( ) ( , { }) .

s W S N S
v V v V

q v d v S s q v d v S s

If such vertex does not exist, heuristics is not able 
to solve the problem and we stop. If it does, then, we put 
S = S {s }. Further, if S  = {m}, we put S  = {m, s }, if it is 
not (set S  contains at least two elements), then S  = (S  – 
{s })  {s } where s   S  and ( , ) min ( , )

s S
d s s d s s . 

Next, we return to the recursive step.

3.4. Combined Heuristics (CH)

This heuristics combines criteria similar to the previous 
ones. The ‘combination ratio’ is positive number k and, 
naturally, different values of k may lead to different re-
sulting sets S.

Initial step: We put S = S  = {m} where m = m(GW).
Recursive step: If S fulfils 2.1.1, then, we consider S 

a solution. In case it does not, we look for:

s   (W – S)  N(S  ) that

( , ) ( ) ( , { })
v V

kd s S q v d v S s

( ) ( )
min ( , ) ( ) ( , { })

s W S N S
v V

kd s S q v d v S s .

If such vertex does not exist, heuristics is not able 
to solve the problem and we stop. In case it does, we put 
S = S {s }. Further, if S  = {m}, we put S  = {m, s }, oth-
erwise (set S  contains at least two elements), S  = (S  – 

{s })  {s } where s   S  and ( , ) min ( , )
s S

d s s d s s . 
Then, we return to the recursive step.

3.5. Integer LP Model

Problem 2.1 can be formulated by means of integer lin-
ear programming.

We suppose that m  n are positive inte-
gers, V = {1, 2, …, n} is the set of all vertices and 
W = {1, 2, ..., m}  V. For each pair i  V, j  V, given 
number dij represents walking distances between nodes 
i and j. Similarly, ij represents riding distance on set 
W. Certainly, dii = 0 and jj = 0 for i  V and j  W. 
Moreover,  > 0 represents the upper bound of mean 
walking distance. Finally, F   W  W represents arcs on 
the given digraph DG = (W, F , ) derived from GW = 
(W, F, ) so that oriented arcs (u, v)  F  and (v, u) 

 F  if the edge (u, v)  F, whereas length  remains 
unchanged.

3.5.1. LP Problem

Given positive integers m  n, non-negative real num-
bers dij, i, j  {1, 2, …, n} such that dii = 0 and ij, i, j 

 {1, 2, …, m} such that ii = 0. Further, given non-
negative real numbers qi, i  {1, 2, …, n} and  > 0.

Finally:

F   W  W is given.

Let:

, {1,..., } , {1,..., }
ij ij

i j n i j m

D d  and 
{1,..., }

i
i n

Q q .  (3.1)

The problem is to find:

uj  {0, 1}, j  {1, 2, …, m};

vij  {0, 1}, i  {1, 2, …, n}, j  {1, 2, …, m};

xjk  {0, 1}, j  {1, 2, …, m}, k  {1, 2, …, m},

(j, k)  F .

yj non-negative integers, minimizing the objective 
function:

, {1,..., };( , )
jk jk

j k m j k F

z x   (3.2)

and fulfilling the following constraints:

{1,..., } {1,..., }

1
i ij ij

i n j m

q d v
Q

;  (3.3)

vij  uj for i  {1, 2, …, n}, j  {1, 2,…, m};  (3.4)

{1,..., }

1ij
j m

v  for i  {1, 2, …, n};  (3.5)

{1,..., }

(1 )ij ij ik k k
j m

d v d u D u

for i  {1, 2, …, n}, k  {1, 2, …, m};  (3.6)

xjk  
2

j ku u

for j  {1, 2, …, n}, k  {1, 2, …, m}, (j, k)  F ;  (3.7)

{1,..., };( , ) {1,..., }

1
( 1)jk k j j

k m k j F k m

x u y D u
m

for j  {1, 2, …, m};  (3.8)

{1,..., };( , )

1
( 1)jk k

j m k j F

x y
m

 

for k  {1, 2, …, m};  (3.9)

yk  yj + 1 + D(xjk – 1)

for j, k  {1, 2, …, m}, (j, k)  F ;  (3.10)

yk  yj + 1 + D(1 – xjk) 

for j, k  {1, 2, …, m}, (j, k)  F ;  (3.11)

yk  n uk 

for k  {1, 2, …, m}.  (3.12)

3.5.2. Interpretation of the LP Problem

In (3.1), value D represents a ‘big number’, i.e. a substi-
tute of infinity. Q represents the total number of pas-
sengers.

Value uj = 1 expresses the fact that the j-th vertex 
is chosen to the route and uj = 0 means the opposite.

Value vij = 1 says that the j-th vertex is the closest 
vertex of the route to the i-th vertex.
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xjk = 1  k-th vertex is the immediate successor of 
the j-th vertex on the route.

yj is the ordinal number of the j-th vertex on the 
route.

Value z in (3.2) represents the total length of the 
resulting route.

(3.3) expresses the constraint of accessibility.
(3.4) ensures that the closest vertex is chosen 

among the ones of the route.
(3.5) and (3.6) choose the closest vertex of the route 

to the i-th vertex.
(3.7) ensures that the k-th vertex is the successor of 

the j-th vertex only if both vertices are chosen.
(3.8) ensures that the route does not continue after 

the last vertex and (3.9) makes the same job before the 
first vertex.

(3.10) and (3.11) ensure that, on the route, the im-
mediate successor of the vertex with ordinal number yj 

is assigned ordinal number yj + 1.
(3.12) ensures that the vertices not belonging to the 

route have no ordinal numbers.

It follows, that each feasible solution of problem 
2.1 can be expressed by values uj, vij, xjk and yj fulfill-
ing constraints (3.3)÷(3.11) and vice versa. Therefore, 
this problem is solvable by integer linear programming 
which implies that problem 2.1 is NP-easy. Considering 
the fact, we have shown it is also NP-hard. Thus, we can 
deduce that the problem is NP-complete.

4. Experimental Results

Table summarizes the results of the above described 
heuristic and exact methods on 9 tested networks. The 
diameter of these networks is about 30 km and the num-
ber of vertices is 20. Distance limit  was set to 4.

Having these parameters given, computational time 
depends on the network layout. For the exact method, 
it varies between 50 and 120 minutes. For all heuris-
tic methods, it is less than 1 second. Optimal solutions 
Sopt obtained by the exact method (EM) are highlighted 
in the bold font and the best solutions to the heuristic 
methods are highlighted in bold and italics in the Table. 
In addition, we assume GW equals G in all cases.

Table. Results of different methods

Network 
No.

Method k Route length
The best heuristic to 

EM route length ratio
The real distance mean value

(limit was set to 4)
m  Sopt

1

NGH – 41.52

1.00

3.8379

YES

CH 0.1 41.52 3.8379

CH 0.2 46.03 3.6053

CH 0.3 46.03 3.6053

CH 0.4 53.20 3.7608

GGH – 52.00 3.3632

EM – 41.52 3.8379

2

NGH – 52.52

1.07

3.2148

YES

CH 0.1 46.66 3.9103

CH 0.2 Unsolvable 4.5163

CH 0.3 Unsolvable 4.5163

CH 0.4 Unsolvable 4.5163

GGH – 66.66 3.3054

EM – 43.44 3.9476

3

NGH – 74.84

1.01

3.3527

NO

CH 0.1 49.92 3.4462

CH 0.2 44.76 3.9501

CH 0.3 44.76 3.9501

CH 0.4 48.03 3.7396

GGH – 64.63 3.7823

EM – 44.14 3.9500

4

NGH – 48.57

1.09

3.3288

YES

CH 0.1 47.01 3.3715

CH 0.2 47.01 3.3715

CH 0.3 55.70 3.8364

CH 0.4 60.88 3.2958

GGH – 59.46 3.2577

EM – 42.82 3.7987

5

NGH – 53.02

1.18

3.2731

NO

CH 0.1 62.00 3.6382

CH 0.2 47.73 3.7394

CH 0.3 47.73 3.7394

CH 0.4 47.73 3.7394

GGH – 68.92 3.4778

EM – 40.31 3.9646

Transport,  2011, 26(3): 248–254 251



The last column of the table shows whether the me-
dian m(GW) of the network lies on the optimal route 
achieved by the exact method. One can see that in 2 
cases from 9, i.e. about 22%, it is not true. Therefore, 
heuristic methods starting in the median and contain-
ing it in the resulting route cannot lead to the optimum.

Since their duration is very short in the cases of 
about 20 vertices, the repeated use of the same heuristics 
but starting in a different vertex can be reasonable.

Fig. 1 shows the results of Network 3. The numbers 
in brackets are those of passengers randomly generated 
between 0 and 100.

The integer LP model was verified on several in-
dependent randomly generated networks employing 
m  =  n  {11, 12, 13, 15} vertices and using freeware 
solver ‘LPSolve’. The obtained results were identical with 
those received applying the exact method presented in 
3.1 on the same hardware.

Fig. 2 shows the computational times of LP model 
and EM for the test networks. LPSolve solution to the 
network having m = n = 20 vertices did not reach the 
end even following several days.

Fig. 2 shows several interesting features.

Network 
No.

Method k Route length
The best heuristic to 

EM route length ratio
The real distance mean value

(limit was set to 4)
m  Sopt

6

NGH – 55.99

1.31

3.2126

YES

CH 0.1 60.75 3.7162

CH 0.2 Unsolvable 4.0675

CH 0.3 Unsolvable 4.0675

CH 0.4 54.42 3.3511

GGH – 66.24 3.5524

EM – 41.66 3.8744

7

NGH – 36.16

1.09

3.7522

YES

CH 0.1 40.62 3.3252

CH 0.2 36.17 3.7713

CH 0.3 37.84 3.8559

CH 0.4 40.16 3.8690

GGH – 52.03 3.8304

EM – 33.14 3.9798

8

NGH – 51.58

1.12

3.8771

YES

CH 0.1 51.58 3.8771

CH 0.2 46.83 3.9309

CH 0.3 46.83 3.9309

CH 0.4 46.83 3.9309

GGH – 55.97 3.8066

EM – 41.91 3.9822

9

NGH – 45.98

1.02

3.7727

YES

CH 0.1 46.08 3.6812

CH 0.2 47.23 3.9272

CH 0.3 52.36 3.9830

CH 0.4 52.36 3.9830

GGH – 64.82 3.5843

EM – 45.22 3.9604

End of Table

Fig. 1. Resulting routes in Network 3

The optimal solution obtained by the exact method

The best solution obtained by the combined heuristic method

19(67)

5(14)

20(9)

6(83)

13(13) 11(59)

17(92)

16(64)

12(15)

3(18)4(61)

8(47)

10(83)

15(87)14(58)

1(87)

18(35) 9(66)

2(96)

7(59)
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First, the shape of the graphs corresponding to the 
EM method is regular and ‘not surprising’. On the con-
trary, the ones of LP are quite ‘random’.

Further, EM graphs demonstrate exponential de-
pendence as we can expect. However, generally, the LP 
ones seem to increase faster than exponentially. These 
observations confirm the rule that a method of a solu-
tion designed directly for some type of problems works 
better than a general one.

5. Conclusions

The paper shows that the design of the first public trans-
port route covering a new residential district can be for-
mulated as a network problem solved by means of sev-
eral exact and heuristic techniques. The authors believe 
it is good news for public administration and transport 
companies. Perhaps, however, their problem can differ 
from the basic problem 2.1.

For example, the area of weak demand may be 
connected with a more densely populated district of the 
town by a road with the given location of the first stop 
w1. Then, the formulation can be slightly modified re-
questing that the designed route has to start in w1. It 
is obvious, that necessary modifications of all methods 
3.1÷3.5 are very simple.

The same can be said about the case when the area 
lies between two more populated districts and two ‘ob-
ligatory’ stops w1 and w2 (the first and last terminals) 
are given.

On the other hand, if there is necessity for design-
ing, for example, two routes, it will not be easy to mod-
ify our models and methods for this purpose. Hence, it 
could stimulate further research.

Fig. 2. Comparison of computational times

0

20

40

60

80

100

120

140

160

Computational time EM

T
im

e
(s

)

Number of Vertices

11 12 13 15

� = 2 � = 3 � = 4

Computational time LP

T
im

e
(s

)

11 12 13 15

Number of Vertices

� = 2 � = 3 � = 4

0,1

1

10

100

1000

10000

References

Agrawal, J.; Mathew, T. V. 2004. Transit route network design 

using parallel genetic algorithm, Journal of Computing in 

Civil Engineering 18(3): 248–256. 

doi:10.1061/(ASCE)0887-3801(2004)18:3(248)

Borndörfer, R.; Grötschel, M.; Pfetsch, M. E. 2007. A column-

generation approach to line planning in public transport, 

Transportation Science 41(1): 123–132. 

doi:10.1287/trsc.1060.0161

Chen, C.; Zeng, Q. 2010. Designing container shipping net-

work under changing demand and freight rates, Transport 

25(1): 46–57. doi:10.3846/transport.2010.07

Cipriani, E.; Fusco, G.; Gori, S.; Petrelli, M. 2005. A procedure 

for the solution of the urban bus network design problem 

with elastic demand, in Proceedings of the 16th Mini-EURO 

Conference and 10th Meeting of EWGT. Available from In-

ternet: <http://www.iasi.cnr.it/ewgt/16conference/ID111.

pdf>.

Černá, A.; Černý, J.; Peško, Š; Czimmerman, P. 2007. Network 

reduction problems, Journal of Information, Control and 

Management Systems 5(2): 139–145.

Černá, A. 2003a. Intenzifikácia MHD a jej možný rozpor 

s docházkovým limitom [Intensification of urban transport 

and its eventual contradiction with accessibility limit], in 

Zborník 6. medzinárodnej konferencie o verejnej osobnej do-

prave [Proceedings of the 6-th International Conference on 

Public Transport], May 2003, Bratislava, Slovakia, 43–47 

(in Slovak).

Černá, A. 2003b. Poznámka k podmienke dostupnosti zastá-

vok hromadnej dopravy [Note to the condition of public 

transport stops accessibility], Horizonty dopravy [Transport 

Horizons] 11(2): 23–24 (in Slovak).

Erlander, S.; Scheele, S. 1974. A Mathematical Programming 

Model for Bus Traffic in a Network, in Proceedings of the 

Sixth International Symposium on Transportation and Traf-

fic Theory, 26-28 August 1974, Sydney, Australia, 581–605.

Fan, W.; Machemehl, R. B. 2006. Using a simulated annealing 

algorithm to solve the transit route network design prob-

lem, Journal of Transportation Engineering 132(2): 122–132. 

doi:10.1061/(ASCE)0733-947X(2006)132:2(122)

Garey, M. R.; Johnson, D. S. 1979. Computers and Intractabil-

ity: A Guide to the Theory of NP-Completeness. 1st edition. 

W. H. Freeman. 340 p.

Groß, D. R. P.; Hamacher, H. W.; Horn, S.; Schöbel, A. 2009. 

Stop location design in public transportation networks: 

covering and accessibility objectives, TOP 17(2): 335–346. 

doi:10.1007/s11750-008-0061-4

Hu, Q. Z.; Lu, H. P.; Deng, W. 2010. Evaluating the urban pub-

lic transit network based on the attribute recognition mod-

el, Transport 25(3): 300–306. doi:10.3846/transport.2010.37

Jakimavičius, M.; Burinskienė, M. 2010. Route planning meth-

odology of an advanced traveler information system in Vil-

nius city, Transport 25(2): 171–177. 

doi:10.3846/transport. 2010.21

Jakimavičius, M.; Burinskienė, M. 2009a. A GIS and multi-crite-

ria-based analysis and ranking of transportation zones of Vil-

nius city, Technological and Economic Development of Econ-

omy 15(1): 39–48. doi:10.3846/1392-8619.2009.15.39-48

Jakimavičius, M.; Burinskienė, M. 2009b. Assessment of Vil-

nius city development scenarios based on transport system 

modelling and multicriteria analysis, Journal of Civil Engi-

neering and Management 15(4): 361–368. 

doi:10.3846/1392-3730.2009.15.361-368

Transport,  2011, 26(3): 248–254 253



Janáček, J.; Gábrišová, L. 2009. A two-phase method for the 

capacitated facility problem of compact customer sub-sets, 

Transport 24(4): 274–282. 

doi:10.3846/1648-4142.2009.24.274-282

Matis, P. 2010. Finding a solution for a complex street routing 

problem using the mixed transportation mode, Transport 

25(1): 29–35. doi:10.3846/transport.2010.05

Matuška, J. 2010. The methodology for designing accessible 

public transportation: the Czech experience, Transport 

25(2): 222–228. doi:10.3846/transport.2010.27

Peško, Š. 2003. On closed bus line for disabled passengers, 

Journal of Information, Control and Management Systems 

1(2): 69–74.

Peško, Š. 2004. On closed dial-a-bus line model, in 3-rd Inter-

national Conference APLIMAT 2004, 3–6 February 2004, 

Bratislava, Slovakia, 783–788.

Přibyl, V. 2009. Solution of the bus route design problem, Com-

munications 11(3): 25–28.

Schöbel, A. 2005. Locating stops along bus or railway lines – a 

bicriteria problem, Annals of Operations Research 136(1): 

211–227. doi:10.1007/s10479-005-2046-0

Szűcs, G. 2009. Developing co-operative transport system and 

route planning, Transport 24(1): 21–25. 

doi:10.3846/1648-4142.2009.24.21-25

Yang, Z.; Yu, B.; Cheng, C. 2007. A parallel ant colony algo-

rithm for bus network optimization, Computer-Aided Civil 

and Infrastructure Engineering 22(1): 44–55. 

doi:10.1111/j.1467-8667.2006.00469.x

254 A. Černá et al. Bus route design in small demand areas




