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Abstract. This study was initiated with a goal of improving the bus scheduling model using the past data of “smart card”. 
Traffic congestion level of Seoul is keep aggravating and it also has negative influence on air pollution and our health. Ad-
ditionally, this heavy traffic causes high congestion costs. The continuous quantitative growth of the public transportation 
system brings the necessity of its efficient operation system for its future qualitative growth. The improvement of operation 
system is necessary also to improve public transportation operation cost efficiency of Seoul. In other words, the systematic 
planning is necessary for maximizing passengers’ satisfaction level and the public transportation operation cost efficiency 
of Seoul. The current allocation interval of Seoul bus system is designed based on the empirical data of the past, which is 
incapable of immediate response to rapidly changing passenger demands. This research analyses passengers’ behaviour and 
makes a proposal for the traffic network operation by analysing the “traffic card (smart card) big data”, which comes from 
over 90% of the passengers so as to be flexible in dealing with rapid changes in demand. 

Keywords: optimal public transport scheduling, smart card data, passenger time analysis, waiting time analytical model, 
moving time analysis model.

Introduction

As the living standards are improving due to the economic 
development of the modern society and the increase in 
the overall national income level, the traffic volume of the 
metropolitan area has been rapidly increased. However, 
this has caused various other side-effect problems such as 
traffic congestion and air pollution.

The contamination caused by the rapidly increased 
traffic in large metropolitan areas has direct adverse ef-
fects on human bodies, and also on environment, in a 
way such as increasing the probability of occurrence of 
bronchial diseases like asthma and rhinitis (Cesaroni et al. 
2008). Especially, cases in Seoul, there is a higher level of 
air pollution due to a lot of traffic volumes. 70% of resi-
dents in Seoul view air pollution as the most serious en-
vironmental problem, and 53% of the population point 
out they should focus on reducing automobile emissions 
in the future (Ko 2009). The Ministry of Land, Infrastruc-
ture and Transport (2011) set a goal of reducing Green-
House Gas (CHG) emissions by 34.3% compared to BAU 
by 2020. The Seoul Metropolitan Government also aims 

to achieve the 40% reduction in CHG emissions by 2030 
from the basic plan for eco-friendly energy in Seoul in 
2009, compared to 1990. It is necessary to realize the need 
of reducing the CHG emissions and reducing the energy 
consumption from the government level to the individual 
level in Seoul. However, Seoul’s energy demand trend has 
been steadily increased since 2005, and the trend is ex-
pected to continue until 2030. Therefore, the efficiency 
of the public transportation system, which accounts for 
64.3% of the traffic volume, is expected to play a crucial 
role in the success or failure of energy demand and GHG 
emission reduction.

The problem of public transportation in larger met-
ropolitan areas, especially buses, can be solved through 
the traffic demand management policy. Seoul and the 
surrounding metropolitan areas have high traffic volume 
that has reached to the saturation level. In the past, the 
infrastructural supply policy promoted personal traffic 
usage in order to facilitate using private cars, rather than 
pedestrians or public transportation. As a result, the traffic 
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congestion costs of Seoul has increased steadily. Therefore, 
to increase the efficiency of road space, policies for es-
tablishing the public transportation infrastructure such as 
bus and subway scheduling are promoted to increase the 
reliance on public transportation, aiming at the integra-
tion of the means to enable the activation of traffic cards 
and the transfers between each type of public transpor-
tation. However, as a result of the efforts to increase the 
traffic quantity, the current state of public transportation 
system is inefficient and the satisfaction level of passengers 
is continuously falling. Excessive bus operation causes en-
vironmental problems such as CHG emissions by exces-
sive traffic and also decreases public transportation opera-
tion cost efficiency of Seoul. 

Therefore, it is necessary to find the optimal bus dis-
patch interval that responds flexibly to the demand rather 
than the bus dispatch interval depending on experience. 
The process of planning the efficient operation of the pub-
lic transportation network can be divided into four stages: 
route design, dispatch planning, vehicle assignment, and 
driver assignment (Ceder 2002). Among the four stages, 
the step that is determined to have the greatest impact 
on the traffic volume in Seoul is the stage of establishing 
a dispatch plan. This is the reason why so many studies 
have been conducted to design various models to derive 
the optimal dispatch interval. However, most of the pre-
vious researches are designed to predict the behaviour of 
passengers and to derive the results by simulation. In ad-
dition, the researches lack the focus on the integrated op-
erating aspect, and instead their models are more focused 
on minimizing time.

These problems can be solved by the research using 
big data. Big data is defined as the data beyond the scope 
of the current system (Manyika et  al. 2011), and it can 
be applied to the various fields, such as from the corpo-
rate marketing to the government policy establishment. 
In Korea, big data is actively utilized for a wide range of 
weather, welfare and transportation to enhance national 
competitiveness. Big data and data mining technologies 
are also used to reduce CHG emissions by efficiently im-
proving the public transportation network. Traffic card 
data is generated every time, when passengers use it for 
any public transportation type. The data generated at a 
certain time is used for evaluating the efficiency of public 
transportation or analysing the behaviour of passengers 
through evaluating the efficiency of buses and subways. 

The traffic card data generated in Seoul contains a lot 
of information. Since the traffic card must be in contact 
with the terminal even when getting off the bus for trans-
ferring between various means of public transportation, 
information on each travel section is stored. Also, the us-
age rate of traffic cards is high. In Seoul, the Seoul Metro-
politan Government has promoted the use of traffic cards 
through a major public transport system reorganization 
since 2004 (Seoul Metro 2017). According to traffic statis-
tics in Seoul, the traffic card usage rate of passengers using 

public transportation is steadily increasing (100% subway 
in August 2012, 98.7% for buses and 53.5% for taxis). Pas-
sengers use traffic cards to generate data on more than 10 
million traffic card transactions a day (Park, Lee 2007). 
The transaction card database of the Seoul Metropolitan 
Transportation Card contains information on boarding, 
departure time, destination, and transportation of passen-
gers. The analysis of the traffic card transaction database 
is expected to contribute to the efficient management of 
the public transportation network, so it is used in a wide 
variety of research in the traffic geography field and the 
public transportation policy field to manage actual traffic 
data as database.

The purpose of this study is to re-evaluate the efficien-
cy of public transportation, especially bus routes where 
air pollutants are relatively frequent, using the transaction 
data database of Seoul Metropolitan Buses. The bus op-
eration plan consists of four steps (route design, dispatch 
planning, vehicle assignment, driver assignment) (Ceder 
2002). The focus of the study is on a distribution plan 
that is directly related to GHG emissions among these 
four steps. In other words, the purpose of this study is to 
find the optimal bus dispatch time. The cost of passen-
gers’ time and bus operation varies according to the route 
of the vehicle in a certain period of time. Reducing the 
dispatch interval reduces passenger time costs (Bowman, 
Turnquist 1981), but increases overall bus operation costs 
(Jansson 1980). Therefore, it can be assumed that the bus 
dispatch interval that minimizes the total cost consider-
ing the time cost of the passenger and the bus operation 
cost is the optimum bus dispatch interval. If we find the 
dispatch interval that meets the demand by bus route and 
time zone, it will contribute to reducing the carbon emis-
sions by reducing the overall traffic volume while improv-
ing the efficiency of passengers.

In order to optimize the bus dispatch time, the two 
factors that make up the total cost – passenger time and 
bus operation cost – must be considered at the same time. 
In this study, Yu et al. (2010), the passenger’s waiting time 
and travel time are extracted and converted into cost units 
to calculate the passenger’s time cost. In addition, the cost 
of bus operation according to the number of dispatches 
is derived by referring to the study by Park et al. (2008). 
By calculating the total cost plus these two variables and 
extracting the dispatch interval to minimize it, we pro-
pose the possibility of improving traffic congestion and 
air pollution by comparing the results with the current 
bus policy. We need to increase the degree of realism by 
applying actual data. Therefore, we conducted the analysis 
based on the transaction data of one week from March 
10 to 16, 2013. Because the behaviour of passengers var-
ies according to the day of the week and the time of day 
(Park, Lee 2007), we divide the weekly time into certain 
time zones and determine the optimal dispatch interval 
for each time zone.
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1. Related works 

1.1. Analysis of the relationship between  
public transportation and air pollution

A number of studies have been conducted on buses 
(Herndon et al. 2005; Puchalsky 2005; Ally, Pryor 2007; 
Chester, Horvath 2009) and trains (Puchalsky 2005; Messa 
2006; Chester, Horvath 2009; Chester et al. 2013) and they 
quantified the amount of pollutants generated from buses 
and trains. Most of the policies were focused on the de-
sign of the railway, so there was not much research on 
the correlation between buses and air pollution. However, 
past studies have shown that buses also account for a large 
proportion of air pollution. Puchalsky (2005) compared 
the exhaust emissions of express bus systems and subway 
systems. Chester and Horvath (2009) followed the study 
with consideration of infrastructure construction, mainte-
nance and repair process. Through research, it was found 
that the pollutants generated during the process of moving 
the passengers by the unit distance are often buses rather 
than trains. Furthermore, the relationship between CHG 
emissions and regional characteristics has been studied 
(Messa 2006; Chester, Horvath 2009; Cooney et al. 2013). 
The higher the complexity, the higher the CHG emissions. 
Therefore, it can be expected that air pollution will be re-
duced by optimizing the bus transportation network of 
Seoul, which contained more than 20% of the population 
of the Republic of Korea.

1.2. Transportation network planning

The process of designing a bus transportation network 
can be roughly divided into four stages: route design, dis-
patch planning, vehicle assignment, and driver assignment 
(Ceder 2002). In order to control the amount of traffic 
that’s directly related to air pollution, it is necessary to op-
timize the dispatch schedule. Method of adjusting the bus 
dispatch interval has been studied using various models 
and constraints. Salzborn (1972) focused on minimizing 
the number of vehicles required as the means of establish-
ing an optimal bus allocation plan. Among the various 
dispatch plans derived, we have chosen the alternative 
that minimizes user waiting time as an optimal alterna-
tive. Forbes et al. (1991) proposed a solution to the Multi-
ple Deport Scheduling Problem (MDSP) using the linear 
relaxation method. We set the optimal dispatch interval 
to minimize the sum of variable costs and fixed costs re-
quired for bus operation. Dispatch time is also a large part 
of the process of determining the travel time of passengers 
(Constantin, Florian 1995). Constantin and Florian (1995) 
considered the fleet size as a constraint and derived the 
dispatch time that minimizes the expected travel and wait-
ing time of the passenger. The sub-gradient algorithm is 
used to find the route spacing considering the route of 
passengers. In order to establish a more accurate cost 
model, both the operator’s viewpoint and the passenger’s 
viewpoint must be considered. Tom and Mohan (2003) 

applied a model using genetic algorithms to derive opti-
mal travel and dispatch intervals to minimize operating 
costs and total travel time for passengers.

1.3. Passenger benefits and operator cost analysis

The passenger cost is expressed by converting the waiting 
time and travel time into cost units. Yu et al. (2010) classi-
fied bus routes into two types in order to consider waiting 
time. Routes with high bus frequencies assumed that pas-
sengers would have a fixed chance of arriving at the bus 
stop, otherwise the passengers would be more likely to go 
to the bus stop as the bus arrival time approaches. Based 
on these assumptions, the total waiting time of the route 
was calculated as the product of the number of passen-
gers waiting at each stop and the expected waiting time. 
The travel time can be obtained more easily. When the 
bus moves along the route, the travel time of all the pas-
sengers can be calculated using the travel time taken for 
each section between the stops and the number of pas-
sengers moved during that time. In this way, both latency 
and travel time can be obtained. However, considering the 
passengers’ position, the waiting time for the bus arrival 
and the time spent traveling through the bus will be dif-
ferent. Ben-Akiva and Lerman (1985) conducted a study 
comparing the values of passenger latency and travel 
time. This study constructed a logistic model that shows 
the probability of a passenger choosing a certain means 
of travel, and derives the value of the passenger’s wait-
ing time and travel time. As a result, although the waiting 
time is shorter and the travel time is longer than the route 
with the shorter travel time, the preference of the route 
where people could get on the bus quicker was higher. 
It was found that passengers appreciate the value of the 
time spent waiting, which is estimated to be about twice 
as long as the travel time. Operational costs can be derived 
by using a hypothetical operating cost factor, which is the 
operating cost per unit distance (Park et al. 2008). In the 
process of deriving the operating cost factors, they consid-
ered the external and internal variables such as the space 
inside the bus, the speed of the vehicle, and accessibility.

1.4. Smart traffic card data analysis research

As Radio-Frequency IDentification (RFID) technology 
has developed, the payment system of public transporta-
tion has changed from cash to transportation cards. It is 
hoped that passenger information will be saved in the pro-
cess of paying the fare with the traffic card, which will help 
to improve the service offered by the public transportation 
network. In response to this expectation, research has been 
carried out to improve the efficiency of the transportation 
network in various fields using smart traffic card data. Ut-
sunomiya et al. (2006) found a problem with most public 
transports providing constant weekday bus schedules. By 
analysing customer usage patterns, the bus dispatch in-
terval according to the usage pattern was determined for 
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each day of the week. Since traffic cards in some countries 
only store passenger information, an algorithm has been 
developed to infer missing information. Trépanier et al. 
(2007) developed an algorithm to predict the destination 
point by using data such as date, time, location, and card 
type. Most traffic card systems do not provide informa-
tion about the destination point, so it is necessary to guess 
the most likely destination point through the comparison 
of the passenger’s next riding point with similar past trip 
chains. This can identify the trip chain of passengers and 
also can be an index to evaluate the efficiency of the route. 
Their subsequent study (Trépanier et al. 2009) estimated 
bus operation efficiency by comparing route schedules and 
passengers’ flight times. In this case, since the total board-
ing time at each stop takes a little time, data was classified 
by the first boarding passenger so that the boarding time 
of the passengers can be considered. A study on mecha-
nisms to estimate insufficient information of traffic card 
data has also been conducted for subways (Munizaga, Pal-
ma 2012). It is necessary to develop an algorithm because 
information on the initial station of the passengers stored 
in the traffic card database can’t provide the direction of 
the passengers. Algorithms were developed and applied to 
the subway system in such a way as to guess the direction 
and time of boarding through the passenger’s next rid-
ing point and time, thereby making it possible to create a 
riding-destination matrix.

Summarized literature review is presented in the  
Table 1.

2. Model development

As mentioned earlier, one of the main causes of air pol-
lution in large cities is the amount of traffic. Therefore, 
the greater the metropolitan area in Seoul that is covered 
by the transportation system, the more efficient it is. The 
most effective way to reduce traffic volume and reduce air 
pollution is to improve public transport efficiency. In par-
ticular, the role of the bus system that discharges CHG 
directly or indirectly is significant. In order to establish 
a bus transportation plan, it is necessary to go through 
four stages (Figure 1). First, the route must be designed 
according to the demand of each region and the appropri-
ate amount of buses must be dispatched to the designed 
route. After that, the vehicle is assigned and the driver is 
assigned to each vehicle so that the bus can be operated 
(Ceder 2002).

The step that directly has impact on air pollution in 
the area where the bus transportation network is operated 
is the step, which involves preparing the dispatch sched-
ule. Assuming that the demand can be met, the amount 
of CHG emissions can be minimized by operating a mini-

Table 1. Literature review

Analysis of the relationship between public transportation and air pollution

Puchalsky (2005) Comparison of exhaust emissions from bus express system and train system
Messa (2006) Linking GHG emissions with local characteristics
Ally, Pryor (2007) Correlation between bus and air pollution
Chester, Horvath (2009) Consider infrastructure construction, maintenance and repair process study of exhaust emission
Chester, Horvath (2009) Research on relationship between CHG emissions and technology development
Cooney et al. (2013) A study on the change of CHG emissions by urban complexity

Research on transportation network planning

Ceder (2002) Bus transportation network design process classification and each stage model construction
Salzborn (1972) Establish bus optimal dispatch plan from manager’s point of view
Forbes et al. (1994) Using linear mitigation, MDSP solution
Constantin, Florian (1995) Derivation of dispatch time minimizing passenger’s time
Tom, Mohan (2003) Introduction of genetic algorithm, derivation of optimum movement path and displacement distance

Analysis of passenger benefits and operator cost analysis

Yu et al. (2010) Considering the time required for passengers,
Ben-Akiva, Lerman (1985) Comparison of passenger waiting time and travel time value

Smart traffic card data analysis research

Utsunomiya et al. (2006) Analyse customers’ usage patterns and determine dispatch interval
Trépanier et al. (2007) Customer behaviour analysis and prediction of departure point
Trépanier et al. (2009) Bus operation efficiency estimation
Munizaga, Palma (2012) Development of algorithm for estimation of passenger’s departure point in subway transportation 

network
Bagchi, White (2005) Identification and classification of passenger behaviour, analysis of characteristics by group

Figure 1. Public transport planning process
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mum number of buses. Therefore, it is important to find 
the appropriate number of buses for the designed routes.

In general, the buses in public transit systems run a 
certain route with a specified interval between each depar-
ture. Currently, the bus operation policy in Seoul sets the 
dispatch interval so that it can reflect the demand by such 
as setting the dispatch interval between the weekdays and 
weekends, and increasing the dispatch time in the case of 
commuting time where demand increases during the day. 
However, the dispatch interval system is based on the past 
experience rather than the actual usage history of a user. 
Therefore, even if there is a change in demand due to the 
different levels of congestion of a certain area, it will take a 
long time to reflect this in the dispatch interval. However, 
if traffic card transaction data can be used to immediately 
reflect fluctuating demand, faster demand forecasting can 
be possible and the benefits of passengers will possibly be 
increased by reflecting this in the dispatch plan.

2.1. Model building

If the additional number of buses are to be provided at a 
certain time for a certain route, the additional costs will 
be incurred from the operator’s perspective. From the 
viewpoint of the passenger, utility is generated by reduc-
ing the time required. As a result, the two cost items have 
an opposite effect depending on the dispensing interval. 
Therefore, the dispatch interval that minimizes the total 
cost of both passenger and bus operation can be said to be 
the proper dispatch interval (Mohring 1972):

Total cost = Customer time cost + Bus cost.  (1)

As can be seen from Equation (1), total cost is the sum 
of customer cost and bus operating cost. In this case, the 
bus operation cost can be expressed as the sum of the bus 
ownership cost including the labour cost, the expense, the 
management cost, and the operating cost including the 
fuel cost, the tire cost, and the component cost (Oldfield, 
Bly 1988):

Bus cost = Fixed cost + Operation cost.  (2) 

The cost of holding a bus varies depending on how 
many people are dispatched at the initial cost of one ex-
tra dispatch. In addition to the number of vehicles to be 
dispatched, the operating cost may vary depending on the 
distance travelled. Therefore, the cost of bus operation is 
proportional to the number of vehicles and the length of 
service routes.

2.2. Passenger time analysis

2.2.1. Waiting time analytical model
Yu et al. (2010) classified bus routes into two types. In this 
model, a route that has the dispatch interval of less than 10 
min, is defined to have a small dispatch interval and if a 
route has the dispatch interval of larger than 10 min, it is 
defined to have a large dispatch interval. Passengers who 
want to take a route that has short interval do not consider 
the arrival time of the bus.

Therefore, it is assumed that the arrival pattern is at 
a certain probability until the bus arrives. On the other 
hand, passengers wanting to take a route with a large in-
terval are trying to reduce the waiting time considering 
the arrival time of the bus. Therefore, the stop arrival pat-
tern of passengers in this case is not constant but distrib-
uted according to a specific rule. In other words, a route 
where a bus arrives at the intervals of less than 10 min is 
defined as a case where the interval is small, and a case 
where the interval is large is defined as a case where the 
interval is larger than 10 min.

Small allocation interval passenger arrival model 
(f  ≥  6 veh/h). In the case (Figure 2) of the routes with 
small intervals, passengers are directed to the stop without 
taking into account the arrival time of the bus. Therefore, 
in this case, it can be inferred that the arrival probability 
of the passengers during the dispatch interval when the 
next bus arrives after the previous bus departs is constant.

Therefore, the arrival probability of passengers can be 
expressed by the Equation (3). H [continuous] denotes 
that headway, and fi [integer] denotes the frequency of i 
link:

( )
1 , for 0 ;

0, otherwise.

i
i

x H f
f x H f

 < ≤= 


  (3)

If the passengers arrive at the above probability, the 
average waiting time of the passengers is as follows:

2
i

i
H f

x = .  (4)

Large allocation interval passenger arrival model  
(f < 6 veh/h). In the case of a route with a large interval, it 
is assumed that the passengers who want to ride know the 
bus schedule and are directed to the bus stop considering 
the arrival time of the bus to take. At this time, the pas-
sengers will be directed to the bus stop at the arrival time 
of the bus, so the probability of the passengers’ arrival at 
the bus stop will be concentrated near the bus arrival time. 
Therefore, it can be assumed that customers arrive at a 
certain rate from ζ [continuous] minutes before the bus 
arrival time. Assuming that all customers can ride the bus, 
the arrival distribution of the passengers is presented in 
Figure 3.

Figure 2. Small allocation interval passenger arrival model
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D is the peak probability when the passengers arrive 
the most.

Theoretically, as shown in the graph above, passengers 
are concentrated on the arrival time of the bus, and all 
the passengers waiting at the bus stop will get on the bus, 
but the actual situation is slightly different. Considering 
the bus’s time of arrival, there are some occasions where 
passengers miss the bus due to the little time difference, so 
to consider the situation and take into account the people 
who miss the bus, it is necessary to move the graph to the 
right by some time x [continuous].

In this case, the arrival density function of the pas-
sengers can be expressed as follows:

( )
0, 0 ;

, ;

.,

i
i

i i

x

f x x

x

H f
H f

H f H f

 < ≤ x
 D= x < ≤ + x − ζ

D + x − ζ < ≤

  (5)

The graph, which considers this situation is presented 
in Figure 4.

Yu et al. (2010) sets the parameters ζ = 3.5 min, x = 
0.5 min, D = 0.2 min in the Equation (5). Therefore, even 
when the dispatch time is large, the average waiting time 
can be calculated.

The total passenger waiting time at station j on route 
i is the product of the number of waiting passengers bi,j 
[integer] and the average waiting time ix  [continuous]:

, ,
w
i j i j it b x= ⋅ .  (6)

Therefore, the waiting time at each stop can be ob-
tained by multiplying the average waiting time by the 
number of passengers waiting at each stop as shown in 
Figure 5.

Since there are two passengers waiting at the first stop 
and four passengers waiting at the second stop, the total 

waiting time at each stop is calculated as 2 ix⋅ , 4 ix⋅ , re-
spectively.

The total waiting time of route i can be obtained by 
multiplying the total waiting time at each stop by the dis-
pense interval like shown below:

,
w w

i i i j
j

T f t= ⋅∑ .  (7)

2.2.2. Moving time analysis model
In order to calculate the total travel time of all passengers 
boarded on bus during the bus service segment, it is nec-
essary to first divide each route by each segment and find 
out the boarding time in each segment. The total travel 
time in a certain segment can be calculated by multiplying 
the number of passengers that were on board on bus with 
the travel time in the segment (Table 2).

Table 2. Example of boarding section by passenger

Passenger Boarding 
stop

Boarding 
time

Departing 
stop

Departing 
time

A 1 t1 3 t3

B 1 t1 4 t4

C 2 t2 3 t3

D 3 t3 4 t4

Suppose four passengers are boarded in a pattern like 
shown above. Then, for each section, the movement per-
sonnel and time are as presented in Figure 6.

As described above, it is possible to deduce travel time 
and the number of passengers traveling by each section 
using passengers’ departure and their departure times.

The total boarding time for passengers using route 
i can be calculated by multiplying the bus travel time 

Figure 3. Large allocation interval passenger arrival model A
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Figure 4. Large allocation interval passenger arrival model B
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Figure 5. Passenger waiting time model
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, 1
r
i j jt → +  [continuous] by the number of passengers , 1i j jv → +  

[continuous] travelled during this period plus the comfort 
index:

, 1 , 1 , 1
r r

i i j j i j j i j j
j

T w t v→ + → + → += ⋅ ⋅∑ ,  (8)

where: the comfort index is a variable that shows the level 
of crowdedness of the bus: 

2
, 1

, 1
i j j

i j j
i

v
w

f V
→ +

→ +
 

=   ⋅ 
.  (9)

The Equation (9) shows the number of passengers on 
a bus by dividing the number of passengers by the time of 
the bus. The actual data is applied by setting the V value 
to 0.25 (Yu et al. 2010).

2.2.3. Total cost analysis

The study by Ben-Akiva and Lerman (1985) demonstrates 
that the waiting time is associated with much higher cost 
than passenger travel time. Therefore, the weight on the 
waiting time is set as the proportional coefficient τ. The 
value of τ is set to 2 (Ben-Akiva, Lerman 1985). The floor 
passenger time, which is the sum of the waiting time and 
the moving time of the passenger, is expressed as the 
Equation (10):

( ) , w r w
i i i i j

i i j

T T f t+ = τ ⋅ ⋅ +∑ ∑∑
, 1 , 1 , 1

r
i j j i j j i j jw t v→ + → + → +⋅ ⋅ .  (10)

The total travel time of passengers derived from the 
above formula must be converted into the cost units. In 
a study by Park et al. (2008), the cost conversion factor 
for passenger travel time is applied at 5235 won/h. In ad-
dition, since the bus cost factor of the bus is 309 won/
veh ⋅ km and the cost of ownership cost is 13110 won, the 

cost required for one additional bus on any route is calcu-
lated by converting the travel distance of the route:

Total cost = Customer time cost + Bus cost =

( ) 5325 won/hw r
i i

i

T T+ ⋅ +∑
Movement distance ⋅ 309 won/veh ⋅ km + 
13110 won/veh.                                                  (11)

It is shown that the optimal dispense interval is when 
the total cost calculated using the process above is at the 
minimum cost. With this process, it is possible to find the 
proper dispatch interval of each time line of each route.

3. Results analysis

3.1. Data

From the March 4, 2013 to March 10, 2013, the model 
described above was combined with real-time traffic card 
transaction data for one week to derive the optimal dis-
patch interval. This traffic card transaction data contains 
all information of the customer. It has detailed informa-
tion such as riding station, riding time, getting off station, 
getting off time, total number of passengers, total board-
ing time, total travel distance, transfer, vehicle ID and so 
on. Due to this rich information, it can be used effectively 
in the model of this study.

Since all traffic card transaction data in Seoul is too 
large data, bus No 104 is chosen as the bus that can aver-
age the data for most buses and represent it best. We ana-
lysed the boarding record of city bus No 104 (4×19 ceme-
tery ~ Seoul Station) from 4:00 am (bus operation starting 
time on Sunday) to the midnight of a Sunday. Information 
from the card transaction data includes each passenger’s 
boarding time, stopping point, exit time, stopping point, 
route information, and the like. Detailed Smart Traffic 
Card transaction data can be found in the Appendix.

Figure 6. Passenger travel time model
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3.2. Preliminary analysis

Basic data analysis was performed before detailed model 
analysis. In order to analyse passengers’ and bus’s traffic 
pattern, the number of passengers and bus traffic in each 
time zone were determined by time zone divided into two 
hour blocks (Table 3 and Figure 7).

As can be seen from the Table 3 and Figure 7, the 
number of passengers varies greatly over time. However, 
bus traffic does not change significantly except at dawn. 
Therefore, bus traffic needs to be adjusted to respond more 
flexibly to passenger demand.

Table 3. Bus traffic and number of passengers by time of day

Slot Bus traffic Number of passengers
4…6 10 35
6…8 18 60

8…10 18 104
10…12 19 142
12…14 19 131
14…16 19 162
16…18 19 136
18…20 19 98
20…22 18 83
22…24 16 58

3.3. Model analysis

As we have seen above, we will analyse this study model 
to control the optimum bus dispatch that responds flex-
ibly to passenger demand. Three time zones are selected 
from 10 time zones that are divided into two hour inter-
vals from the smallest to the most frequent time zone. The 
time of the analysis covers three time zones from 4:00 to 
6:00, from 14:00 to 16:00, and from 20:00 to 22:00. The 
number of passengers waiting at each stop, the number of 
passengers moved by each section, and the time required 
for each section are calculated as follows to obtain each 
passenger’s required time (Table 4).

The pre-processing results are substituted into the 
model presented above, and each passenger’s time is cal-
culated. The estimated travel time of passengers shows 
a decreasing trend as the distance between each station 
decreases. However, the operating cost increases because 
smaller the intervals, more vehicles must be dispatched. 
As each bus is added, the travel cost is as high as the travel 
distance, and the holding cost is also increased. Here is 
an example of the calculation of the actual operating cost 
using the data of bus No 104.

The transit distance of main bus No 104 is 29.358 km 
and the bus operation cost per unit distance is 309 won. 
In addition, the cost of ownership is 1310 won per bus, so 
the operating cost of bus 104 is 22181.62 won per vehicle:

Bus cost = 29.358 km ⋅ 309 won/veh ⋅ km +
13110 won/veh = 22181.62 won.

Based on the above results, the passenger cost, operat-
ing cost, and the total cost of each dispatched vehicle were 
calculated for each time slot. The results for 20:00…22:00 
hours, which can represent the entire pattern, are shown 
in the Table 5.

In the Table 5, the total cost trend shows that as the 
number of dispatched buses increases, the total cost de-
creases but later increases again after a certain number of Figure 7. Number of passengers and buses passing by time

Table 4. Smart card data after pre-processing

vehc_id ride_dtime ride_sta_id get on get off use_dist use_seconds interval persons required time

111749420 20130310041403 71613 18 25 4550 643 18…25 1 643
111749424 20130310041212 72239 8 18 3820 743 8…18 1 743
111749424 20130310042446 71613 18 28 6062 806 18…20 1 149
111749424 20130310042715 72012 20 29 5206 784 20…28 2 5256
111749424 20130310044619 72251 33 51 8778 1898 28…29 1 127
111749424 20130310044821 72208 34 55 9667 2153 33…34 1 122
111749424 20130310050028 72259 43 63 9736 2228 34…43 2 5816
111749426 20130310042026 8000880 7 18 4446 709 7…18 2 5640
111749426 20130310042030 8000880 7 24 8423 1333 18…23 1 587
111749426 20130310044202 7197 23 27 2067 373 23…24 2 328
111749426 20130310045614 72251 33 57 11015 2428 24…27 1 332
111749426 20130310050632 72255 39 56 7795 1608 18…23 1 0
111749430 20130310044655 72241 10 15 1655 464 10…15 1 464
111749430 20130310053704 72261 45 47 1824 308 45…47 1 308
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buses. A graph that shows the total cost by the number of 
vehicles dispatched between 20:00…22:00 hours can be 
drawn in Figure 8. At the optimal dispatch interval, the 
total cost, which takes into account both passenger and 
operating costs, has the minimum value as shown in the 
graph.

Table 5. 20:00…22:00 hours cost per vehicle

f Passenger cost 
[won]

Operating cost 
[won]

Total cost  
[won]

1 2879.662 22181.6 15097212.2
2 780.666 44363.2 4131147.1
3 391.962 66544.9 2118468.3
4 255.916 88726.5 1428448.7
5 192.947 110908.1 1120982.9
6 158.741 133089.7 964096.8
7 138.116 155271.3 878306.3
8 124.729 177453.0 830409.8
9 115.551 199634.6 804546.1

10 108.987 221816.2 792361.2
11 104.130 243997.8 789115.43
12 100.435 266179.4 791957.5
13 97.560 288361.1 799088.34
14 95.279 310542.7 809327.7
15 93.439 332724.3 821874.9
16 91.932 354905.9 836171.4
17 90.684 377087.5 851818.0
18 89.638 399269.2 868523.3
19 88.753 421450.8 886070.3
20 87.997 443632.4 904294.9

3.4. Model application result

We compare and analyse the traffic volume analysed based 
on the current bus traffic and the research model of this 
study. For each time zone, it was confirmed that the op-
timal number of dispatch vehicles was at the time when 
there were 7 vehicles in the time zone 4:00…6:00 hours, 
11 vehicles in the time zone 14:00…16:00, and 11 vehicles 
in the time zone 20:00…22:00 hours (Figure 9).

In this way, we confirmed that we can determine the 
optimal dispatch interval for each time zone and day of 
the week.

The graph (Figure 9) compares the currently operat-
ing bus traffic by time zone and the optimal number of 
vehicles derived from the model application. Between 
14:00…16:00 hours, it is shown that there is not any big 
difference from the result of applying 18 models of bus 
traffic at 19:00 o’clock. However, it is shown that bus traffic 
between 4:00…6:00 and 20:00…22:00 hours can be greatly 
reduced by applying the model. In particular, since the 
current bus traffic of the remaining time zones except for 
the early morning hours is set in accordance with the time 
zone having the maximum demand, more buses are oper-
ated than the necessary number of buses in the evening 
hours when the demand is reduced. Therefore, it is neces-
sary to control flexible traffic through immediate demand 
reflection. By applying the model proposed in this study, 
bus traffic can be reduced drastically and the reduction of 
CHG emissions during bus operation and congestion of 
urban transportation network are expected to be reduced.

Conclusions

In this study, we designed a model, which can find the 
optimal bus dispatch interval based on Seoul bus fare cost 
model that is designed by Yu et al. (2010) and Park et al. 
(2008). The total cost consists of the Seoul bus operation 
cost and Seoul passenger time cost. Here, passenger time 
cost is divided into waiting time cost and travel time cost 
and the bus operation costs are divided into fixed costs 
and operating costs. In this model, the transaction data of 
Seoul Transportation Card is substituted to each cost item. 
As the number of buses increases, the time cost of the pas-
sengers decreases, but the cost of bus operation increases. 
Therefore, there is a dispatch interval with the total and 
minimum cost. It is concluded that the dispatch interval 
at this time is the optimal dispatch interval for each route 
in Seoul in each time slot. It is confirmed that the optimal 
number of buses is smaller than the current service and 
the cost reduction effect can be obtained with less traffic 
than that of the current.

As a result of applying the model, it is shown that 
the bus operation policy is inefficient in cost. Addition-
ally, since more buses are currently being operated than 

Figure 9. Comparison of current bus traffic  
and model applied traffic

Figure 8. Total cost by allocation interval by passenger arrival
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necessary, more CHGs are being emitted. If we increase 
the reality of the models presented in this study and as-
sign actual usage details, more efficient bus operation can 
be achieved. In the case of Seoul, since the proportion 
of public transportation, especially buses, is significantly 
high, reduction level of air pollution of Seoul can be dra-
matic if buses are operated efficiently by applying the pro-
posed model. In addition to the quantitative variables such 
as the amount of air pollution due to the bus operation, 
which is the amount of carbon emissions, it also can be 
utilized as a model, which considers passenger cost, bus 
operation cost and environmental cost into the total cost 
by adding the quantitative variable such as the amount of 
greenhouse emissions that’s generated by the bus opera-
tion, which shows the level of air pollution due to the bus 
operation. 

In addition, the research model can be applied not 
only to Seoul, but also to cities with similar problems in 
various countries around the world. Most countries in the 
world have similar structural problems with public trans-
portation and have similar data. If we insert a variable that 
reflects the characteristics of each country in the proposed 
research model, you can make a more effective model.

Some limitations of this study are that the proposed 
model does not accurately reflect the current cost of bus 
operation in Seoul. Considering the changes in oil prices 
and other incidental costs and inflation rates, more re-
alistic model designs can be possible. Additionally, given 
the data on CHG emissions and the cost of environmental 
pollution due to the bus distance, the effect of reducing 
environmental pollution can be expressed numerically. As 
the dispatch interval decreases, passengers benefit from 
their reduced time of use. However, the benefits of addi-
tional new passengers other than the existing passengers 
are not considered. If the additional passenger benefits 
are taken into account, the optimal system is expected to 
change. Therefore, in order to increase the reliability of the 
model constructed in this study, more attention should be 
paid to collecting the data on the variables that account for 
changes in passenger demand and explaining the degree 
of air pollution.
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