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1. Introduction

A car accident, which is sometimes called a car crash or 
wreck, can be accepted as an incident in which an auto-
mobile collides with anything causing damage to the car 
including other types of vehicles, telephone poles, build-
ings, trees or the situation in which a driver loses control 
over the vehicle and damages it in some other way such 
as driving into a ditch or rolling over (Lama et al. 2007; 
Kinderytė-Poškienė and Sokolovskij 2008; Sokolovskij 
2007a, b; Sokolovskij et al. 2007; Tautkus and Bazaras 
2007; Prentkovskis et al. 2007; Pelenytė-Vyšniauskienė 
and Jurkauskas 2007; Vaidogas 2007). A car accident 
sometimes may refer to an automobile striking a man or 
an animal. 1.2 million people are killed in car crashes 
worldwide each year, whereas the number of the injured 
is about forty times higher. 

Accidents are divided into a few categories: rear-
end collisions, head-on collisions, rollovers, side impact 
collisions, truck under-ride accidents, backup accidents 
and suicides. 280 000 rollover accidents occur in the US 
each year and result in about 10 000 fatal accidents.

The article examines several cases of rollover mo-
tion of a car using the theory of impact on a body against 
an obstacle. The results may be used for assessing road 
accidents in cases of car collision with one or more ob-
stacles and car rollover (Fig. 1–4). The obstacle may in-
clude plane fundament, the ditch and edging of a high-
way or a rock in the field.
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Fig. 1. The start of right side car rollover (frame from video)

Fig. 2. Left side car rollover (frame from video)
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Fig. 3. Left side car rollover with one collision

Fig. 4. More than one collision in car rollover

2. Collision Equation

Suppose that body 1 collides pit corner with two rectan-
gular sides 2 and 3 (Fig. 5). The impact impulse has two 
components xS , yS  (Виба 1988; Viba et al. 2000; Kepe 
and Viba 1999). To calculate the parameters of collision, 
the theorems of change in linear and angular momen-
tum and two restitution coefficients of normal impulse 
R1 and R2 by sides 1 and 2 (1), (2) can be used (Lavende-
lis et al. 1997; Плявниекс и др. 1969).

Fig. 5. A scheme of collision from two sides
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where: m, e, h – the mass of the body and the coordinates of 
mass center C; Jc – the moment of inertia against CSV axis; 

0 0,c cx y   – the projection of the side sliding velocity of mass 
centre C before collision; 1 1,c cx y   – the projection of the side 
sliding velocity of mass center at the end of the first phase of 
collision; 2 2,c cx y   – the projection of the side sliding veloc-
ity of mass center at the end of the second phase of collision; 
ω0, ω1, ω2 – the angular velocity of the body before collision, 
at the end of the first phase of collision and at the end of full 
collision; 1 1,x yS S  – impulses at the end of the first phase of 
collision when contact point K stops that is:

1 1 0Kv CK= ω × = , 

where: 
1 1 0Kv CK= ω × = – the velocity of contact point at the end of 

the first phase of collision (Fig. 5).
A solution of eight equations (1), (2) by symbolic 

calculation is (3)–(6): 
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Formulas (3)–(6) are useful for calculating colli-
sions if all parameters of the system and the initial con-
ditions of motion are given.  

In addition, existence conditions must be satisfied 
as follows:

1. Before collision, the velocity direction of contact 
point K must be inside 90° sector of pit corner (7) 
(Fig. 5):

0 0 0 00; 0.x yv h v e+ ω ⋅ < − ω ⋅ <  (7)

2. After collision, the velocity direction of contact 
point K must be outside 90° sector of pit corner 
(8), (9) (Fig. 5):

2 2 0xv h+ ω ⋅ > ; (8)

2 2 0yv e− ω ⋅ > . (9)

3. Calculation of Remaining Kinetic Energy

Remaining kinetic energy in collision, expressed as a 
percentage of initial kinetic energy f is:
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For modeling collision, existence conditions (7)–(9) 
must be satisfied using special switch operators in form 
(11): 
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Using equations (4), (6) and (11), different compu-
ter calculations of car rollover with one, two or more col-
lisions may be investigated. 

Consequently, to examine car crashes and insur-
ance, initial velocity v0 may be found out. 

4. Modeling 

The impact of different coefficients R1 and R2 on remain-
ing kinetic energy was investigated in modeling tasks. 
The values of both coefficients in regions 0 ≤ R1 ≤ 1, 0 ≤ 
R2 ≤ 1 varied with step value 0.01 (12). 3-D graphics were 
designed for visualizing results (see next tasks below), 
see Figs 6–12.
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Fig. 6. Car sliding with collision against a road border or rock
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4.1. Side Sliding Without Rotation
In the first example, a task of modeling a car was solved: 
mass m = 1500 kg; width B = 2 m; height H = 1,5 m; 
coordinate h = 0.75 m; velocity vx0 = 50 km/h; angular 
velocity before collision ω0 = 0.

The arrows in Fig. 8 show conditions (8) and (9). 
The extreme values of kinetic energy are shown by M % 
(for example: M35,100 denote that R1 = 0.35, R2 = 1.00 and 
M % = 51.931%).

The carried out analysis concludes that in regions  
0 ≤ R1 ≤ 0.5 and 0 ≤ R2 ≤ 0.5, remaining kinetic energy 
makes about 27–45%.

4.2. Side Sliding and Rotation
Sliding collision and rotation was calculated applying 
parameters shown in Figures 9 and 10:

In regions 0 ≤ R1 ≤ 0.5 and 0 ≤ R2 ≤ 0.5, remaining 
kinetic energy makes about 42–56%.

4.3. Collision with Rotation Around the Axis
This type of collision exists under special initial condi-
tions, for example, when a car (after first collision against 
road border) collides with the roof against the ground 
second time (Fig. 11–12).

In this case, in regions 0 ≤ R1 ≤ 0.5 and 0 ≤ R2 ≤ 0.5, 
remaining kinetic energy makes about 21–41%.

5. Calculating Collision Series

Traffic accidents with rollover motion provide the pos-
sibility of calculating the number of collisions a car has 
made. Afterwards, an expert inspects a character of car 
hull deformations within collisions and may approxi-
mately evaluate coefficients R1 and R2 (in very small re-
gion R1,2 = 0 ÷1.). At a later stage, initial car kinetic en-
ergy and initial driving velocity v0 may be calculated. 

Fig. 13 indicates a full overturn cycle with five rollo-
ver collisions. For example, an expert decided that dur-
ing the first and following collisions, remaining energy 
made 51%, a serious deformation of the roof border on 
the right side of a car – 27%, roof deformation – 41%, a 
minor deformation of the roof border on the left side of a 
car – 70% and insufficient damping in tires – 90%. When 
the SSF (Static Safety Factor) is given, for example SSF = 
1.25, the value of maximal v0 and minimal v1 initial ve-
locity can be calculated and is equal to: v1 = 47.86 km/h; 
v0 = 50.45 km/h (see the following calculation).

Remaining kinetic energy when a car stops moving 
after four collisions and takes an overturned position on 
the left is:

0.51 · 0.27 · 0.41 · 0.7 = 0.04.

Fig. 7. Vector scheme for collision with rotation
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Fig. 10. The model of car rotation Fig. 11. The scheme of calculating rotation
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Remaining kinetic energy when a car stops mov-
ing after five collisions and takes a normal position on 
tires is:

0.51 · 0.27 · 0.41 · 0.7 · 0.9 = 0.04.

Symbolic calculation (Fig. 14) gives velocities v1 and 
v0 as follows (t – distance between tires; Δ – a maximal 
rise of mass center at the moment of rollover): 
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Fig. 14. Symbolic calculation in which Δ – a maximal increase 
of mass center within last two rollovers

6. Conclusion

The theory of impact on a body against an obstacle in a 
pit corner allows calculating collisions in technological 
processes and control systems, the impact of the motion 
of elements in mechanisms having a gap, the collisions 
of elements in car crashes etc. More specifically, several 
cases of car rollover motion can be investigated using 
this theory (adding braking and sliding energy must be 
taken into account).
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