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Abstract. Th e article describes mathematical models of traffi  c fl ows to initiate diff erent traffi  c fl ow processes. 

Separate elements of traffi  c fl ow models are made in a way to be connected together to get a single complex model. A 

model of straight road with diff erent boundary conditions is presented as a separate part of the network traffi  c fl ow 

model. First testing is conducted in case the fi nal point of the whole modelled traffi  c line is closed and no output from 

that point is possible. Th e second test is performed when a constant value of traffi  c fl ow speed and traffi  c fl ow rate is 

entered. Mathematical simulation is carried out and the obtained results are listed.
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1. Introduction

Modelling the process of traffi  c fl ow was previously stud-
ied from diff erent points of view and diff erent mathe-
matical methods were used to describe the same process. 
It also encounters diffi  culties in choosing an appropriate 
method of deriving physical appearance we can notice 
on our streets and roads. Diff erent authors have diff er-
ent views to the same phenomena and are focusing on 
diff erent aspects of the same problem (Junevičius and 
Bogdevičius 2007; Junevičius et  al. 2007; Berezhnoy 
et al. 2007; Akgüngör 2008a and 2008b; Daunoras et al. 
2008; Yousefi  and Fathy 2008; Gowri and Sivanandan 
2008; Jakimavičius and Burinskienė 2007 and 2009; An-
tov et al. 2009, Knowles 2008; Gasser 2003; Helbing and 
Greiner; Knowles 2008 etc.).

All authors have an agreement on basic traffi  c fl ow 
parameters like, traffi  c fl ow density, traffi  c fl ow rate or 
the average speed of traffi  c fl ow. Besides, a lot of diff erent 
investigations into the use of traffi  c fl ow models to deal 
with various problems of engineering are carried out, 
for example in Sivilevičius and Šukevičius (2007) paper.

A comparison of diff erent continuum models has 
drawn that a number of scientifi c works were based 
on fl uid dynamic theory and gas  – kinetic traffi  c fl ow 
theory. Th e kinetic traffi  c fl ow theory is used for ‘mi-
croscopic’ or ‘macroscopic’ traffi  c fl ow models. Th e ki-
netic traffi  c fl ow theory is used in Flötteröd and Nagel 
(2007), Gning et al. (2008), Li and Xu (2008), Prigogine 
and Herman (1971) works where various approaches to 
the similar method are discussed. Th e equations of these 

models take diff erent values to derive the same process. 
Th e kinetic theory was fi rst used by Prigogine and Her-
man (1971) and co-workers. Th ey suggested an equation 
analogous to Boltzmann equation. Th is theory was later 
criticized by many authors like Tampère (2004) etc. the 
papers of whose show the experience of Pavery-Fontna 
who noticed that Prigogine model had inaccuracies 
comparing the results of modelling and physical experi-
ments. He suggested vehicle desired velocity towards 
which its actual velocity tends. Later, many authors 
mainly focused on a better statistical description of the 
traffi  c process.

Th e ‘macroscopic’ theory of traffi  c fl ows also can 
be developed as the hydrodynamic theory of fl uids that 
was fi rst introduced by Lighthill-Whitham and Richards 
model (Chalons and Goatin 2008; Kim and Keller 2002; 
Liu et al. 2008; Bonzani 2007; Nikolov 2008). Th ey pre-
sented one dimensional model analogous to the fl uid 
stream model. Th is theory was also criticized by such 
authors as Tampère (2004) and Daganzo and Nagatani 
(Liu et al. 2008) who proposed the lattice method. Naga-
tani and Nakanishi model took into account that all ve-
hicles were moving at the same time-independent speed 
and in the same gap between vehicles. Th is method was 
improved later by considering the next-nearest neigh-
bour interaction Liu et al. (2008).

Plenty of traffi  c fl ow models are based on car–fol-
lowing theories supported by the analogues to Newton’s 
equation for each individual vehicle interacting in a sys-
tem of vehicles on the road. Diff erent forms of the equa-



tion of motion give diff erent versions of car-following 
models. Stimulus, from which response may occur, may 
be composed of the speed of a vehicle, diff erence in the 
speeds of leading and going aft er the vehicle, distance–
headway etc.

Follow-the-leader and optimal-velocity theories 
are mostly known car-following theories and have been 
used by Tampère (2004), Kerner and Klenov (2006). Ap-
plying these methods, kinetic and fl uid dynamic models 
could be extended to the critical points when the ki-
netic and fl uid theory gives us inaccuracies comparing 
with experimental data. For example, the car-following 
theory could comprise the next-nearest neighbour ef-
fect in various lattice models, whereas optimal-velocity 
models give us an opportunity to model diff erent situ-
ations, for example interacting vehicles having diff erent 
characteristics (car and truck) or vehicles with diff erent 
desired and optimal speeds. Nevertheless, all these im-
provements face the problems of properly working mod-
els or experience diffi  culties in achieving an appropriate 
solution.

Another point causing diffi  culties is the so called 
‘vehicular chaos’ that is an analogue to ‘molecular chaos’ 
used in the kinetic theory of gases. Th e authors inves-
tigated such phenomena in their works (Chalons and 
Goatin 2008; Safanov et  al. 2000; Kerner and Klenov 
2006). Kerner and Klenov (2006) denotes unstable 
points on the fundamental diagram. Th ese points indi-
cate minimal density of growing infi nite small fl uctua-
tions and express a zone for speed variation depending 
on vehicular density.

A similar zone for speed variation is presented 
in works by Chalons and Goatin (2008), Safanov et al. 
(2000). Th e authors derived alternate vehicle transition 
to the cases of unstable zones. Th ese models clearly ex-
plain empirical data on the brake–down points of the 
fundamental diagram.

2. Description of Traffi  c Flow Mathematical Model

To model traffi  c fl ow, an equation system taking into 
account two parameters is used: traffi  c fl ow speed and 
traffi  c fl ow density. Th ese parameters are calculated on 
each point of the road and information on the previous 
and next point of some road mesh is considered (Fig. 1).

At each point ‘i’ equations 1 and 2 are derived. 
Equation 1 derives variations in traffi  c fl ow speed and 
equation 2 derives variations in concentration at each 
point i.
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where: ,iv inr , ,ik inr , ,ik outr  and ,iv outr   – parameters are 
taken from empirical data; vmax – the maximal possible 
value of traffi  c fl ow speed at each point; Li – road seg-
ment depending on point ‘i’; kmax – the maximal pos-
sible value of traffi  c fl ow density at point ‘i’; qmax – the 
maximal possible traffi  c fl ow rate at point ‘i’, qi  – the 
calculated traffi  c fl ow rate; qin,i, qout,i – the probability of 
fl ow splitting or connecting at some traffi  c line intersect-
ing point (It means that traffi  c fl ow could split between 
several traffi  c lines or be diverted to some exact traf-
fi c line or connected to one from several separate traf-
fi c lines. Depending on time, this parameter could be 
a constant or a function. It could be used as a control 
function to model traffi  c fl ow intersections, traffi  c ac-
cidents and other perturbations that could occur on the 
road network); fi(ki+1,i)  – is some function depending 
on parameter k:
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Th is function takes into account the state of the 
road segment in front of point ‘i’.

Other coeffi  cients are γ =3 5.5 , γ =2 2.5 , =1 6m , 
=2 10m .
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k
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Some explanations about the members of equations 
(1) and (2) are given below.

Th ese are the members of equation 1:
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account the amount of vehicles at point ‘i’ and is 
subject to concentration value at point ‘i’.

Th ese are the members of equation 2:
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fl ow rate at point ‘i – 1’ which means that at point 
‘i – 1’, there should be some quantity of vehicles 
that can enter point ‘i’; otherwise the value of 
traffi  c fl ow rate becomes equal to 0. Th e delay of 
traffi  c fl ow rate that comes from point ‘i – 1’ to 
point ‘i’ is also regarded.
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from point ‘i’ to point ‘i + 1’.
Th e quantity of vehicles at each road segment could 

be calculated by the equation:
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where: xi,j – traffi  c line segment boundary points; ki,j – 
concentration values at boundary points.

Variance in the quantity of vehicles at each road 
segment could be derived by the equation:
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3. Model Description. Numerical Experimental Study

Two cases of mathematical experiment are presented.

Case 1.
To model traffi  c fl ows in this paper, the following 

considerations are required. First, it is acknowledged 
that the part of the road between two intersections is 
divided into some intervals ei (Fig. 2).

Each element has two points at the ends of the in-
terval. Two elements are connected at the same point, so 
each element has two points that belong to two diff erent 
elements.

An exception is the fi rst and the last point of the 
road part that is under investigation as these points are 
road input and road output respectively.

Th e number of points is 11 (10 elements); the 
length of the road is L = 1 km (Fig. 2).

Boundary conditions at the fi rst and fi nal points are:

• Traffi  c fl ow rate:

( )= = =10, 0.5 veh /sq x t q ;

( )= = =11, 0 veh /sq x L t q ;

• Traffi  c velocity:
= = = =1( 0, ) 13.888 m/s 50 km/hv x t v ;
= = =11( , ) 0 m/sv x L t v .

• Initial conditions:

( ) −= = 40 10 m/siv t ; ( ) −= = 40 10 veh /mik t ; 
= 2,...,10i .

Velocity, traffi  c fl ow rate and fl ow density rate are 
shown in Fig. 3, 4 and 5.

Th e dependency of a total number of vehicles on 
the road on time is shown in Fig. 6.

Fig. 2. Th e structure of creating a part of one way road
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Fig. 3. Th e dependency of fl ow velocity on time at 

each point ‘i’

Fig. 4. Th e dependency of the traffi  c fl ow rate on time at 

each point ‘i’

Fig. 5. Th e dependency of traffi  c concentration on time at 

each point ‘i’
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Th e end of the road is closed so the vehicles en-
ter the road but do not leave it. Estimating the result 
of simulation shows that the road should be overfi lled. 
Th e investigated part of the road was empty at the start, 
so speed at the beginning should grow. At a later stage, 
speed should reach a maximum value. When the road is 
overfi lled, speed should decline to 0.

Th e data of the conducted mathematical experi-
ment point to the expected results. Th e empty traffi  c 
line was fi led with vehicles and the maximum 0.2 veh/m 
concentration was reached. First, the end of the traffi  c 
line was fi led up, and then the entire road was fi led. Traf-
fi c fl ow speed reaches the maximum value at the begin-
ning of simulation and when concentration starts grow-
ing, the speed value reduces to zero.

Traffi  c fl ow rate reaches the maximum value and 
starts declining from the end point of the road. Th e 
maximum value of vehicles on the road at peak mo-
ment is almost 200 which is the maximum value that 
could appear on the road when vehicles are bumper to 
bumper.

Case 2.
Boundary conditions at the fi rst and fi nal points 

are (Fig. 2):

• Traffi  c fl ow rate:

( )= = =10, 0.5 veh /sq x t q ;

( )= = =11, 0.575 veh /sq x L t q .

• Traffi  c velocity:
= = = =1( 0, ) 13.888 / 50 km/hv x t v m s ;
= = =11( , ) 10 m/sv x L t v .

• Initial conditions: ( ) −= = 40 10 m/siv t ;

( ) −= = 40 10 veh /mik t ; 2, ... ,10i = .

Velocity, traffi  c fl ow rate and fl ow density rate are 
shown in Fig. 7, 8 and 9. Th e dependency of a total 
number of vehicles on the road on time is shown in 
Fig. 10.

Th is test has come up with similar results. Th is 
time, the end of the road is open, so all vehicles enter-
ing the traffi  c line could leave it. Speed at the fi rst point 
is lower than incoming speed in the fi rst case. Traffi  c 
fl ow rate at the end point is higher than that in the fi rst 
case. Th us, in general, traffi  c fl ow rate and concentra-
tion decline at each point of the road coming from the 
fi rst point to the last one and this is due to diff erence in 
traffi  c fl ow rate under the boundary conditions of the 

traffi  c line. Also at the end of simulation, the constant 
value of vehicles on the road is received. Th e quantity 
of vehicles on the road becomes constant at the end of 
simulation (Fig. 10).

Fig. 6. Th e dependency of a total number of vehicles 

on the road on time
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4. Conclusions

1. Th e presented traffi  c fl ow model gives theoretically 
expected results. In each case of simulation, the results 
are related to boundary conditions. In the fi rst case, the 
end of the road is closed, ( )= = =11, 0 veh /sq x L t q

 
, 

so the number of vehicles on the road increases and 
reaches the max possible quantity of almost 200 
vehicles. In the second case, the end of the road is 
opened, ( )= = =11, 0.575 veh /sq x L t q , so after 
some time, the maximum quantity of almost 30 ve-
hicles is reached.

2. At the beginning of the simulation process, the road 
was empty. Aft er some time, all segments on the road 
were fi lled. First, some concentration and fl ow values 
were received. For a while, those values were almost 
constant. Overfi lling the last point starts at a time step 
of 60 sec. Th en, all cells were fi led in equal time steps 
(see Fig. 4 and Fig. 5). Fig. 5 shows that concentration 
reaches a maximum possible value because the road 
is closed. Fig. 9 indicates that concentration values 
are diff erent at all points due to boundary conditions.

3. Traffi  c fl ow speed is maximal at all points when con-
centration is low and begins to increase when con-
centration starts growing

4. Th e process of road fi lling starts from the end point 
in Case 1 which means that the last road segment was 
fi lled fi rst. At a later stage, road segment before him 
was fi led. Th us, the process of fi lling the entire road 
starts from the last segment and reaches the fi rst one. 
Fig. 3, Fig. 4 and Fig. 5 clearly indicate that traffi  c 
fl ow rate and traffi  c fl ow concentration change in the 
same order.
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