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Abstract. The paper considers the following problems: 1) The development of a probability model to determine mal-
function of the terminal; 2) Determining the emergency situations at the terminal based on statistical data; 
3) Optimizing the effect of failures on the operation of the terminal; 4) Identifying the conflicting situations in making 
managerial decisions at the terminal. 
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1. Introduction 

Terminals play an important role in freight trans-
portation. 

It can be observed that various random factors in-
fluence strictly regulated terminal operation. If these 
factors are not taken into account by deterministic mod-
els in planning and controlling terminal operation, its 
efficiency can be considerably decreased. 

The analysis of the well-known journals dealing 
with transport problems “TRANSPORTATION SCIEN-
CE”, “TRANSPORT THEORY AND STATISTICAL 
PHYSICS”, “TRANSPORTATION RESEARCH PART 
B – METHODOLOGICAL” published in the last 20 
years has shown that statistical-stochastic models are 
suggested to be used in this area [1–4]. However, the 
articles considering the role of random factors as well 
as their formation and classification could not be found. 
These factors can emerge for subjective and objective 
reasons. 

Factors caused by objective reasons may be di-
vided into three groups including technical, organiza-
tional and economic aspects. The main technical factors 
are associated with the process of transportation and 
equipment (e.g. vehicles, containers, hoisting mecha-
nisms, etc.) and with the technological aspects; organ-
izational factors include specialization, scientific and 
technical information, measures aimed at increasing 
quality of transport services, work of the customs, 
moral responsibility for the quality of work, etc., while 
economic factors are related to tariffs, work payment, 
labour intensity, financial incentives, etc. 

Generally, technical-economic indicators of the 
terminal operation should be analyzed in terms of ran-
dom factors which are random with respect to any ar-
gument value as well. The arguments include time or 

other parameters of the terminal operation (technologi-
cal process). Thus, the criteria of optimality should also 
be considered as being random rather than determined. 

Most criteria used to assess the operation of the ter-
minal and individual technological processes are inter-
linked and this should be taken into account when using 
them as optimality criteria. In determining the numerical 
characteristics of technical-economic indicators accord-
ing to statistical data obtained in the process of terminal 
operation, mathematical expectation as well as correla-
tion and variance functions should be calculated. 

2. A probability model for determining interferences 
in terminal operation 

The state of the terminal when after a certain acci-
dent it cannot operate normally will be referred to as a 
failure. In the reliability theory a failure (discontinuity 
of operation) is an event leading to the situation when 
the parameters of a system do not meet the specified 
limits. In our case, a failure is considered to be a case 
when the terminal cannot normally perform its func-
tions. 

The reliability criterion is referred to as a probabil-
ity to avoid an inadmissible limiting state in the termi-
nal operation when trying to reach the level defined by 
some planned indicator iR , actually implying failure-

free terminal operation. 
If the planned indicator i  which is a function of 

random parameters krr  , ,1 K  is denoted by 

( )ki rrR  , ,1 K , while ( )kii qqQ  , ,K  and this indicator 

are also a function of random parameters ( )lqq  , ,1 K  at 

the considered moment, then, the mode of operation not 
reaching the limiting state will be expressed as follows: 

( ) ( ) 0 , , , ,1 >=− ikiiki xqqQrrR KK . 
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To assess the state of the terminal at a particular 
moment, total distribution density of the values 

ixxxx  , , , , 321 K , i.e. ( )ixxxx  , , , , 321 Kω  should be 

known. If the function is known, then probability of 
non-occurrence of a limiting state with respect to all 
indicators may be described by the equation: 
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In general, if all values ixxxx  , , , , 321 K  are as-

sumed to be correlated as well as having normal distri-
bution, then the formula given below may be used to 
express the function ( )ixxxx  , , , , 321 Kω : 
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where D  is a determinant of the row n ; ijD  is alge-

braic complement of the determinant D  of the element 

ijr ; ijr  is a coefficient describing a static relationship 

between random values ixx  , ,1 K . 

A determinant of the row n  is as follows: 
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In practice, all indicators of terminal performance do 
not reach their limiting values. Usually, one or two indica-
tors have to be evaluated. In the case of two indicators 
distributed according to the normal function ( )21  , xxω , the 

formula used for two-dimensional distribution function of 
two random values ( )2=n  may be applied: 
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where 1a  and 2a  are average values of 1x  and 2x , and 
2
1σ  and 2

2σ   mean square deviation of the values of 1x  

and 2x . 

The probability [ ]0 ;0 21 >> xxP  is calculated by 

the formula: 
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Substituting the value ( )21  , xxω  into the for-

mula (1) and rearranging it respectively, we will obtain: 
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dyF y  the Gauss function; 

( )11,ααT  is obtained from the tables. 

A simplified formula for [ ]0 ;0 21 >> xxP  may be 

obtained when 1x  and 2x  are not in correlation, i.e. 

when 0=r : 

[ ] ( )[ ] ( )[ ]2121 1 1 25.00 ;0 α+α+−>> FFxxP . 

Failures at the terminal are usually caused by some 
emergency situations. Therefore, in considering the 
latter, it could be advisable to use theoretical methods 
based on the probability value functions. 

3. Determining emergency situations at the terminal 
based on statistical information 

Let us assume that no emergencies occur at the ter-
minal for some time, then they happen for the time 1τ′′  and 

later, in the time period 2τ′ , the terminal is operating nor-

mally. Then, during the time period 3τ′  terminal operation 

is influenced by another random factor, and so on. 
Let us refer to the moments 

( )∑
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n
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, 

corresponding to the end of the period 1−τ′n  as a failure. 

The moments 
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corresponding to the end of the period nτ′  will be re-

ferred to as recovery. 
If all values nτ′  and nτ ′′  are assumed to be independ-

ent, all nτ′  are uniformly distributed according to the law 

( ) { }tPtF n ≤τ′=  with a mathematical expectation 

[ ]nMT τ′=1  and the variance [ ]nD τ′=σ2
1 . All periods nτ ′′  

are uniformly distributed according to the law 
( ) { }tPtG n ≤τ ′′=  with mathematical expectation 

[ ]nMT τ ′′=2 , and the laws ( )tF  and ( )tG  have continu-

ous densities ( ) ( )tFtf ′=  and ( ) ( ) 0   , 2
0

2
1 ≠σ+σ′= tGtq , 

respectively (for not taking into account a typical case). 
Then, the considered process is an ordinary recovery proc-
ess with the finite time of recovery. The average number 
of failures in terminal operation in the time period ( )t ,0  is 

referred to as the recovery function, 

( ) ( )( )∑
∞

=
=

1n

n tGtH ,  

where ( ) ( )tG n  – n – multiple convolution ( )tG . 

The rate of failures at the terminal is expressed as: 

( ) ( ) ( ) ( ) ( )∫ ++=′=
t

dzzqzthtqtHth
0

 ,  

where z  is integration variable. 
The analysis of the statistical data has shown that 

the flows of individual failures are ordinary, allowing 
us to assume that ( ) ( ) hi hthhth ≡≡    , , where i  is the 

index of the type of failure. 
The periods of various operational states are dis-

tributed according to the exponential law: 

( ) httg e1−= .  (2) 

When the recovery periods are of the uniform Pois-
son nature, the distribution of the periods is as follows: 
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where m  is the number of various types of failures. 
The average time of failure-free operation can be 

obtained from the equation (2): 
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The stability of terminal operation is expressed in 
the following way: 
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Let us refer to the sum of all recovery periods 

nτ ′  as the total input in the recovery time until the 

moment t and denote it as tN . The analysis has 

shown that when ∞→t , the value of tN  approaches 

normal distribution with mathematical expectation 
expressed as: 
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The data on the characteristics of the flow of fail-
ures at the terminal are given in Table. 

 

Major characteristics of the flows of failures at the terminal 

Cause (type) of failure 
Characteristic No freight  

for carriage 
Crane failure Truck failure 

Lack of service 
personnel 

Average input to failure ( )[ iMB ki δ= , in hours 89,4 45,6 142,6 126,4 

Failure rate ii B1=λ , failures/hour 0,017 0,025 0,014 0,008 

Average number of failures in a 5-day week with two-
shift work ( )tiυ  2,9 75,3 1,75 1,63 

Probability of occurrence of empirical distribution 
values ( )inσ  with theoretical { }2HP  according to 

pearson 

0,99 0,978 0,95 0,956 

Reliability function of management system 
( ) ( ){ }tiPtW ni >δ=  

t017,0e−  t025,0e−  t014,0e−  t008,0e−  

Distribution of failures per week of operation 
( )( ) ( ){ } ntPtP i
n

i ≤υ=  
9,2e

!

9,2 −
n

n
 3,2e

!

3,2 −
n

n
 

75,1e
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 63,1e
!
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n
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4. Optimization of failure influence on the terminal 
operation 

A great number of factors influence the operation 
of the terminal and may cause its malfunction. How-
ever, their influence varies to a great extent. Therefore, 
they are divided into major and minor factors. In this 
case, the simulation results should be optimized before 
using them for management purposes. 

The problem may be formulated as follows. Let 
the controlled variable be a random number with the 
domain function ( )xF . The range (domain) of  

the random number x  (interval [ ]BA ) is subdivided 
into N   non-intersecting  steps  by  the points 

BxxxxAx NN =<<<<= −1210 K . As mentioned 

above, a number of minor random factors y  play a role 

alongside the main controlled variable x . Thus, the 
random number x  in yxz +=  should be assessed. 

Let us denote the distribution function of the ran-
dom number y  by ( )yf x . For managerial (planning) 

purposes, let us take the average value of the function 
( )jif , , where ( )jif ,  is a penalty for deciding to pre-

scribe the controlled variable to step j , while the value 

x  is actually found in step i . 
Minor factors may cause the situation when the 

controlled variable with its value 121 ,,, −Nzzz K  not 

matching the limits of steps 121 ,,, −Nxxx K  appears to 

be the best. 
The optimization problem may be formulated in the 

following way: to find the vector { } 1
1
−
=

N
iiz  minimizing 

( ) ( ) ( )∑ ∑
= =

=
N

i

N

j
x fifjiPjiM

1 1
,,, ,  

where jiP ,  is probability of the event when x  is found 

in the step mi − , while ( )yx +  is in the thj −  step. 

The problem will be solved by the dynamic pro-
gramming method. In this case, this method is advanta-
geous because no special conditions concerning ( )xF  

and ( )yf x  are specified. The following recurrent rela-

tionships will be used to determine optimal values of 
the controlled variable. First, let us calculate the value 
functions: 

( ) [ ] [ ]{ } ( )kifzxxxPS
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where ( )βα  ,kS  is an average penalty corresponding to 

the case when the value  z  is in the interval [ ]βα  ,  under 

condition that the interval is in step k . In this case, α  

and β  range from *A  to *B , { }xyxA += min* , 

{ }xyxB += max* , and it can easily be observed that: 
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The functions given below can be found at other 
parts of the recurrent relationship: 
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According to Bellman’s optimality principle: 
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The expressions (3) and (4) comprehensively de-
scribe the recurrent relationship. Beginning with the 
second step, it is possible to calculate 

[ ]( )mBT  , , *α   and  ( )( )* , Bz m
i α ,  

1,,1 −+−= NmNl K , 

while in the step mN −  we find 

[ ]( )
{ }

( )jimf NBAT
N
jjz

,min,,
1=

= , 

which is actually the solution of the problem. 
The above algorithm can be expanded by slightly 

modifying it to include the case when the penalty for 
inaccurate solution depends on the exact value of the 
controlled variable. 

5. Conflicting situations in decision-making 

In making optimal statistical decisions, the average 
number of conflicting situations should be determined. 
Conflicting situations occur due to the conflict of inter-
ests of the terminal authorities and carriers as well as of 
individual carriers and the terminal referring to a given 
and the future moment, etc. 

Causes of the conflicting situations make a finite 
set J  and are associated with the stochastic nature of 
the terminal. Let us number the causes of the conflict-
ing situations as follows: mJi  , ,2 ,1 , K=α=α . 

Conflicting situations should be divided into pri-
mary and secondary. The conflicting situations Ji∈  
are referred to as primary. They occur due to one cause 
which is usually associated with some emergency situa-
tion at the terminal. 

Let us consider the determination of a random 
number of conflicting situations in time ( )t ,0 . 

The flow of events ( )1+m  is given: flows of 

events mFFF  , , , 21 K  cause conflicting situations 

Ji∈ , m , ,2 ,1 K=α , while the flow 1+mF  indicates 

the superposition of the flows. 
The moments of conflict i  occurrence ( )inΘ  are 

distributed on time axis with intervals ( )inδ  so that 
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( ) ( ) ( ) 0   ; , ,2 ,1   ; ,2 ,1   , 0
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while the moments of the event occurrence in the total 
flow are distributed at random intervals nδ  so that 
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j
jn n K . Let us state that:  

a) all values ( )inδ  and nδ  are independent; b) all peri-

ods ( )inδ  are uniformly distributed according to the 

laws ( ) ( ){ }tiPtW ni >δ=  with mathematical expecta-

tion ( )[ ]iMB ni δ=  and the variance ( )[ ]iD ni δ=σ2 ;  

c) all periods nδ  are uniformly distributed according to 

the laws ( ) { }tPtW n >δ=  with mathematical expecta-

tion [ ]nMB δ=  and the variance [ ]nD δ=σ2 ; d) the 

laws ( )tWi  and ( )tW  have continuous densities 

( ) ( )tWt ii ′−=ω ; ( ) ( )tWt i=ω , respectively. A random 

variable ( )tiυ  equal to the number of conflicting situa-

tions of the type i  at the moment t may be found from 
the equation ( ) ( ) 1+υ<<υ ttt ii . The value ( )tiυ  may 

be only a positive integer. Let us note that  
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the distribution laws and uniformly distributed values 
expressed by a circuital integral 
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The average number of the i -type conflicting situa-
tions taking place prior to the moment t  is as follows: 

( ) ( )[ ] ( )( )

( )( ) ( )( )[ ]
( )( ) ( ) ( )( ) ( )( ).1 

121

1

1

1

∑∑∑

∑

∑

∞

=

∞

=

∞

=

∞

=

+

∞

=

=−−

=−

==υ=υ

n

n
i

n

n
i

n

n
i

n

n
i

n

n

n
iii

tWtWntnW

tWtWn

tnPtMt

 (6) 

The average number of all kinds of conflicting 
situations in time ( )t ,0  may be expressed as: 
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The average number of conflicting situations per 
unit of time (if 0→t ) indicates a breakdown threat to 
the control system of the terminal, and 
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It follows from (6) that breakdown threat may be 
expressed as: 
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The periods when managerial, forwarding, techno-
logical and carriage operations are actually stable and 
the flows mFFF  , , , 21 K  satisfy the conditions of main-

taining stationary and ordinary states and the influence 
condition, therefore, they are simple or ordinary Pois-
son processes. Since ordinary flows are independent of 
each other and any of them is a Poisson flow, therefore, 
the total flow is also a Poisson flow with the parameter 
equal to the sum of the constituent parameters. Then, 
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ii B
t i =λλ=ω λ−   

( ) ∑
=

λ− ==λλ=ω
m

i i

t
i BB

t
1

11
   ,e   

of the reliability function 

( ) ( ) tt
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The i -type conflicting situations have the follow-
ing distribution: 
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,  

where ( )tt ii υ=λ , while ( )tυ  is distributed according to 

the law: 
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where ( )tt υ=λ ; while ( ) ( ) ttWP λ−=−= e10 . 

Breakdown threats are ( ) ii t λ=υ , ( ) ∑
=
λ=λ=υ

m

i
it

1
. 

If we want to determine the number of conflicting 
situations over a long period of time, then it is assumed 
that a random variable ( )tυ  is an asymptotic normal 

value with an average ( )[ ] BttM ≈υ  and the variance 

( )[ ] 32 BttD σ≅υ . Then, the number of conflicting 

situations over the time ( )t ,0  has the probability ε−1  

and is in the range of 

( ) 23
2

23
2

BtUBttBtUBt i σσ εε
+<υ<− ,  

where 2εU  is a quantile of the normal distribution with 

the probability ε−1  obtained from the table of normal 
distribution according to the condition: 
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The maximum amount of conflicting situations 
expected with the probability α−1  over the time ( )t ,0  

will be as follows: 

( ) 23
111 iiii TtUTtt σ+≤υ ε ,  

where εU  is a quantile of normal distribution with the 

probability α−1 . 

6. Conclusions 

1. Generally, technical-economic indicators of the ter-
minal operation should be analyzed in terms of ran-
dom factors which are random with respect to any 
argument value as well. The arguments include time 
or other parameters of the terminal operation (tech-
nological process). Thus, the criteria of optimality 
should also be considered as being random rather 
than determined. 

2. Most criteria used to assess the operation of the ter-
minal and individual technological processes are 
interlinked and this should be taken into account 
when using them as optimality criteria. In determin-
ing the numerical characteristics of technical-
economic indicators according to statistical data ob-
tained in the process of terminal operation, mathe-
matical expectation as well as correlation and vari-
ance functions should be calculated. 

3. Random emergency situations cause failures at the 
transport terminal. In considering them, the theory of 
probability value functions should be used. 

4. A great number of various factors influence the op-
eration of the terminal and may cause its malfunc-
tion, however, their influence may differ to a great 
extent. Therefore, the simulation data should be op-
timized to be used in further decision-making. 
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