Share:


Definition of concrete and composite precast concrete pavements texture

Abstract

In the context of increasing traffic demands and emerging mobility trends road infrastructure has to shift towards the fifth generation of roads, which according to Forever Open Road (FOR) vision are envisioned as adaptable to traffic volumes, resilient to changing weather conditions, quickly built, effectively maintained, suitable for retrofitting, self-monitoring, self-repairing and recyclable. Concrete modular pavements can be defined as an example of such type of road infrastructure. Functional needs are mainly associated with implementation area/location, traffic and mobility demands, environmental constraints and etc. This also has a significant impact on the selection of Precast Concrete Pavements (PCP) texture formation method and materials. Concrete pavement surface texture affects both safety and tyre/road noise characteristics. Exposed Aggregate Concrete (EAC) and porous concrete are the most suitable noise reducing solutions for highways and streets wearing layer even in severe traffic and climate conditions. According to the literature analysis, the algorithm of highways and streets low noise concrete design was created. It is recommended to use the highest quality aggregates with maximum size up to 8 mm, gap-graded gradation, higher amount of cement and lower water/cement ratio. The most important characteristics of EAC are Mean Profile Depth (MPD), Mean Texture Depth (MTD) and profile count, while the most important characteristics of porous concrete are compressive strength, outflow and air void content.

Keyword : modular pavement, concrete texture, noise, noiseless pavements, microtexture, macrotexture, exposed aggregate concrete, porous concrete, road

How to Cite
Vaitkus, A., Andriejauskas, T., Šernas, O., Čygas, D., & Laurinavičius, A. (2019). Definition of concrete and composite precast concrete pavements texture. Transport, 34(3), 404-414. https://doi.org/10.3846/transport.2019.10411
Published in Issue
Jun 11, 2019
Abstract Views
38
PDF Downloads
25
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abbott, P. G.; Morgan, P. A.; McKell, B. 2010. A Review of Current Research on Road Surface Noise Reduction Techniques. Published Project Report PPR443. Transport Research Laboratory, Wokingham, Berkshire, UK. 148 p. Available from Internet: https://trl.co.uk/reports/PPR443

Altreuther, B.; Männel, M. 2016. New concepts for low noise concrete road surfaces, in Proceeding of the Inter-Noise 2016, 21–24 August 2016, Hamburg, Germany, 6985–6994.

Anderson, K.; Sexton, T.; Uhlmeyer, J.; Russell, M.; Weston, J. 2013. Concrete Pavement Noise: I-90 Spokane, I-90 Easton, I-5 Federal Way, I-82 Sunnyside, and I-5 Northgate. Washington State Department of Transportation (WSDOT), Olympia, WA, US. 28 p. Available from Internet: https://www.wsdot.wa.gov/research/reports/fullreports/814.1.pdf

Anfosso-Lédée, F.; Brosseaud, Y. 2009. Acoustic monitoring of low noise road pavements, Noise Control Engineering Journal 57(2): 50–62. https://doi.org/10.3397/1.3082400

Beckenbauer, T. 2011. Lärmarme Fahrbahnbeläge: Mehrwert bei der Straßensanierung, in ALD-Herbstveranstaltung „Lärm in der Stadt“ 15. November 2011, Berlin, Deutschland, 31 S. Available from Internet: https://www.muellerbbm.de/fileadmin/user_upload/gmbh/Veroeffentlichungen/2011/2011-12-21-05.pdf (in German).

Beeldens, A.; Rens, L. 2017. Surface characteristics of concrete roads: recent Australian society for concrete pavements, in Proceeding of the 4th Concrete Pavements Conference, 17–18 July 2017, Kingscliff, New South Wales, Australia, 1–14.

Beeldens, A.; Van Gemert, D.; Caestecker, C. 2004. Porous concrete: laboratory versus field experience, in Proceedings of the 9th International Symposium on Concrete Roads, 4–7 April 2004, Istanbul, Turkey.

Bendtsen, H.; Andersen, B. 2005. Noise-reducing pavement for highways and urban roads – state of the art in Denmark, Journal of the Association of Asphalt Paving Technologists 74: 1085–1106.

Cable, J. K.; Frentress, D. P. 2004. Two-Lift Portland Cement Concrete Pavements to Meet Public Needs. Report No DTF61-01-X-00042 (Project 8). Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, US. 23 p. Available from Internet: https://intrans.iastate.edu/app/uploads/2004/09/two_lift.pdf

Cackler, E. T.; Ferragut, T.; Harrington, D. S. 2006. Evaluation of U.S. and European Concrete Pavement Noise Reduction Methods. National Concrete Pavement Technology Center, Iowa State University, Ames, US. 101 p. Available from Internet: http://publications.iowa.gov/4319

Choi, Y. 2011. Austroads Review Report: Traffic Noise/Long-life Surfacings. Publication No AP-T162-11. Austroads Ltd., Sydney, Australia. 38 p.

Cole, L. W. 1997. Pavement condition surveys of ultrathin white-topping projects, in 6th International Purdue Conference on Concrete Pavement Design and Materials for High Performance, 18–21 November 1997, Indianapolis, Indiana, US, 2: 175–187.

Descornet, G. 2005. Low-noise road surfaces: European state of the art, Journal of the Association of Asphalt Paving Technologists 74: 1059–1084.

Descornet, G.; Goubert, L. 2006. Noise Classification of Road Pavements. Task 1: Technical Background Information. Draft Report. European Commission Directorate: General Environment. 58 p.

Elliot, D. 2010. Pervious Concrete: When it Rains, it Drains. 59 p. Available from Internet: http://www.ltrc.lsu.edu/ltc_13/pdf/presentations/S34_Pervious%20Concrete_LTC2013.pdf

Fick, G. 2010. Two-lift concrete paving, CP Road Map, August 2010: 1–4. Available from Internet: http://www.cproadmap.org/publications/MAPbrief13-1.pdf

Gardziejczyk, W.; Gierasimiuk, P. 2018. Influence of texturing method on tyre/road noise of cement concrete pavement, International Journal of Pavement Engineering 19(12): 1061–1076. https://doi.org/10.1080/10298436.2016.1238699

Gražulytė, J.; Vaitkus, A.; Laurinavičius, A.; Čygas, D. 2019. Algorithm of Concrete Modular Pavement Design Considering Application Area, in 13th International Conference “Modern Building Materials, Structures and Techniques”, 16–17 May 2019, Vilnius, Lithuania (in Press).

Hall, J. W.; Smith, K. L.; Littleton, P. 2009. Texturing of Concrete Pavements. National Cooperative Highway Research Program, NCHRP Report 634. Transportation Research Board, Washington, DC, US. 97 p. Available from Internet: https://doi.org/10.17226/14318

Hamet, J.; Deffayet, C.; Pallas, M. 1990. Air-pumping phenomena in road cavities, in INTROC 90 – International Tire/Road Noise Conference 1990, 8–10 August, Gothenburg, Sweden, 19–29.

Haberl, J.; Litzka, J. 2006. Bewertung der Nahfeld-Geräuschemission österreichischer Fahrbahndeckschichten. Forschungsgesellschaft Straße – Schiene – Verkehr, Wien, Österreich. 112 S. (in German).

Hendrikx, L. 1998. Geluidsarme betonverhardingen, Dossier Cement (18): 1–8. Available from Internet: https://www.febelcem.be/fileadmin/user_upload/dossiers-ciment-94-08/nl/18_nl.pdf (in Dutch).

Höller, S. 2017. Concrete pavements in Germany: conclusions, in Seminar on Best Practices on Concrete Pavement Design and Construction, 22 November 2017, Buenos Aires, Argentina. 28 p. Available from Internet: http://www.actualizarmiweb.com/sites/icpa-org/publico/files/capacitacion/2017-11-seminario_ICPA_DNV/2017-11-22_5-Concrete_Pavements_in_Germany-StefanHoller.pdf

Izevbekhai, B. I. 2016. Pavement Surface Characteristics Concrete New Construction (MnROAD Study). Research Project Final Report 2015-48. Minnesota Department of Transportation (MnDOT), Maplewood, MN, US. 339 p. Available from Internet: https://www.lrrb.org/media/reports/201548.pdf

Kane, M.; Scharnigg, K.; Conter, M.; Roe, P.; Schwalbe, G. 2009. Report on Different Parameters Influencing Skidresistance, Rolling Resistance and Noise Emissions. TYROSAFE Deliverable D10. Forum of European National Highway Research Laboratories (FEHRL), Brussels, Belgium, 95 p. Available from Internet: http://tyrosafe.fehrl.org/?m=49&mode=download&id_file=8292

Khazanovich, L.; Tompkins, D. 2017. Thin Concrete Overlays. Federal Highway Administration (FHWA). Report Number FHWA-HIF-17-012. Federal Highway Administration (FHWA). 12 p. Available from Internet: https://www.fhwa.dot.gov/pavement/pubs/hif17012.pdf

Kováč, M.; Sičáková, A. 2018. Pervious concrete as an environmental solution for pavements: focus on key properties, Environments 5(1): 11. https://doi.org/10.3390/environments5010011

Kuemmel, D. A.; Sonntag, R. C.; Jaeckel, J. R.; Crovetti, J. A.; Becker, Y. Z.; Satanovsky, A. 2000. Using a Road Surface Analyzer to Explain Noise Characteristics of Portland Cement Concrete Pavement Surface Texture, Transportation Research Record: Journal of the Transportation Research Board 1716: 144–153. https://doi.org/10.3141/1716-17

Li, J.; Zhang, Y.; Liu, G.; Peng, X. 2017a. Preparation and performance evaluation of an innovative pervious concrete pavement, Construction and Building Materials 138: 479–485. https://doi.org/10.1016/j.conbuildmat.2017.01.137

Li, S.; Xiong, R.; Yu, D.; Zhao, G.; Cong, P.; Jiang, Y. 2017b. Friction Surface Treatment Selection: Aggregate Properties, Surface Characteristics, Alternative Treatments, and Safety Effects. Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2017/09. Purdue University, West Lafayette, IN, US. 58 p. https://doi.org/10.5703/1288284316509

Liu, M.; Huang, X.; Xue, G. 2016. Effects of double layer porous asphalt pavement of urban streets on noise reduction, International Journal of Sustainable Built Environment 5(1): 183–196. https://doi.org/10.1016/j.ijsbe.2016.02.001

Mahboub, K. C.; Canler, J.; Rathbone, R.; Robl, T.; Davis, B. 2009. Pervious concrete: compaction and aggregate gradation, Materials Journal 106(6): 523–528. https://doi.org/10.14359/51663335

Morgan, P. (Ed.). 2006. Guidance Manual for the Implementation of Low-Noise Road Surfaces. FEHRL Report 2006/02. Forum of European National Highway Research Laboratories (FEHRL). 332 p.

Morgan, P. A.; Nelson, P. M.; Steven, H. 2003. Integrated Assessment of Noise Reduction Measures in the Road Transport Sector. Project Report PR SE/652/03. 116 p.

Nakahara, D.; Nota, E.; Endo, K. 2004. Utilization of Pavement quality porous concrete and its performance, in Proceedings of the 9th International Symposium on Concrete Roads, 4–7 April 2004, Istanbul, Turkey, 165–176.

Parnell, J.; Samuels, S. 2006. A comparison of tyre/road noise generated on NSW pavements to international studies, in Proceedings of Acoustics 2006, 20–22 November 2006, Christchurch, New Zealand, 369–375.

PIARC. 2016. Quiet Pavement Technologies. Permanent International Association of Road Congresses (PIARC). 105 p.

Plotkin, K. J.; Montroll, M. L.; Fuller, W. R. 1980. Generation of tire noise by air pumping and carcass vibration, in Proceedings of the International Conference Noise Control Engineering, Noise Control for the 80’s, Inter-Noise 80, 8–10 December 1980, Miami, Florida, US, 1: 273–276.

Rens, L. 2015. Durable Low-Noise Concrete Pavements. European Concrete Paving Association (EUPAVE). 24 p. Available from Internet: https://www.eupave.eu/wp-content/uploads/durable-low-noise-concrete-pavements.pdf

Sandberg, U.; Ejsmont, J. A. 2002. Tyre/Road Noise Reference Book. Infomex. 640 p.

Scofield, L. 2017. Development and Implementation of the Next Generation Concrete Surface. American Concrete Pavement

Association (ACPA). 39 p. Available from Internet: https://www.acpa.org/development-and-implementation-of-the-next-generation-concrete-surface

Skarabis, J.; Stöckert, U. 2015. Noise emission of concrete pavement surfaces produced by diamond grinding, Journal of Traffic and Transportation Engineering 2(2): 81–92. https://doi.org/10.1016/j.jtte.2015.02.006

Smith, P.; Snyder, M. B. 2018. Manual for Jointed Precast Concrete Pavement. National Precast Concrete Association. 243 p. Available from Internet: https://precast.org/jprcp-manual

Sonebi, M.; Bassuoni, M.; Yahia, A. 2016. Pervious concrete: mix design, properties and applications, RILEM Technical Letters 1: 109–115. https://doi.org/10.21809/rilemtechlett.2016.24

Tayabji, S.; Ye, D.; Buch, N. 2013. Precast Concrete Pavement Technology. Transportation Research Board, Washington, DC, US. 165 p. https://doi.org/10.17226/22710

Tennis, P. D.; Leming, M. L.; Akers, D. J. 2004. Pervious Concrete Pavements. Portland Cement Association, Skokie, Illinois, US. 32 p.

Tompkins, D.; Khazanovich, L.; Darter, M. 2010. 2008 Survey of European Composite Pavements. Transportation Research Board, Washington, DC, US. 50 p. https://doi.org/10.17226/22947

TxDOT. 2018. Pavement Manual. Texas Department of Transportation (TxDOT), Austin, TX, US. 480 p. Available from Internet: http://onlinemanuals.txdot.gov/txdotmanuals/pdm/pdm.pdf

Vaitkus, A.; Andriejauskas, T.; Gražulytė, J.; Šernas, O.; Vorobjovas, V.; Kleizienė, R. 2018. Qualitative criteria and thresholds for low noise asphalt mixture design, IOP Conference Series: Materials Science and Engineering 356: 012027. https://doi.org/10.1088/1757-899X/356/1/012027

Van Keulen, W.; Duškov, M. 2005. Inventory Study of Basic Knowledge on Tyre/Road Noise. Report DWW-2005-022.

Road and Hydraulic Engineering Division of Rijkswaterstaat, Delft, Netherlands. 106 p. Available from Internet: http://www.infrageluid.nl/leaflets/Inventory%20Study.pdf

Wasilewska, M.; Gardziejczyk, W.; Gierasimiuk, P. 2018. Effect of aggregate graining compositions on skid resistance of exposed aggregate concrete pavement, IOP Conference Series: Materials Science and Engineering 356: 012001. https://doi.org/10.1088/1757-899X/356/1/012001

Zhong, R.; Wille, K. 2016. Compression response of normal and high strength pervious concrete, Construction and Building Materials 109: 177–187. https://doi.org/10.1016/j.conbuildmat.2016.01.051