Identifying critical elements of road infrastructure using cascading impact assessment

    David Rehak Affiliation
    ; David Patrman Affiliation
    ; Veronika Brabcová Affiliation
    ; Zdeněk Dvořák Affiliation


Road transport is a key means of transporting people and cargo on land. Its particular advantages are speed and operability, which are balanced, however, by dependence on road infrastructure. Road infrastructure reliability is an important factor in its functioning. If some elements of road infrastructure are disrupted or fail, the function of dependent infrastructures, such as the integrated rescue system or industry, are also impaired and may fail. These important elements of road infrastructure should be identified as critical and be given greater attention when identifying weaknesses and implementing subsequent security measures. This article introduces the Identifying Critical Elements of Road Infrastructure  (ICERI) method, which was designed to make use of Cascading Impact Assessments (CIA). The use of CIA allows critical elements to be identified through impact escalation analysis. These impacts can therefore be monitored not only in road transport infrastructure but also across the entire critical infrastructure system.

First published online 4 May 2020

Keyword : critical infrastructure, road infrastructure, critical elements, cascade effects, identification, ICERI method

How to Cite
Rehak, D., Patrman, D., Brabcová, V., & Dvořák, Z. (2020). Identifying critical elements of road infrastructure using cascading impact assessment. Transport, 35(3), 300-314.
Published in Issue
Jul 9, 2020
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Ambros, J.; Turek, R.; Brich, M.; Kubeček, J. 2019. Safety assessment of Czech motorways and national roads, European Transport Research Review 11: 1.

Bertocchi, G.; Bologna, S.; Carducci, G.; Carrozzi, L.; Cavallini, S.; Lazari, A.; Oliva, G.; Traballesi, A. 2016. Guidelines for Critical Infrastructures Resilience Evaluation. Italian Association of Critical Infrastructures Experts (AIIC). 101 p. Available from Internet:

Bie, W.; Wang, X. 2002. Evaluation of power system cascading outages, in Proceedings. International Conference on Power System Technology, 13–17 October 2002, Kunming, China, 415–419.

Chen, B. Y.; Lam, W. H. K.; Sumalee, A.; Li, Q.; Li, Z.-C. 2012. Vulnerability analysis for large-scale and congested road networks with demand uncertainty, Transportation Research Part A: Policy and Practice 46(3): 501–516.

Chen, Y.; Milanović, J. V. 2017. Critical appraisal of tools and methodologies for studies of cascading failures in coupled critical infrastructure systems, in IEEE EUROCON 2017: 17th International Conference on Smart Technologies, 6–8 July 2017, Ohrid, Macedonia, 599–604.

David, H. A. 1988. The Method of Paired Comparisons. Hodder Arnold. 200 p.

Dong, W.; Wang, Y.; Yu, H. 2017. An identification model of urban critical links with macroscopic fundamental diagram theory, Frontiers of Computer Science 11(1): 27–37.

Dvořák, Z.; Sventeková, E.; Řehák, D.; Čekerevac, Z. 2017. Assessment of critical infrastructure elements in transport, Procedia Engineering 187: 548–555.

EC. 2008. Council Directive 2008/114/EC of 8 December 2008 on the Identification and Designation of European Critical Infrastructures and the Assessment of the Need to Improve their Protection. Available from Internet:

EC. 2006. Commission Regulation (EC) No 851/2006 of 9 June 2006 Specifying the Items to be Included under the Various Headings in the Forms of Accounts Shown in Annex I to Council Regulation (EEC) No 1108/70. Available from Internet:

Eurostat. 2018. Road Freight Transport Statistics – Cabotage. Statistical Office of the European Union (Eurostat). Available from Internet:

Giannopoulos, G.; Filippini, R.; Schimmer, M. 2012. Risk assessment methodologies for Critical Infrastructure Protection. Part I: A state of the Art. Joint Research Centre (JRC), European Commission. 53 p.

Gonzva, M.; Barroca, B.; Gautier, P.-E.; Diab, Y. 2016. Analysis of disruptions cascade effect within and between urban sociotechnical systems in a context of risks, E3S Web of Conferences 7: 07008.

Hassel, H.; Johansson, J.; Cedergren, A.; Svegrup, L.; Arvidsson, B. 2014. Method to Study Cascading Effects. CascEff Project: Deliverable No D2.1. Lund University, Sweden. 40 p. Available from Internet:

Hromada, M.; Lukas, L. 2012. Multicriterial evaluation of critical infrastructure element protection in Czech Republic, Communications in Computer and Information Science 340: 361–368.

IEC 60812:2006. Analysis Techniques for System Reliability – Procedure for Failure Mode and Effects Analysis (FMEA).

IEC 61025:2006. Fault Tree Analysis (FTA).

IEC 62502:2010. Analysis Techniques for Dependability – Event Tree Analysis (ETA).

IEC 31010:2019. Risk Management – Risk Assessment Techniques.

IRDR. 2014. Peril Classification and Hazard Glossary. Data Project Report No 1. Integrated Research on Disaster Risk (IRDR), Beijing, China. 28 p. Available from Internet:

Jenelius, E. 2007. Approaches to Road Network Vulnerability Analysis. Department of Transport and Economics, Royal Institute of Technology (KTH), Stockholm, Sweden. 29 p.

Jenelius, E.; Petersen, T.; Mattsson, L.-G. 2006. Importance and exposure in road network vulnerability analysis, Transportation Research Part A: Policy and Practice 40(7): 537–560.

Klein, P.; Hutter, R. 2017. Qualitative criteria in the assessment of security measures for critical infrastructure protection – a new approach, International Journal of Critical Infrastructures 13(1): 29–45.

Kotzanikolaou, P.; Theoharidou, M.; Gritzalis, D. 2013. Cascading effects of common-cause failures in critical infrastructures, IFIP Advances in Information and Communication Technology 417: 171–182.

Labaka, L.; Hernantes, J.; Sarriegi, J. M. 2015. A framework to improve the resilience of critical infrastructures, International Journal of Disaster Resilience in the Built Environment 6(4): 409–423.

Leitner, B.; Decký, M.; Kováč, M. 2019. Road pavement longitudinal evenness quantification as stationary stochastic process, Transport 34(2): 195–203.

Leitner, B.; Môcová, L.; Hromada, M. 2017. A New approach to identification of critical elements in railway infrastructure, Procedia Engineering 187: 143–149.

Leitner, B.; Rehak, D.; Keršys, R. 2018. The new procedure for identification of infrastructure elements significance in subsector railway transport, Komunikácie / Communications 20(2): 41–48.

Liao, H.; Apt, J.; Talukdar, S. 2004. Phase Transitions in the Probability of Cascading Failures. Working Paper. Carnegie Mellon University, Pittsburgh, PA, US. 4 p. Available from Internet:

Min, H.-S. J.; Beyeler, W.; Brown, T.; Son, Y. J.; Jones, A. T. 2007. Toward modeling and simulation of critical national infrastructure interdependencies, IIE Transactions 39(1): 57–71.

Nan, C.; Sansavini, G. 2017. A quantitative method for assessing resilience of interdependent infrastructures, Reliability Engineering & System Safety 157: 35–53.

NIAC. 2009. National Infrastructure Advisory Council Critical Infrastructure Resilience: Final Report and Recommendations. National Infrastructure Advisory Council (NIAC), US Department of Homeland Security, Washington, DC, US. 54 p. Available from Internet:

Oliveira, E. L.; Portugal, L. da S.; Porto Junior, W. 2014. Determining critical links in a road network: vulnerability and congestion indicators, Procedia – Social and Behavioral Sciences 162: 158–167.

Pant, R.; Hall, J. W.; Blainey, S. P. 2016. Vulnerability assessment framework for interdependent critical infrastructures: case-study for Great Britain’s rail network, European Journal of Transport and Infrastructure Research 16(1): 174–194.

Patrman, D.; Splichalova, A.; Rehak, D.; Onderkova, V. 2019. Factors influencing the performance of critical land transport infrastructure elements, Transportation Research Procedia 40: 1518–1524.

Public Safety Canada. 2018. National Cross Sector Forum: 2018–2020 Action Plan for Critical Infrastructure. Public Safety Canada, Ottawa, Canada. 25 p. Available from Internet:

Rehak, D.; Markuci, J.; Hromada, M.; Barcova, K. 2016. Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system, International Journal of Critical Infrastructure Protection 14: 3–17.

Rehak, D.; Novotny, P. 2016. Bases for modelling the impacts of the critical infrastructure failure, Chemical Engineering Transactions 53: 91–96.

Rehak, D.; Senovsky, P.; Hromada, M.; Lovecek, T.; Novotny, P. 2018. Cascading impact assessment in a critical infrastructure system, International Journal of Critical Infrastructure Protection 22: 125–138.

Rehak, D.; Senovsky, P.; Hromada, M.; Lovecek, T. 2019a. Complex approach to assessing resilience of critical infrastructure elements, International Journal of Critical Infrastructure Protection 25: 125–138.

Rehak, D.; Radimsky, M.; Hromada, M.; Dvorak, Z. 2019b. Dynamic impact modeling as a road transport crisis management support tool, Administrative Sciences 9(2): 29.

Renger, R.; Foltysova, J.; Ienuso, S.; Renger, J.; Booze, W. 2017. Evaluating system cascading failures, Evaluation Journal of Australasia 17(2): 29–36.

Rinaldi, S. M.; Peerenboom, J. P.; Kelly, T. K. 2001. Identifying, understanding, and analyzing critical infrastructure interdependencies, IEEE Control Systems Magazine 21(6): 11–25.

Ristvej, J.; Zagorecki, A.; Hollá, K.; Šimák, L.; Titko, M. 2013. Modelling, simulation and information systems as a tool to support decision making process in crisis management, in 27th European Simulation and Modelling Conference – ESM’2013, 23–25 October 2013, Lancaster, UK, 71–76.

RSD. 2012. Zvlněná dálnice u Ostravy má rekordních 901 vad. Ředitelství silnic a dálnic (RSD) ČR. Česká Republika. Available from Internet: (in Czech).

Rupi, F.; Angelini, S.; Bernardi, S.; Danesi, A.; Rossi, G. 2015. Ranking links in a road transport network: a practical method for the calculation of link importance, Transportation Research Procedia 5: 221–232.

Scott, D. M.; Novak, D. C.; Aultman-Hall, L.; Guo, F. 2006. Network robustness index: a new method for identifying critical links and evaluating the performance of transportation networks, Journal of Transport Geography 14(3): 215–227.

Seppänen, H.; Luokkala, P.; Zhang, Z.; Torkki, P.; Virrantaus, K. 2018. Critical infrastructure vulnerability – a method for identifying the infrastructure service failure interdependencies, International Journal of Critical Infrastructure Protection 22: 25–38.

Slivková, S. 2018. Určování kritických prvků v oblasti železniční dopravy. Disertační práce pro získání akademického titulu „doktor“, ve zkratce „Ph.D.“. Technická univerzita Ostrava, Česká republika. 123 s. (in Czech). Available from Internet:

Slivkova, S.; Rehak, D.; Novotny, P. 2018. Critical element designation system in rail transport in the Czech Republic, Chemical Engineering Transactions 67: 775–780.

Slivková, S.; Tašlová, J.; Novotný, P. 2015. Návrh kritérií kritičnosti prvků železniční dopravní infrastruktury, in Požární ochrana 2015: Sborník přednášek XXIV. ročníku mezinárodní konference, 9.–10. září 2015, Ostrava, Česká Republika, 3: 291–294. (in Czech).

Štoller, J.; Dvořák, P.; Túró, T.; Zezulová, E. 2018. Basic principles of critical infrastructure protection, in Transport Means 2018: Proceedings of the 22nd International Scientific Conference, 3–5 October 2018, Kaunas, Lithuania, 1: 267–271.

Taylor, M. A. P.; D’Este, G. M. 2007. Transport network vulnerability: a method for diagnosis of critical locations in transport infrastructure systems, in A. T. Murray, T. H. Grubesic (Eds.). Critical Infrastructure. Advances in Spatial Science, 9–30.

Taylor, M. A. P.; Sekhar, S. V. C.; D’Este, G. M. 2006. Application of accessibility based methods for vulnerability analysis of strategic road networks, Networks & Spatial Economics 6(3–4): 267–291.

The White House. 2013. Critical Infrastructure Security and Resilience. Presidential Policy Directive PPD-21. The White House, Washington, DC, US. Available from Internet:

UNECE. 2018. 2018 Inland Transport Statistics for Europe and North America. Volume LIX. United Nations Economic Commission for Europe (UNECE). 189 p. Available from Internet:

Weihrich, H. 1982. The TOWS matrix – a tool for situational analysis, Long Range Planning 15(2): 54–66.

Yang, X.; Liu, L.; Li, Y.; He, R. 2016. Identifying critical links in urban traffic networks: a partial network scan algorithm, Kybernetes 45(6): 915–930.

Yu, C.; Yang, X.; Yun, M. 2014. Method of Searching for Critical Links in Traffic Network Based on Link Redundancy, in Transportation Research Board 93rd Annual Meeting, 12–16 January 2014, Washington, DC, US, 1–17.

Zimmerman, R.; Restrepo, C. E. 2009. Analyzing cascading effects within infrastructure sectors for consequence reduction, in 2009 IEEE Conference on Technologies for Homeland Security, 11–12 May 2009, Boston, MA, US 165–170.

Zuccaro, G.; De Gregorio, D.; Leone, M. F. 2018. Theoretical model for cascading effects analyses, International Journal of Disaster Risk Reduction 30: 199–215.