Share:


Gripping devices of industrial robots for manipulating offset dish antenna billets and controlling their shape

    Volodymyr Savkiv Affiliation
    ; Roman Mykhailyshyn Affiliation
    ; Pavlo Maruschak Affiliation
    ; Valerii Kyrylovych Affiliation
    ; Frantisek Duchon Affiliation
    ; Ľuboš Chovanec Affiliation

Abstract

Invention proposes an adaptive gripping device of an industrial robot, which combines functions of capturing different-shape manipulation objects with control of deviations from the shape of these objects. The device is a T-shaped frame with three Bernoulli grips pivotally mounted thereon and a pneumatic sensor. Analytical dependencies are presented for determination of design parameters of adaptive gripping device and calculation of required lifting force of each of Bernoulli Gripping Device (BGD). Formula is derived for determining its position of pneumatic sensor on frame of gripping devices. In the ANSYS-CFX software environment, numerical simulation of airflow dynamics in the gap between the cooperating BGD surfaces and the offset mirror antenna plate blank. The simulation was based on the Reynolds-Averaged Navier–Stokes (RANS) equations of viscous gas dynamics, the Shear Stress Transport (SST) model of turbulence, and the y model of laminar–turbulent transition. As a result of the simulation, the effect of the curvature radius of the surface of the plates of offset mirror antennas on the BGD power characteristics was determined.

Keyword : Bernoulli gripping device, object manipulation, offset antenna, nozzle, radial flow, industrial robot

How to Cite
Savkiv, V., Mykhailyshyn, R., Maruschak, P., Kyrylovych, V., Duchon, F., & Chovanec, Ľuboš. (2021). Gripping devices of industrial robots for manipulating offset dish antenna billets and controlling their shape. Transport, 36(1), 63-74. https://doi.org/10.3846/transport.2021.14622
Published in Issue
Mar 30, 2021
Abstract Views
71
PDF Downloads
42
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aulin, V. V.; Pankov, A. O.; Zamota, T. M.; Lyashuk, O. L.; Hrynkiv, A. V.; Tykhyi, A. A.; Kuzyk, A. V. 2019. Development of mechatronic module for the seeding control system, INMATEH – Agricultural Engineering 59(3): 181–188. https://doi.org/10.35633/INMATEH-59-20

Davis, S.; Gray, J. O.; Caldwell, D. G. 2008. An end effector based on the Bernoulli principle for handling sliced fruit and vegetables, Robotics and Computer-Integrated Manufacturing 24(2): 249–257. https://doi.org/10.1016/j.rcim.2006.11.002

Dini, G.; Fantoni, G.; Failli, F. 2009. Grasping leather plies by Bernoulli grippers, CIRP Annals 58(1): 21–24. https://doi.org/10.1016/j.cirp.2009.03.076

Garbaruk, A. V.; Strelec, M. H.; Travin, A. K.; Shur, M. L. 2016. Sovremennye podhody k modelirovaniju turbulentnosti. Izdatel’stvo Politehnicheskogo universiteta, Sankt-Peterburg. 234 s. (in Russian). https://doi.org/10.18720/SPBPU/2/s16-161

Li, X.; Kagawa, T. 2014. Theoretical and experimental study of factors affecting the suction force of a Bernoulli gripper, Journal of Engineering Mechanics 140(9): 04014066. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000774

Maruschak, P.; Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Chovanec, L. 2019. The analysis of influence of a nozzle form of the Bernoulli gripping devices on its energy efficiency, in ICCPT 2019: Current Problems of Transport: Proceedings of the 1st International Scientific Conference, 28–29 May 2019, Ternopil, Ukraine, 66–74. https://doi.org/10.5281/zenodo.3387275

Menter, F. R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal 32(8): 1598–1605. https://doi.org/10.2514/3.12149

Menter, F. R.; Esch, T.; Kubacki, S. 2002. Transition modelling based on local variables, in Engineering Turbulence Modelling and Experiments 5: Proceedings of the 5th International Symposium on Engineering Turbulence Modelling and Measurements, 16–18 September 2002, Mallorca, Spain, 555–564. https://doi.org/10.1016/B978-008044114-6/50053-3

Menter, F. R.; Langtry, R.; Volker, S. 2006. Transition modelling for general purpose CFD codes, Flow, Turbulence and Combustion 77(1–4): 277–303. https://doi.org/10.1007/s10494-006-9047-1

Menter, F. R.; Smirnov, P. E.; Liu, T.; Avancha, R. 2015. A oneequation local correlation-based transition model, Flow, Turbulence and Combustion 95(4): 583–619. https://doi.org/10.1007/s10494-015-9622-4

Mykhailyshyn, R.; Savkiv, V.; Duchon, F.; Koloskov, V.; Diahovchenko, I. M. 2018a. Analysis of frontal resistance force influence during manipulation of dimensional objects, in 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), 10–14 September 2018, Kharkiv, Ukraine, 301–305. https://doi.org/10.1109/IEPS.2018.8559527

Mykhailyshyn, R.; Savkiv, V.; Duchon, F.; Koloskov, V.; Diahovchenko, I. M. 2018b. Investigation of the energy consumption on performance of handling operations taking into account parameters of the grasping system, in 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), 10–14 September 2018, Kharkiv, Ukraine, 295–300. https://doi.org/10.1109/IEPS.2018.8559586

Mykhailyshyn, R.; Savkiv, V.; Duchon, F.; Trembach, R.; Diahovchenko, I. M. 2019. Research of energy efficiency of manipulation of dimensional objects with the use of pneumatic gripping devices, in 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2–6 July 2019, Lviv, Ukraine, 527–532. IEEE. https://doi.org/10.1109/UKRCON.2019.8879957

Mykhailyshyn, R.; Savkiv, V.; Mikhalishin, M.; Duchon, F. 2017. Experimental research of the manipulation process by the objects using Bernoulli gripping devices, in 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), 17–20 October 2017, Lviv, Ukraine, 8–11. https://doi.org/10.1109/YSF.2017.8126583

Ozcelik, B.; Erzincanli, F. 2002. A non-contact end-effector for the handling of garments, Robotica 20(4): 447–450. https://doi.org/10.1017/S0263574702004125

Ozcelik, B.; Erzincanli, F.; Findik, F. 2003. Evaluation of handling results of various materials using a non‐contact end‐effector, Industrial Robot 30(4): 363–369. https://doi.org/10.1108/01439910310479630

Petterson, A.; Ohlsson, T.; Caldwell, D. G.; Davis, S.; Gray, J. O.; Dodd, T. J. 2010. A Bernoulli principle gripper for handling of planar and 3D (food) products, Industrial Robot 37(6): 518–526. https://doi.org/10.1108/01439911011081669

Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Maruschak, P. 2020a. Justification of influence of the form of nozzle and active surface of Bernoulli gripping devices on its operational characteristics, in TRANSBALTICA XI: Transportation Science and Technology: Proceedings of the International Conference TRANSBALTICA, 2–3 May 2019, Vilnius, Lithuania, 263–272. https://doi.org/10.1007/978-3-030-38666-5_28

Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Prentkovskis, O.; Maruschak, P.; Diahovchenko, I. 2020b. Analysis of operational characteristics of pneumatic device of industrial robot for gripping and control of parameters of objects of manipulation, in TRANSBALTICA XI: Transportation Science and Technology: Proceedings of the International Conference TRANSBALTICA, 2–3 May 2019, Vilnius, Lithuania, 504–510. https://doi.org/10.1007/978-3-030-38666-5_53

Savkiv, V.; Mykhailyshyn, R.; Duchon, F. 2019a. Gasdynamic analysis of the Bernoulli grippers interaction with the surface of flat objects with displacement of the center of mass, Vacuum 159: 524–533. https://doi.org/10.1016/j.vacuum.2018.11.005

Savkiv, V.; Mykhailyshyn, R.; Maruschak, P.; Chovanec, L.; Prada, E.; Virgala, I.; Prentkovskis, O. 2019b. Optimization of Design Parameters of Bernoulli Gripper with an Annular Nozzle, in Transport Means 2019: Sustainability: Research and Solutions: Proceedings of the 23rd International Scientific Conference, 2–4 October 2019, Palanga, Lithuania, 423–428.

Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Maruschak, P.; Prentkovskis, O. 2018a. Substantiation of Bernoulli grippers parameters at non-contact transportation of objects with a displaced center of mass, in Transport Means 2018: Proceedings of the 22nd International Scientific Conference, 3–5 October 2018, Trakai, Lithuania, 3: 1370–1375.

Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Mikhalishin, M. 2018b. Modeling of Bernoulli gripping device orientation when manipulating objects along the arc, International Journal of Advanced Robotic Systems 15(2): 1729881418762670. https://doi.org/10.1177/1729881418762670

Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Fendo, O. 2017a. Justification of design and parameters of Bernoulli–vacuum gripping device, International Journal of Advanced Robotic Systems 14(6): 1729881417741740. https://doi.org/10.1177/1729881417741740

Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Mikhalishin, M. 2017b. Energy efficiency analysis of the manipulation process by the industrial objects with the use of Bernoulli gripping devices, Journal of Electrical Engineering 68(6): 496–502. https://doi.org/10.1515/jee-2017-0087

Savkiv, V.; Mykhailyshyn, R.; Fendo, O.; Mykhailyshyn, M. 2017c. Orientation modeling of bernoulli gripper device with off-centered masses of the manipulating object, Procedia Engineering 187: 264–271. https://doi.org/10.1016/j.proeng.2017.04.374

Shameli, E.; Khamesee, M. B.; Huissoon, J. P. 2007. Nonlinear controller design for a magnetic levitation device, Microsystem Technologies 13(8–10): 831–835. https://doi.org/10.1007/s00542-006-0284-y

Shi, K.; Li, X. 2018. Experimental and theoretical study of dynamic characteristics of Bernoulli gripper, Precision Engineering 52: 323–331. https://doi.org/10.1016/j.precisioneng.2018.01.006

Shi, K.; Li, X. 2016. Optimization of outer diameter of Bernoulli gripper, Experimental Thermal and Fluid Science 77: 284–294. https://doi.org/10.1016/j.expthermflusci.2016.03.024

Snegirjov, A. Ju. 2008. Vysokoproizvoditel’nye vychislenija v tehnicheskoj fizike. Chislennoe modelirovanie turbulentnyh techenij. Izdatel’stvo Politehnicheskogo universiteta, Sankt-Peterburg. 143 s. (in Russian). https://doi.org/10.18720/SPBPU/2/si20-574

Wagner, M.; Chen, X.; Nayyerloo, M.; Wang, W.; Chase, J. G. 2008. A novel wall climbing robot based on Bernoulli effect, in 2008 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 12–15 October 2008, Beijing, China, 210–215. https://doi.org/10.1109/MESA.2008.4735656